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Abstract The optimization of the operation of existing
water systems such as dams is very important for water
resource planning and management especially in arid
and semi-arid lands. Due to budget and operational
water resource limitations and environmental problems,
the operation optimization is gradually replaced by new
systems. The operation optimization of water systems is
a complex, nonlinear, multi-constraint, and multidimen-
sional problem that needs robust techniques. In this
article, the practical swarm optimization (PSO) was
adopted for solving the operation problem of multipur-
pose Mahabad reservoir dam in the northwest of Iran.
The desired result or target function is to minimize the
difference between downstream monthly demand and
release. The method was applied with considering the
reduction probabilities of inflow for the four scenarios
of normal and drought conditions. The results showed
that in most of the scenarios for normal and drought
conditions, released water obtained by the PSO model
was equal to downstream demand and also, the reservoir

volume was reducing for the probabilities of inflow. The
PSO model revealed a good performance to minimize
the reservoir water loss, and this operation policy can be
an appropriate policy in the drought condition for the
reservoir.

Keywords Reservoir operation . Particle swarm
optimization .Mahabad dam . Iran . PSOmodel

Introduction

The occurrence of drought in watersheds creates many
problems in the water resource management systems.
As the drought conditions continue and intensify, the
reservoir volume decreases to a critical level that can
create irrecoverable damages in the future. Recently, as
a result of drought in Iran (especially surface waters),
water resource management becomes a very important
case for many researchers. Hence, payingmore attention
to resource management and offering the most efficien-
cy operation policy is required for preventing water loss
(Moradi-Jalal et al. 2007). The most important issue in
the operation of dams is when there is a water resource
shortage, which necessitates preparing a target function
and special planning for dam operation. Since reservoir
management and operations are so complex (Simonovic
and Savic 1989), they need careful planning and man-
agement strategies. Continuous changes in inflow, var-
iation in periodical water requirement, and trade-offs
between wide ranges of conflicting objective are major
reasons (Rani and Moreira 2010). The consideration of
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management policies is a sustainable and correct use of
reservoir water to respond requirements. Reservoir op-
timization management is a multiconstraint (in objec-
tives) and multidimensional optimization problem. To
solve this complex problem, powerful optimization
methods are required. The meta-heuristic methods have
been developed as powerful methods to optimize oper-
ation policies. The meta-heuristic methods are very
flexible to formulate target functions and constraints.
Also, they have easy performance, and significant
knowledge of optimization models is not needed
(Schardong and Simonovic 2011).

The practical swarm optimization (PSO) is one of the
meta-heuristic methods that are widely used in water
resource management. The main advantage of PSO is
that it provides near-optimal solutions with rational
computational cost. It also has high convergence speed
and entrapment difficulty in a local optimum (Montalvo
et al. 2008). Studies show that PSO model has better
efficiency for achieving an optimal solution with spend-
ing less time than other collective models, e.g., genetic
algorithm (GA) (Kumar and Reddy (2007); Montalvo
et al. (2008)). Although it cannot be claimed that the
heuristic methods are unable to find an absolute opti-
mum and as the iterations are tended to infinite, the
convergence is proved. However, in many issues espe-
cially in the optimization of reservoir operation, the
optimum is not always considered, and the main goal
is to find a satisfactory answer with consuming reason-
able time and cost. The concept of high fitness member
(elitist selection) in PSO is not used, and unlike GA, the
selection is not based on fitness function. So, particles
with low fitness can also remain in optimization process
and can move everywhere in search space. The removal
of low fitness members in every generation in the GA
model can reduce the efficiency of the algorithm with
increasing the number of generations in target function
optimization. Furthermore, the number of parameters in
PSO model is less than GA that represents its simplicity
and higher speed to reach the best answer.

In recent years, different studies about PSO
application and comparison of its performance with
other optimization models have been done that some
of them are mentioned as follows. Chau (2004) applied
the PSO method in forecasting real-time runoffs. The
PSO was also adopted to train ANNs in prediction of
water levels, and the satisfactory results were obtained
(Chau 2006). Kumar and Reddy (2007) developed a
PSOmodel by incorporating a new strategic mechanism

called elitist-mutation (EMPSO) for the optimization
operation of multipurpose reservoir systems. The com-
parison of the EMPSO results with standard PSO and
GA models showed better performance of EMPSO
compared with the other two methods. Montalvo et al.
(2008) compared PSOwith ant colony algorithm (ACO)
and GA techniques in designing of water supply system.
The results revealed that PSOmethod has given possible
and better solutions compared to ACO and GA
techniques for the water supply problems. Izquierdo
et al. (2008) studied optimization of wastewater collec-
tion networks design by PSO method. The obtained
results were compared with those given by using dy-
namic programming to solve the same problem under
the same conditions. The results showed that PSO mod-
el was better for finding an optimal solution. Baltar and
Fontane (2008) used multiobjective particle swarm op-
timization (MOPSO) for multipurpose reservoir opera-
tion issues. Chu and Chang (2009) employed PSO
method to parameter estimation of the nonlinear Mus-
kingum. Simulation results indicated that the proposed
model can improve the accuracy of the Muskingum
model for flood routing. Mathur and Nikam (2009)
applied GA to optimize the operation of the multipur-
pose reservoir and to gain reservoir operating rules for
optimal reservoir operations. The target function used
was minimizing the squared deviation of monthly
irrigation demand along with the squared deviation in
the mass balance equation. Their results indicated that
even during the low flow condition, the GA model
applied to the Upper Wardha reservoir can satisfy
downstream irrigation demand. Monem and Nouri
(2010) developed PSOmodel to optimize water delivery
in irrigation networks. They compared the outcomes
with simulated annealing model and concluded that
PSO model was better for designing of optimal
irrigation networks. Asfaw and Saiedi (2011) performed
an optimal operation of a cascade hydro-electricity res-
ervoir system using GA and excel optimization solver.
They revealed that the release policy of GA was better
than the excel optimization solver. Cyriac and Rastogi
(2013) investigated the basic concepts and successful
application of PSO algorithm in water resource
optimization. Some studies have also been performed
on the application of different methods for operation
optimization under in drought conditions. Taghian
et al. (2014) presented a hybrid model of MOPSO and
fuzzy logic to optimization of reservoir operation and to
minimize drought effects. The results showed that the
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developed model had a good performance on reservoir
operation in drought and normal conditions. Khanjari
Sadati et al. (2014) used GA to develop optimal reser-
voir water allocation policies for Doroudzan dam in the
south of Iran and to present the optimal cropping
pattern. They defined four weather conditions by
combin ing d i f f e ren t p robab i l i t y l eve l s o f
evapotranspiration, rainfall, and inflow. They defined
two irrigation approaches, deficit and full irrigation
under these four conditions. The results showed that
under deficit irrigation conditions, the total farm
income and the total cropped areas were larger
compared with the full irrigation. Ahmadianfar et al.
(2016) proposed optimal reservoir operation policies
for the Zohreh multiobjective and multireservoir system
in southern Iran. For this purpose, a conventional hedg-
ing rule was incorporated with a simple fuzzy logic
concept to prevent water reservoir shortage in drought
condition. In order to optimize hedging rule parameters,
the MOPSO was applied. They showed that the perfor-
mance of the system in short and long term is improved
in contrast with conventional hedging. The hedging
system can find an appropriate hedging rule for the
multipurpose and multireservoir system in drought pe-
riods. Other researches on optimal reservoir operation in
drought conditions include Shih and Revelle (1994,
1995), Dariane (1999, 2003), Felfelani et al. (2013),
and Hu et al. (2016).

In the present study, the PSO algorithm is adopted for
the optimal operation of the multipurposeMahabad dam
reservoir. This model is employed with a purpose of
reduction probability of inflow for the four scenarios of
normal and drought conditions.

Materials and methods

Case study

The case study considered in this paper is the Mahabad
watershed which is located in the northwest region of
Iran between the geographical coordinates 45° 25′ to
45° 46′ E longitudes and 36° 26′ to 36° 46′ N latitudes.
The Mahabad dam site covers an area of 807 km2 with
142 km perimeter. The dam is a multiobjective rockfill
dam with clay core which was designed, e.g., to store
drinking water, prepare agricultural water, control sea-
sonal floods, and generate electricity (Table 1). The
Coter and Bytas rivers originated from the southern

heights of the Jandaran and Siahghol Mountains are
the two most important rivers of the basin that finally
drain into the Mahabad dam reservoir (Fig. 1).

The monthly inflow data were collected from the
Mahabad Water Organization for a 32-year period
1975–2006. As shown in Table 2, the months of May,
June, July, August, and September have the highest
drinking and agricultural demands and these demands
are more than the average inflow to the reservoir during
this period (May–September). The maximum inflow
occurs when demands are minimum. The annual average
inflow of the dam is 280 million cubic meters (MCM),
with a standard deviation ranging from 43.28 to 0.92
MCM. As expected, the maximum monthly net evapo-
ration is observed in the summer season. The maximum
release of the reservoir is 51.84 MCM in the first half of
the hydrological year and 53.57MCM in the second half
based on the release of the reservoir and its powerhouse
inflow conditions for hydroelectric power generation (as
shown in the last column in Table 2). It should be noted
that the agriculture planning for water demand was per-
formed based on the guideline of Jahad-e-Keshavazi
Organization that is the governmental official strategist
for agriculture division in the Mahabad plain. The
monthly municipal water demand was also determined
based on regional water affair reports.

PSO algorithm

PSO is a meta-heuristic computation method and has
been inspired by the social behavior of animals like bird
flocking, fish schooling, and insect swarming (Kennedy
and Eberhart 1995). This model is computationally in-
expensive with a very simple theoretical structure and
easy coding and performance. Recently, PSO has been
applied in many research fields, particularly in uncon-
strained continuous optimization issues (Kennedy et al.

Table 1 Characteristics of Mahabad reservoir dam

Parameters Quantities

Crest length 700 m

Crest width 8 m

Lake length of dam 12 Km

Lake area of dam 11 Km2

Live storage capacity 180 Mm3

Dead storage capacity 40 Mm3
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Fig. 1 Location of Mahabad dam
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2001). At first, this algorithm initializes with the popu-
lation of individual particles, which is randomly located
in the design space. Consequently, PSO simply regu-
lates the trajectory of particles and provides the best
solution for all the particles (gbest) and for each particle
(pbest). However, each particle contains a velocity that
is dynamically regulated based on flying experience of
its own and other particles in the design space (He and
Wang 2007). Suppose that the design space isD-dimension-
al, then, the ith particle of the population can be represented
by a D-dimensional vector, Xi= [xi , 1, x,2, ... , xi ,d]

T. The ve-
locity (position change) of this particle can be displayed by
another D-dimensional vector, Vi= [vi , 1, vi , 2, ... , vi ,d]

T. The
best prior gained position (pbest) of the ith particle is denoted
asPi= [pi , 1,pi , 2, ... ,pi ,d]

T. The global best particle (gbest) is
symbolized byPg, which illustrates the best particle found so
far in thewhole population. The new velocity of each particle
is calculated as follows:

vnþ1
id ¼ wvnid tð Þ þ c1rn1;i;d pnid−x

n
id

� �
þ c2rn2;i;d pngd−x

n
id

� �
ð1Þ

Where, d = 1 , 2 , . . .D, i = 1 , 2 , . . .Nwith N be-
ing the size of the population, c1and c2are constants called
acceleration coefficients, w is the inertia factor and r1 , i , d
and r2 , i , d are the two independent random numbers
uniformly distributed in the range of [0, 1]. Several
studies on PSO showed different amounts of acceleration

parameter: c1 and c2 are equal to 2 (c1 = c2 = 2) in theo-
retical study and equal to 0.5 (c1 = c2 = 0.5) in empirical
study (Kennedy 1998). However, Carlisle and Dozier
(2001) indicated that it is better to select a larger cognitive
parameter, c1, than a social parameter, c2 with c1 + c2 ≤ 4.
We followed this suggestion and choose c1 + c2 ≤ 4.

Therefore, the update of the position of individual
particle in each generation is done by

xnþ1
id ¼ xnid þ vnþ1

id ð2Þ

The inertia weight,w in Eq. 1 is used to control the
influence of the preceding velocity history on the present
one. Therefore, the inertia factor, w, regulates the mutual
relationship between the global and personal discovery
power of the population (Abraham et al. 2006). Empirical
outcomes showed that to prevent global discovery power
of the design space and gradually decrease it to achieve the
best solution, it is suitable to put inertial factor on the large
value (Shi and Eberhart 1998a, b, 1999). Thus, Shi and
Eberhart (1998a, b, 1999) improved performance of the
PSO model as a weighting function:

w ¼ wmax
wmax−wminð Þ � n

iTermax
ð3Þ

where,wmaxis the initial weight,wmin is the final weight,
iTermax is the maximum iteration number, and n is the
current iteration number. Flowchart of PSO is shown in
Fig. 2 (Gholizadeh and Seyedpoor 2011).

Table 2 Determined hydrological parameters at Mahabad dam site

Month Average inflow (MCM) Std. dev. (MCM) Drinking & agricultural
demand (MCM)a

Net evaporation (mm) Maximum release
of the reservoir (MCM)

September 1.34 1.45 20.67 120.5 51.84

October 7.85 11.86 9.11 40.77 51.84

November 11.03 11.33 1.53 – 51.84

December 16.28 15.3 1.43 – 51.84

January 20.98 14.36 1.4 – 51.84

February 54 33.26 1.44 – 51.84

March 97.13 43.28 6.92 50.88 53.57

April 55.88 37.7 27.04 156.39 53.57

May 10.9 10.8 33.01 274.91 53.57

June 2.47 1.87 29.64 321.52 53.57

July 1.14 0.94 30.74 314.3 53.57

August 0.9 0.92 26.8 242.5 53.57

a Jahad-e-Keshavazi Organization’s guideline and Water & company, West Azarbaijan Province, Mahabad Town, Iran
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Model development

The target function used in this study for the mathemat-
ical model of the operation optimization of theMahabad
dam reservoir minimizes the difference between month-
ly downstream demands and release (Mathur and
Nikam 2009; Taghian et al. 2014):

Minimize F ¼
X12
t¼1

Rt−Dtð Þ2 ð4Þ

where,Rt is monthly water release for the month t andDt

is themonthly downstreamwater demand for themonth t.
The sum of agricultural and drinking demands is

considered as downstream demand. There are 24 deci-
sion variables including 12 variables (one for each

month) for the release and 12 variables for the storage
volume of the reservoir.

Constraints of the system: To minimize the target
function, three main constraints are considered in the
current study:

I. Reservoir mass balance constraint

In this constraint, the final storage at the end of the
month t is equal to the initial storage in the beginning of
the monthtplus monthly inflow during the period t
mines monthly watery release for the month tand
monthly evaporation loss from the reservoir during the
montht. This equation is called mass balance (Becker
and Yeh 1974; Yeh 1985; Wurbs 1993; Russell and
Campbell 1996; Labadie 2004):

Stþ1¼St þ I t−Rt−Et t ¼ 1;…; 12 ð5Þ

Where, St + 1 is the final storage at the end of the
montht, St is the initial storage at the beginning of the
montht, It is the monthly inflow during the period t,Rt is
the monthly water release for the month t, and Et is the
monthly evaporation loss from the reservoir during the
month t.

II. Reservoir storage constraint

The constraint considered for reservoir storage im-
plies that the storage in each month should not be more
than the maximum capacity of the reservoir and less
than the dead storage. The constraint is expressed as:

Smin≤St ≤Smax t ¼ 1::::::12 ð6Þ

where, St is the reservoir storage for the month tand Smax

and Smin are the maximum capacity and dead storage of
the reservoir in MCM, respectively.

III. Release constraint

Release from the reservoir for the month t (Rt) must
be more than or equal to zero and smaller than or equal
to the maximum release of the reservoir. This constraint
is given by:

Rmin≤Rt ≤Rmax t ¼ 1::::::12 ð7Þ

where Rmaxare Rmin are the maximum and minimum
releases of the reservoir in MCM, respectively.

Yes

No

Start

Update particles' Position

Analyzing the Swarm

Updating the pbest

Updating the gbest

Convergence?

gbest is the Optimum

Update particles' velocity

Initialize Swarms

Fig. 2 The flowchart of PSO algorithm

 667 Page 6 of 11 Environ Monit Assess  (2016) 188:667 



In order to optimize the operation of the Mahabad
dam, the inflow to the dam with reduction probability
against mean monthly flow was considered. In fact,
the optimization was performed in low inflow condi-
tions in drought situations when the water system of
the dam faces water shortage problems. The inflows
to the dam with reduction probability are computed
using the following equation:

I t ¼ I t þ K:SDt ð8Þ

where It is the storage inflow for the month t, I t andSDt

are the average and standard deviation of inflow for the
month t, respectively.

In order to define different drought scenarios, differ-
ent values of K (K = − 0.25, K = − 0.5, and K = − 0.75)
were used in Eq. 7. Eq. 7 for different drought scenarios
can be written as follows:

I t ¼ I t þ −0:25ð Þ SDð Þt ð9Þ

I t ¼ I t þ −0:5ð Þ SDð Þt ð10Þ

I t ¼ I t þ −0:75ð Þ SDð Þt ð11Þ
In addition, K = 0 was applied to describe the normal

scenario.

I t ¼ I t ð12Þ
In normal condition, the inflow is considered equal to

the mean inflow. However, in drought condition, the
inflow with a risk lower than normal condition (reduc-
tion probability) is considered. It means that the amount
of inflow (It) decreases as the Kvalue decreases. In other
words, the optimization is performed in various scenar-
ios of drought conditions.

As PSO generally solves unconstrained problems,
constrained problems should be converted to an uncon-
strained one. There are several methods to convert target
function and constrains to an unconstrained function

which is called pseudo target function. One of the most
common methods is the exterior penalty function meth-
od, where target function and constrains are transformed
into a pseudo target function as shown below
(Ebrahinifarsangi 2002; Parsopoulos and Vrahatis 2002;
hashemi et al. 2008):

φ ¼ F þ P ð13Þ
in which

P ¼ RP:
X
i¼1

nC

max
gi

gi
−1; 0

 !" #2

þ Rp:
X
j¼1

nc

max 1−
g j

g j

; 0

0
@

1
A

2
4

3
5
2

ð14Þ

where P is the penalty function, RP is the penalty coef-
ficient, gj , gi,g J ; gi are both side phrases of unequal
constraints and F is the basic target function.

Results and discussion

In this research, the evaluation of decision variables to the
present solution and borders was controlled. A penalty
function was considered for the variables that are in
violation of border. Since an accurate selection of param-
eters in the PSO model will affect the functioning and
speed running of the PSO program, the sensitivity anal-
ysis of the PSOmodel was performed by consideration of
various combinations of the parameters. After performing
the sensitivity analysis, the parameters selected for the
PSO model are demonstrated in Table 3. The sensitivity
analysis of the population size is shown in Fig. 3. The
initial value for the sensitivity analysis of population size
increased from 50 to 300, and the target function value
decreased from 217.09 to 181.04. Decline of the target
function is significant until 150 populations but a signif-
icant change is not observed in the target function value
with more population size increases. Therefore, the opti-
mum size of the population is determined as 150 (Fig. 3).
Afterwards, the PSO model was performed to obtain 24

Table 3 Sensitivity analysis for PSO model parameters

Parameter Population size Maximum iteration C1 C2 Wmax Wmin

Value 150 1000 1.5 2 0.5 0.1
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variables with function of constraint mentioned above.
Twelve variables are related to the monthly release of
water and the remaining variables are related to the
storage volume of the reservoir. Figure 4 exhibits the
amount of monthly released water for drinking and agri-
culture obtained from the PSO model. As shown, the
months of May, June, July, and August have the highest
releases.

Figure 5 shows the amount of released water obtained
from the PSOmodel under the four scenarios and the amount
of drinking and agricultural water demands in the down-
stream. In the normal conditions (K=0) during all months,
the amount of the released water estimated by the PSO can
satisfactory provide the water demands of downstream. In
fact, it prevents the water loss in all months except March,
April, and May. These water losses are due to the high
volume of inflow to the dam returned in March. In two
drought scenarios (K= − 0.25,K= − 0.5), the amount of
the released water calculated by the PSO can provide the

drinking and agricultural water demands of downstream,
especially during the first 6 months of the hydrological year
which have high water demands. This prevents additional
loss of consuming water in drought conditions. This is con-
firmedwith the graphs of the downstreamwater requirements
and the amount of the released water estimated by the model
shown in Fig. 5. However, in a drought scenario (K = −0.75),
there is not a suitable adaptation between the amount of the
released water calculated by the model and the downstream
water demands exception for September, October, March,
May, June, July, and August months (Fig. 5).

The optimum storage of the water volume calculated for
Mahabad reservoir dam in the four different scenarios is
shown in Fig. 6. In all of the four studied scenarios, the
maximum and minimum optimized storage volumes have
been occurred in April and October, respectively. Generally,
with decreasingK value fromK=0 toK=−0.75, the optimal
volume of the reservoir obtained by the model decreases in
different months. The optimal volume of the dam’s
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reservoir has been defined for all the scenarios. In the first
three scenarios, the reservoir has suitable storage for
water supply of downstream, while in the last scenario
(K = −0.75), according to the continuity rules, reservoir
storage has decreased especially during the months with
high water demands.

Conclusions

In this study, the PSO model was used for optimizing the
operation of multipurpose Mahabad reservoir dam by con-
sidering the reduction of the probabilities of inflow. For the
preparation of Mahabad reservoir system in critical condi-
tions, inflows to the damwere considered with reducing the
probabilities of monthly average inflows in four scenarios
under normal and drought conditions. Generally, in most of
the defined scenarios (K = 0, K = −0.25, and K = −0.5), the
amounts of the released water obtained by the PSO model
had a good agreement with the downstreamwater demands,
and the storage dam had suitable reservoir to supply the
water demands of the next months. Only in scenario
K = −0.75, there is some problem in fully providing the

drinking and agricultural water requirements of downstream
in somemonths, because of the decreased dam’s inflow and
the amount of the releasedwater and the optimum storage of
reservoir calculated by the PSO. This research aimed to
minimize the reservoir water loss and the PSO model
showed a good performance to achieve this goal. Therefore,
the operation policy can be used as an appropriate policy
for the reservoir in drought conditions. In addition to the
good performance of the PSO algorithm, the low sensi-
tivity of the PSO model to the initial population and its
high speed to achieve optimal response than other heu-
ristic algorithm (e.g., genetic algorithm)make it a suitable
option for optimal allocation of water under shortage and
drought conditions. From the obtained results in this
study, it can be concluded that PSO model has high
ability to provide acceptable results for optimizing the
operation of the reservoir in a short time. The developed
model in this study can be used for better water resource
management in the semi-arid study region.Water manager
and policy makers with implementing an appropriate plan
and the use of new optimization methods such as PSO can
achieve optimum exploitation values for large water sys-
tems such as storage dams even in drought conditions.
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