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Abstract

The timing of the end of the vegetation growing season (EOS) plays a key role in terrestrial ecosystem carbon and

nutrient cycles. Autumn phenology is, however, still poorly understood, and previous studies generally focused on

few species or were very limited in scale. In this study, we applied four methods to extract EOS dates from NDVI

records between 1982 and 2011 for the Northern Hemisphere, and determined the temporal correlations between

EOS and environmental factors (i.e., temperature, precipitation and insolation), as well as the correlation between

spring and autumn phenology, using partial correlation analyses. Overall, we observed a trend toward later EOS in

~70% of the pixels in Northern Hemisphere, with a mean rate of 0.18 � 0.38 days yr�1. Warming preseason tempera-

ture was positively associated with the rate of EOS in most of our study area, except for arid/semi-arid regions,

where the precipitation sum played a dominant positive role. Interestingly, increased preseason insolation sum might

also lead to a later date of EOS. In addition to the climatic effects on EOS, we found an influence of spring vegetation

green-up dates on EOS, albeit biome dependent. Our study, therefore, suggests that both environmental factors and

spring phenology should be included in the modeling of EOS to improve the predictions of autumn phenology as

well as our understanding of the global carbon and nutrient balances.
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Introduction

The timing of phenological events, such as start of

the growing season (SOS) and end of the growing

season (EOS), is particularly sensitive to climate

change (Chuine et al., 2004; Menzel et al., 2006; Piao

et al., 2006, 2015; Stocker et al., 2013; Fu et al.,

2015b). Previous studies, however, have mainly

focused on SOS (Schwartz et al., 2006; Cleland et al.,

2007; Piao et al., 2011; Fu et al., 2014b), and investi-

gations of the response of EOS to climate change

are much fewer (Miloud & Ali, 2012; Gallinat et al.,

2015). Recent studies, however, reported that EOS

dynamics may play a critical role in determining the

length of vegetation growing season (Garonna et al.,

2014), and subsequently regulate terrestrial water,

carbon and nutrient cycles (Piao et al., 2007, 2008;

Richardson et al., 2013; Estiarte & Pe~nuelas, 2015).

However, we are still far from understanding the

dynamics of autumn vegetation phenology and its

associated controls (Klosterman et al., 2014; Estiarte

& Pe~nuelas, 2015). Hence, thorough investigation of

EOS and its environmental and physiological

controls (i.e., SOS) is needed to promote autumn

phenology modeling and increase our understanding

of global carbon and nutrient cycles in the context

of climate change.

Current knowledge of long-term variation in

autumn phenology was generally obtained from

ground observations (Menzel et al., 2006; Gill et al.,

2015; Panchen et al., 2015). In addition, large spatial

and temporal scale analyses facilitated by remote

sensing-based phenology data have indicated an over-

all delayed trend in EOS (St€ockli & Vidale, 2004;

Julien & Sobrino, 2009; Garonna et al., 2014). How-

ever, large uncertainty occurs within and among these

remote sensing-based EOS estimations, which is

mainly associated with the methods that were used to

extract EOS dates from the Normalize Differenced

Vegetation Index (NDVI) seasonal cycle. These
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methods of EOS estimation consist of two main proce-

dures: first, elimination of noise from NDVI time-ser-

ies using smoothing and filtering functions (Roerink

et al., 2000; Moody & Johnson, 2001; Chen et al., 2004);

second, determination of EOS based on predefined

NDVI thresholds or changing characteristics in tempo-

ral profile (Myneni et al., 1997; Piao et al., 2006; Julien

& Sobrino, 2009). Given the large differences in EOS

estimation among different methods, combining mul-

tiple methods is thus preferred when exploring EOS

dynamics.

Compared to SOS (Fu et al., 2014b; Wang et al., 2015),

the linkages between EOS and its driving factors are

very unclear (Sparks & Menzel, 2002; Menzel et al.,

2006). Recent studies reported positive correlations

between day length and/or light intensity and EOS

dates (Keskitalo et al., 2005; G€unter et al., 2008; Borchert

et al., 2015; Liu et al., 2015). However, the physiological

mechanism of light regulation of EOS is still unclear

due to the difficulty in separating the effects of day

length (i.e., photoperiod) and light intensity (Calle

et al., 2010). In regional investigations of the influence

of light fluctuations, solar radiation was used as an

integrated measure of both day length and solar inten-

sity (Calle et al., 2010). In the present study, we there-

fore explored the correlation between EOS and light

based on the sum of daily absorbed solar radiation over

the time period preceding EOS (referred to as the inso-

lation sum over the preseason). In addition to light

effects, recent experimental efforts have reported that

warming during summer and autumn significantly

delays the timing of leaf senescence (Gunderson et al.,

2012; Marchin et al., 2015), which was consistent with

long-term ground observations (Sparks & Menzel, 2002;

Ib�a~nez et al., 2010). Precipitation was also reported to

play a role in determining EOS (Richardson et al., 2013;

Estiarte & Pe~nuelas, 2015), especially in arid regions

(Liu et al., 2015). Moreover, Fu et al. (2014a) reported

earlier autumnal senescence as a consequence of warm-

ing-induced earlier spring leaf out, using a manipula-

tive warming experiment. However, how these climatic

variables and spring phenology determine EOS dates at

larger spatial and temporal scales has not been well

investigated.

In this study, we applied four widely used methods

to estimate the EOS dates from the long-term satellite

NDVI records (1982–2011) from the Global Inventory

Modeling and Mapping Studies (GIMMS). The primary

objectives of this study were (1) to quantify the change

in EOS across the Northern Hemisphere (north of

30°N); (2) to investigate the environmental controls

(e.g., temperature, precipitation and insolation) on the

date of EOS; and (3) to explore the linkage between

SOS and EOS.

Materials and methods

Study area and biomes

Our study was conducted across the Northern Hemisphere,

excluding the subtropical regions (i.e., latitudes lower than

30 °N) due to their unclear seasonality in vegetation dynam-

ics. Moreover, we excluded pixels dominated with cropland

(i.e., referred from MODIS Landover classification product

(IGBP) classification, Fig. S1), because their seasonal cycle is

largely influenced by human regulation. For the sake of

reducing noise resulting from nonvegetation signals, area

covered with bare soil/sparse vegetation (i.e., annual mean

NDVI lower than 0.1) was also excluded from our analysis

(Zhou et al., 2001).

Datasets

Gridded climate data. In this study, the monthly tempera-

ture and precipitation data with a spatial resolution of

0.5 9 0.5° were extracted from CRU-TS 3.21 climate dataset

(Harris et al., 2014) and covered the period from 1982 to

2011. This climate dataset was gridded from archives of

meteorological station records across the world’s land areas

and a previous climatology using a spatial interpolation

method (New et al., 2000; Mitchell & Jones, 2005). Monthly

insolation data (i.e., the sum of incoming short-wave solar

radiation) from 1982 to 2011 were obtained from the CRU-

NCEP datasets with a spatial resolution of 0.5 9 0.5°
(ftp://nacp.ornl.gov/synthesis/2009/frescati/model_driver/

cru_ncep/analysis/readme.htm). Both the CRU-TS and

CRU-NCEP databases have been applied in recent climate

change and phenological research (Peng et al., 2013; Forkel

et al., 2014; Piao et al., 2015).

Satellite NDVI records. Normalize Differenced Vegetation

Index, determined as the ratio of the difference between

near-infrared reflectance and red visible reflectance to

their sum, is commonly used as a proxy of vegetation

greenness and photosynthetic activity (Myneni & Hall,

1995; Myneni et al., 1997). Thus, its seasonal curve could

be used to determine the timing of phenological events

(e.g., both start and end of growing season) (Buitenwerf

et al., 2015; Forkel et al., 2015). In this study, we

employed the latest and longest release of satellite NDVI

records (referred as NDVI3g) by NASA’s GIMMS group

(Tucker et al., 2004, 2005). Multiple corrections have been

applied to eliminate errors and noise related to change of

satellite sensors, atmospheric interference and nonvegeta-

tion dynamics (Vermote et al., 1997; Pinzon et al., 2005;

Sobrino et al., 2008; Pinzon & Tucker, 2014). It contains

fortnightly NDVI observations at a spatial resolution of

one-twelfth of a degree (~8 km) during the past three

decades. We therefore extracted the NDVI pixels with a

complete cycle (January 1982–December 2011) and

assigned the middle of the whole compositing period to

the acquisition date of each NDVI image to construct

NDVI time-series.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13311
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Phenology extraction methods

Numerous methods have been developed to extract SOS and

EOS from the seasonal cycle of NDVI. However, NDVI data

might be misrepresented by snow (Grippa et al., 2005). In

addition, the performance of phenology extraction methods

was reported to be sensitive to the influence of snow coverage

during the nongrowing season (Shen et al., 2013). Due to the

absence of available snow information in the GIMMS NDVI3g
dataset, we used daily air temperature (interpolated from

monthly temperature data using spline function) and certain

criteria (i.e., below 0 °C for a sequence of 5 days) to screen out

pixels that were potentially covered by snow, and subse-

quently replaced the NDVI estimate with that of the tempo-

rally nearest snow-free date. Another purpose of applying this

temperature threshold was to ensure that the estimated EOS

would not be positioned beyond the thermal growing season.

Finally, a 5-point median moving average filter was intro-

duced to delete abnormally high/low values in the NDVI

cycle, which were subsequently replaced with smoothed

value. After this preprocessing of the NDVI data, four meth-

ods were applied. The detailed information, including the

data filtering function and corresponding criteria used to help

determining the date of EOS from the smoothed NDVI sea-

sonal curve, is displayed in Table 1 and Supporting informa-

tions. The coefficients of each data filter function were

optimized using the Levenberg–Marquardt (LM) method

(Mor�e, 1978), thus changed the biweekly sampled NDVI data

resolution on a daily basis. We then applied the relevant crite-

ria to estimate EOS.

Analyses

Linear least-squares regression was used to estimate the tem-

poral trends of EOS from 1982 to 2011 at pixel level. Trend

analysis was applied in both the ensembles and the individual

of the four methods to provide robust estimates of the change

in EOS across the Northern Hemisphere. The EOS data and

the vegetation map were remapped into the same resolution

of the climatic variables (i.e., 0.5 9 0.5°). Spearman’s rank

correlation coefficients were used to determine the preseason

length that was defined as the period when the highest corre-

lation coefficients occurred between the date of EOS and each

of the climatic factors (i.e., temperature mean, precipitation

sum and insolation sum) calculated from periods ahead of

EOS with a 1-month step. The maximum range of this period

was set from June to the multiyear average date of EOS fol-

lowing previous studies (Jeong et al., 2011; Yue et al., 2015).

The preseason for each of the three climatic factors, that is,

temperature mean, precipitation sum, and insolation sum,

was determined separately. Then, we applied a temporal par-

tial correlation analysis between EOS and mean temperature,

precipitation sum, and insolation sum over the preseason, as

well as the date of SOS. It enables us to statistically investigate

the relationship between EOS and a single driving factor, and

eliminate the influence of three remaining factors. This tech-

nique has been applied in previous studies involving climate

change and vegetation phenology (Peng et al., 2013; Fu et al.,

2015a,b). The ensemble mean of the partial correlation coeffi-

cients was calculated for each and across all biomes.

Results

Changes in autumn phenology and climate in the
Northern Hemisphere

During the period 1982–2011, the mean date of EOS in

the Northern Hemisphere was delayed with an average

rate of 0.18 � 0.38 days yr�1. More than 70% of the

study area experienced delayed trends of EOS, with

roughly 43% of them statistically significant at P < 0.05

(Fig. 1a, dotted regions). Advanced EOS was, however,

mainly observed in arid/semi-arid regions (e.g., Cen-

tral Asia), Siberia, Northern Eurasia and northwestern

North America. Consistent results were found across

each of the four individual methods (Fig. S3a, e, i, m).

Delayed trends were observed in all biomes, despite

large discrepancies among biomes. Forest biomes

Table 1 Summary of four widely applied methods in the determination of the date of EOS using satellite-based NDVI records.

Methods Data filter function Determination of EOS Reference

Hants-Mr NDVIðtÞ ¼ a0 þ
Pn

i¼1 ai cosðxit� uiÞ Maximum decrease in fitted NDVI Jakubauskas et al. (2001),

De Wit & Su (2005)

Polyfit-Mr NDVIðtÞ ¼ a0 þ a1t1 þ a2t2 þ . . .þ a6t6 Maximum decrease in fitted NDVI Piao et al. (2006)

Double logistic NDVI(t) = wNDVI + (mNDVI � wNDVI) 9

(1/(1 + e�mS(t�S)) + 1/(1 + emA(t�A)) � 1)

Model parameter A Pinty et al. (2007), Julien &

Sobrino (2009)

NDVI(t) = mNDVI � (mNDVI � wNDVI) 9

(1/(1 + e�mS(t�S)) + 1/(1 + emA(t�A)) � 1)

Piecewise

logistic NDVIðtÞ ¼
c1

1þea1þb1 t
þ d1 t� a

c2
1þea2þb2 t

þ d2 t[ a

(
Local minima for the derivatives

of fitted NDVI curve

Zhang et al. (2003, 2006)

Data filter function was used to reconstruct time-series NDVI curve from satellite data which could be potentially interrupted by

residue noise from cloud contamination and unstable atmosphere conditions. Afterward, predefined criteria used to determine the

date of EOS was applied. In the data filter function, t is Julian date and NDVI(t) indicates the value of NDVI at Julian day t. The

remaining coefficients can be estimated using iterative nonlinear least-squares technique (i.e., L-M method).
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(except for DNF) generally have a larger delayed trend

than nonforest biomes, whereas shrublands and grass-

land have a relatively smaller delayed trend (Fig. S4).

The optimal length of the preseason ranged

between 0 (current month of EOS) and 4 months (i.e.,

autumn/summer) (Fig. S2), but averaged at 1.4 (tem-

perature), 1.2 (precipitation) and 1.1 (insolation)

months preceding the date of EOS (Fig. S2a–c). Dur-

ing the past three decades, increasing temperature

was observed in most of the study area (94%), with

statistically significant trends (52% of area) occurring

mainly in southwestern North America, Northern

Canada, Eastern Eurasia and Northern Europe

(Fig. 1b). Changes in precipitation and insolation were

nonuniform (Fig. 1c). Neither positive nor negative

trends dominated (both nearly 50%) over the study

areas. Nonetheless, decreasing precipitation was

detected in southwestern North America, Central Eur-

asia and Northern China, and increasing precipitation

in Northeastern Canada and Russia. Insolation

decreased in Siberia, Northeastern and Western North

America, but increased in part of Central North

America, Central Eurasia and Northern China

(Fig. 1d). This spatial pattern of changes in climate

factors was found in each of the four applied methods

(Fig. S3).

Climatic controls on autumn phenology in the Northern
Hemisphere

After removing the influence of precipitation, insolation

and SOS with the partial correlation approach, we

found large positive correlations between temperature

and EOS in more than 71% of the study area (around

27% of them were statistically significant at P < 0.05).

Significant positive correlations were mainly found in

Northeastern North America, Northern Europe and

Eastern Russia. No statistically significant correlations

between preseason temperature and EOS were found

in arid/semi-arid Central Asia, suggesting that presea-

son temperate might not be the primary factor for EOS

in dry climate areas (Fig. 2a). For precipitation, we

found that neither the positive nor the negative partial

correlations dominated the whole regions (Fig. 2b),

while negative correlations were observed at high lati-

tudes, such as Northern Europe, Western Canada,

Alaska and Western USA. In dry regions, for example,

Central North America, Central Eurasia and Northern

China, positive correlations were dominated, suggest-

ing that more precipitation in summer/autumn would

contribute to a later end of the growing season. The

partial correlations between EOS and insolation sum

were also spatially different. We found positive

Fig. 1 Change of EOS determined by the average of four EOS extraction methods and corresponding climatic variables during the peri-

ods from 1982 to 2011. The period of each climatic variable was defined as the period that highest correlation coefficient was deter-

mined by the simple linear correlation analysis between each climatic variable and EOS. Dotted regions indicated the detected trends

were significant at P < 0.05.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13311
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correlations mainly at high latitudes, that is, Siberia,

Eastern Russia and Alaska, in more than 65% of the

study area. Negative correlations between EOS and

insolation were mainly found in temperate regions, but

the occurrence was fragmented (Fig. 2c). Our results

inferred from the partial correlations were confirmed

by simple correlation analysis in both percentage

of positive/negative correlations and their spatial

patterns (Fig. 2d–f). In addition, the influence of tem-

perature, precipitation and insolation on EOS was con-

sistently found in each of the four individual methods

(Figs S5–S8).
To provide a comprehensive interpretation of the cli-

matic effects on EOS, we showed a map of the partial

correlation coefficients of the climatic variables with

EOS in Northern Hemisphere (Fig. 3a), as well as the

distribution of the partial correlation coefficients in cli-

mate space (Fig. 3b–d). Consistent with the above

results, we found that precipitation associates best with

EOS in semi-arid/arid regions, while the temperature

plays a key role in cold regions. In detail, we found that

precipitation exerts a dominant control over EOS in

regions with MAP <500 mm and MAT >0 °C. In humid

areas (e.g., MAP > 750 mm), the role of temperature is

dominant, while in semi-humid (e.g., 350 mm <
MAP < 750 mm) and cold regions (e.g., MAT < �5 °C),
both temperature and insolation determine the EOS

dates. Similar results in terms of dominant climatic

drivers were found in each of the four methods

(Fig. S9a–p).

The influence of spring phenology on autumn phenology
in Northern Hemisphere

The correlation between SOS and EOS was investigated

using both partial correlation removing impact of tem-

perature, precipitation and insolation (Fig. 4a) and sim-

ple correlation (Fig. 4b). Positive correlations were

mainly observed in Northern Eurasia, Siberia and

Northern North America, while negative correlations

occurred in middle latitudes (e.g., eastern Northern

America). Overall, positive correlations dominated and

were found in 60% (20% were significant) of our study

area for both correlation analyses. Similar results were

found for both the partial and simple correlation analy-

sis, and across the individual methods, although in the

Piecewise logistic method (Fig. S10g, h), the percentage

of positive correlation was relatively lower.

Fig. 2 Spatial pattern of partial correlation coefficient and simple correlation coefficient between climatic factors and EOS determined

by the average of four individual methods. Figure 2a–c were the results of temperature, precipitation and insolation using partial corre-

lation, while Fig. 2d–f were calculated using simple correlation. Dotted regions indicated correlations were significant at P < 0.05.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13311
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Drivers of autumn phenology at biome level

The biome-dependent partial correlation coefficients

between EOS, climatic factors and spring phenology

(i.e., SOS) are displayed in Fig. 5. The climatic controls

on the date of EOS were substantially different among

biomes. Generally, the role of temperature in postpon-

ing the date of EOS was clearly observed in forest

biomes (more than 85% of pixels of these biomes

expressed positive correlations, except for DNF). The

influence of precipitation was more dominant in Grass-

lands (positive in about 73%), while the influence of

insolation was evident in forests. SOS played a more

critical role in deciduous forests when compared with

environmental factors. In detail, the date of EOS of ENF

was mainly associated with environmental factors, that

is, temperature (positive correlation at 85% of the area),

precipitation (74%) and insolation (70%), and the influ-

ence of SOS was ambiguous. For DNF, insolation and

SOS were found to be positively associated with EOS at

Fig. 3 Distribution of the dominant climatic factors of EOS determined by the average of four individual methods (a) and their varia-

tion along the gradient of mean annual temperature, precipitation and insolation (b–d). Red (temperature), green (precipitation) and

blue (insolation) were applied to indicate which factor was more dominant in each pixel.

Fig. 4 Spatial pattern of partial (a) and simple correlation (b) coefficient between EOS and SOS determined by the average of four indi-

vidual methods. Partial correlation coefficient was calculated after controlling climatic factors (i.e., temperature, precipitation and inso-

lation). Dotted regions indicated correlations were significant at P < 0.05.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13311
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more than 73% and 85% of total pixels, and more

approximately one-fifth of them were significant. For

DBF, both environmental factor and SOS affected the

EOS dates, with a dominance of temperature (95% of

DBF area) and SOS (78%). In addition, temperature and

precipitation (67%) were positively associated with

EOS, while insolation (61%) and SOS were negatively

associated with EOS. The EOS of MF was positively

correlated with temperature (86%) and insolation

(69%), but negatively correlated with precipitation

(69%) and SOS (61%). Compared to forests, the EOS of

both shrublands and savannas was generally associated

with temperature, insolation and SOS. For grasslands

in contrast, precipitation was the most relevant envi-

ronmental driver of EOS, dominating in 73% of total

pixels (significant in 32%). Furthermore, the influence

of SOS (70%) was also stronger compared to tempera-

ture (63%) and insolation (52%). The effects of climatic

factors and SOS were consistently present in three

methods, that is, Hants-Mr, Polyfit-Mr and Double

logistic, while for the Piecewise logistic method, the

distribution of positive/negative correlations was

slightly different in few biomes (Fig. S11).

Discussion

Changes in EOS in Northern Hemisphere

Using long-term (from 1982 to 2011) satellite NDVI

records and four widely used methods to extract EOS,

our results revealed a trend of delayed EOS at an aver-

age rate of 0.18 � 0.38 days yr�1 across the Northern

Hemisphere. This finding is consistent with previous

studies that documented a delay in EOS at regional

scale, for example, Northern America (Reed, 2006;

Dragoni & Rahman, 2012), Eurasia (St€ockli & Vidale,

2004) and China (Liu et al., 2015). Nonetheless, the dif-

ferences in the rate of changes in EOS exist among

regions and studies, that is, from 0.19 to 0.45 days yr�1,

which may be related to differences in both methodol-

ogy and study periods and areas.

We found that a warming climate in summer/au-

tumn delayed the date of EOS in most of the Northern

Hemisphere, especially at cold regions (e.g., higher lati-

tudes), which is consistent with previous studies based

on field experiments and satellite data (Estrella & Men-

zel, 2006; Delpierre et al., 2009; Vitasse et al., 2014). The

positive effect of temperature on EOS is likely related

to the warming-induced enhancement of activities of

photosynthetic enzymes (Shi et al., 2014), to the

reduced speed of chlorophyll degradation (Fracheboud

et al., 2009), to the reduced probability of being exposed

to frost in autumn (Schwartz, 2003; Hartmann et al.,

2013), or to the increased potential for growth and pho-

tosynthetic consumption. In contrast, we also found

negative correlations between temperature and EOS in

arid and semi-arid regions, such as in grassland in Cen-

tral Eurasia. This may be related to the fact that a war-

mer autumn might critically reduce water availability

in dry regions (Dai et al., 2004), with negative impacts

on plant growth and photosynthesis activity (Tezara

et al., 1999) and increased risk of chlorophyll degrada-

tion and plant mortality (Anderegg et al., 2013; Dreesen

et al., 2014), and subsequently resulting in earlier EOS.

This was further confirmed by the larger positive par-

tial correlation between precipitation and EOS over

these regions. We found a negative effect of precipita-

tion on EOS in colder regions (e.g., MAT ≤ 5 °C, Figs 2,

Fig. 5 Partial correlations coefficient between EOS, SOS and climatic variables of each biome determined by average of four methods.

Bars above 0 represented percentage of positive correlations, while the remaining showed negative percentages. Colored part indicated

percent of significant correlations at P < 0.05.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13311
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S5–S8 and S12), which may be because high soil mois-

ture can limit nutrient availability for growth in these

often permafrost-affected regions (Bonan & Shugart,

1989). Interestingly, we found a positive correlation

between insolation and EOS at high latitudes. Increase

in insolation has been demonstrated to retard the accu-

mulation of abscisic acid and subsequently slow the

speed of leaf senescence (Thimann & Satler, 1979a,b;

Gepstein & Thimann, 1980). Enhanced photosynthetic

capacity, CO2 sequestration rate (Bonan, 2002) and

chlorophyll levels (He et al., 2005; Kim et al., 2008) also

contributed to the delaying effect of greater insolation

on EOS. Thus, the delayed trends at high latitudes

induced by rising temperature could also be dampened

by a decrease in the availability of insolation, especially

in Siberia.

At biome level, the positive influence of temperature

was more pronounced in forest than in grasslands. EOS

of DNF was primarily regulated by insolation and SOS,

while for DBF, all factors were associated with the date

of EOS. For grassland, although precipitation domi-

nated the change in EOS, temperature and SOS should

also be considered. Overall, the correlation between

EOS and climatic factors was complex and more

manipulative experiments focusing on EOS phenology

are needed to explore the mechanisms behind the

observed delayed trend of autumn phenology.

The influence of spring phenology on autumn phenology

Besides the climatic controls on EOS, we also observed

additional effects of spring phenology on autumn phe-

nology in line with a recent experimental study (Fu

et al., 2014a) and remote sensing-based studies (Keenan

& Richardson, 2015; Wu et al., 2016). Multiple mecha-

nisms have been proposed to explain the carryover

effects of SOS (i.e., earlier SOS is followed by an earlier

date of EOS). (1) The timing of leaf senescence was

reported to be constrained by factors associated with

leaf traits directly, such as leaf life span (Reich et al.,

1992) and programmed cell death (Lim et al., 2007). (2)

Earlier spring might lead to soil water loss in the early

part of growing season, thereby increasing the preva-

lence of drought during summer (Buermann et al.,

2013) that may subsequently result in earlier leaf senes-

cence. (3) Earlier leaf emergence may increase the risk

of being exposed to spring frost (Hufkens et al., 2012),

and the outbreak of harmful insects (Jepsen et al., 2011),

which may be related to earlier leaf senescence. (4) The

correlation between SOS and EOS was also suggested

to be related to the limitation in the size of the plants’

carbon sink: Earlier accumulation of nonstructural car-

bohydrate in spring might have contributed to the ear-

lier achievement of its maximum carbon content in

autumn (Charrier & Am�eglio, 2011; Fu et al., 2014a).

Nonetheless, it should be noted that the influence of

earlier SOS on the determination of EOS was weaker

than climatic variables across all biomes, and even in

some areas with deciduous forest, a negative correla-

tion was found, suggesting more experimental efforts

are needed to improve the understanding of the cli-

matic and SOS effects on the EOS phenology process.

In conclusion, using four widely accepted EOS

extraction methods and satellite-derived NDVI records

from 1982 to 2011, we found an overall trend of

delayed EOS across the Northern Hemisphere. Our

study revealed the different dominant drivers of EOS

dynamics at spatial and biome levels. Warming tem-

perature postponed the date of EOS in most (~70%) of

our study area, except for arid/semi-arid regions (e.g.,

Central Eurasia). Increased precipitation at high lati-

tudes lead to earlier EOS, while sufficient insolation

would facilitate the prolongation of the growing sea-

son in autumn. Moreover, we confirmed additional

influence of SOS on EOS, which displayed positive cor-

relations in high latitudes and negative correlations

mainly in eastern North America. Multiple factors reg-

ulate the date of EOS at biome level. Except for tem-

perature, effects of precipitation were also clearly

observed, especially in ENF and grassland. The influ-

ence of insolation was mainly evident in forests. SOS

played a significant role in DNF and DBF when com-

pared with climate factors. Our study, therefore, sug-

gests that both climatic factors and SOS should be

considered in the modeling and simulation of EOS and

to improve our understanding of EOS phenology

responses to future climate change scenarios.
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