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Abstract Time series of vegetation indices and remote-
ly sensed phenological data offer insights about the
patterns in vegetation dynamics. Both are useful sources
of information for analyzing and monitoring ecosystem
responses to environmental variations caused by natural
and anthropogenic drivers. In the semi-arid region of
Chile, climate variability and recent severe droughts in
addition to land-use changes pose threats to the stability
of local ecosystems. Normalized difference vegetation
index time series (2000–2013) data from the moderate
resolution imaging spectroradiometer (MODIS) was
processed to monitor the trends and patterns of

vegetation productivity and phenology observed over
the last decade. An analysis of the relationship between
(i) vegetation productivity and (ii) precipitation and
temperature data for representative natural land-use cov-
er classes was made. Using these data and ground mea-
surements, productivity estimates were projected for
two climate change scenarios (RCP2.6 and RCP8.5) at
two altitudinal levels. Results showed negative trends of
vegetation productivity below 2000 m a.s.l. and positive
trends for higher elevations. Phenology analysis sug-
gested that mountainous ecosystems were starting their
growing period earlier in the season, coinciding with a
decreased productivity peak during the growing season.
The coastal shrubland/grassland land cover class had a
significant positive relation with rainfall and a signifi-
cant negative relation with temperature, suggesting that
these ecosystems are vulnerable to climate change. Fu-
ture productivity projections indicate that under an
RCP8.5 climate change scenario, productivity could
decline by 12% in the period of 2060–2100, leading to
a severe vegetation degradation at lower altitudes and in
drier areas.

Keywords Vegetation productivity . Phenology trends .

Monitoring land degradation . Climate change . Semi-
arid region

Introduction

Semi-arid regions comprise nearly 15% of the total
global area and host 15% of the global human
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population (Millennium Ecosystem Assessment, 2005).
Many uncertainties have arisen with respect to the po-
tential effects of global change in these regions, espe-
cially regarding the impacts it could have on its ecosys-
tems and what this entails for human welfare. Consid-
ering that these ecosystems provide food, energy, and
grazing for livestock, among other ecosystem services,
their sustainability is a major concern in the face of the
desertification threats currently at play. Increasing evi-
dence of temperature rise and a decrease in rainfall in
semi-arid regions around the world (Christensen and
Christensen, 2007; Dai, 2013) suggest that these semi-
arid ecosystems will be negatively affected by increas-
ing desertification processes (i.e., land degradation is
characterized by a persistent reduction of biological
and economic productivity (Millennium Ecosystem
Assessment, 2005)). For example, northern Nigeria is
located in a semi-arid region bordering the Sahara de-
sert, averaging less than 600-mm annual rainfall. Al-
though there are not many proper documents about the
severity of the desertification in this zone, some reports
suggest that 0.6 km per year is the rate of desertification.
Visible signs of this phenomenon are not only the shift
of vegetation ecosystems to expansive desert-like sand
areas, also the drying up of water resources. Conse-
quently, food insecurity increases due to less arable land
and water for irrigation, thenmore anthropogenic effects
unchain, like health problems and economic negative
impacts (Olagunju, 2015).

This study focused on the semi-arid region of Chile,
which is located south of the hyper-arid Atacama De-
sert, a region that is currently under the threat of desert-
ification due to natural and anthropogenic drivers. Here,
both a temperature rise and more frequent periods of
prolonged droughts (i.e., El Niño Southern Oscillation)
are expected (Meza, 2013). Vegetation productivity is a
key metric for monitoring land degradation, because
agriculture and livestock production are the primary
economic activity and a key supporting ecosystem ser-
vice. Within the study area, the natural vegetation com-
position varies as a result of the spatial heterogeneity
associated with the mountainous topography and altitu-
dinal gradient. Nevertheless, shrublands and seasonal
grasslands are the main and secondary land cover types,
respectively. These cover types have been largely de-
graded by overgrazing as a result of goat production and
firewood extraction (Perez-Quezada et al., 2012), ex-
posing soils to erosive processes, nutrient losses, and a
reduction in their water retention capacity (Gutierrez

and Squeo, 2004). The overexploitation of scarce re-
sources and less-productive vegetation due to changes
in climate conditions are the key threats that have in-
creased the vulnerability of the ecosystems in this semi-
arid region.

Monitoring natural vegetation dynamics has become
a very important strategy to detect the impacts of global
change across ecosystems. Vegetation plays an impor-
tant role for the hydrologic (evapotranspiration/intercep-
tion) and biogeochemical cycles (photosynthesis/respi-
ration), being an active regulator of the mass/energy
exchange between the atmosphere and the terrestrial
surface (Kariyeva et al., 2012). Therefore, if the rela-
tionship between climate and vegetation determines its
distribution and growth dynamics, a shift in climate
conditions can lead to changes in vegetation structure
and functioning, affecting the ecosystem’s water bal-
ance (Chen et al., 2014).

Moreover, human activity has intensively affected
ecosystems through land-use change pressure, conse-
quently leading to habitat destruction and biodiversity
reduction, indicating the need to detect and predict
changes in ecosystem functioning (Naeem et al., 1999).

The two main variables used in this work are pro-
ductivity and phenology. Functional traits of ecosys-
tems, associated mainly with the productivity variable,
can be identified by the amount and seasonality of
photosynthetic activity. This process is strongly associ-
ated with the aboveground net primary productivity of
the vegetation cover (Tucker & Sellers 1986; Paruelo
et al., 2000). Phenology, defined as the study of the
timing of vegetation biological events regarding biotic
and abiotic factors (Lieth, 1974), can serve as an indi-
cator for recognizing, measuring, and monitoring the
biological impacts of climate change on ecosystems
(Bradley et al., 1999). Currently, there are a range of
methods that could be used to measure productivity and
phenology directly on the ground, but working at a
regional scale would be very time consuming and ex-
pensive. Alternatively, the ecosystem functional traits
can also be identified and monitored remotely, using
vegetation indices derived from satellite imagery.

Satellite-borne sensors record the electromagnetic
energy emitted or reflected by an object or surface in
different bands of the electromagnetic spectrum, provid-
ing quantitative and spatially continuous surface data.
The increased availability of this information in the
recent decades has enabled its use in ecology to charac-
terize landscape structure and more recently, to
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determine the functional attributes of ecosystems at
different spatial and temporal resolutions (Paruelo,
2008). Numerous studies have shown that normalized
difference vegetation index (NDVI) data obtained from
satellite images are directly related to ecosystem func-
tionality, particularly the aboveground net primary pro-
ductivity (Huete et al., 2002). The NDVI is based on
optical measurements of the vegetation canopy and
varies with leaf chlorophyll, leaf area, canopy cover,
and structure. The combination of the spectral absorp-
tion region by the red chlorophyll, together with the
reflectance signal generated in the near infrared (NIR)
due to the structure of the mesophyll of leaves, permits a
determination of the green and photosynthetic capacity
of the vegetation through a normalized ratio:

NDVI ¼ ρNIR−ρRED
ρNIRþ ρRED

ð1Þ

where ρNIR and ρRED are reflectance measurements in
the NIR and red bands, respectively (Tucker, 1979).

The NDVI can be used to derive the land surface
phenology, which provides temporal records of spatial
patterns of vegetation growth dynamics within an area
(Liang et al., 2011, Kariyeva et al., 2012). The land
surface phenology derived from NDVI data has been
used in global climate change studies, and has shown
trends and responses in vegetation dynamics, such as an
earlier start of the growing season (Van Leeuwen et al.,
2010, 2013) and to represent vegetation interactions
with climate-based factors (Nemani et al., 2003;
Kariyeva et al., 2012). Additionally, long-term NDVI
time series have been used to analyze and monitor the
trends (Anyamba & Tucker, 2005; Fensholt et al., 2012)
and responses of vegetation to environmental variables,
such as climate (Fensholt and Rasmussen, 2011;
Fensholt et al., 2012) and land use/cover type (Baldi
et al., 2008; Van Leeuwen et al., 2013).

The first two objectives of this work were to analyze
(i) the trends in land surface productivity and (ii) the
phenological functional traits within the semi-arid re-
gion, specifically in the Limarí River Basin, using the
newest generation NDVI time series data frommoderate
resolution imaging spectroradiometer MODIS. The
analysis encompasses trend studies for different land
cover classes, with the purpose of characterizing and
examining land cover specific productivity and pheno-
logical trends during a 14-year time period of increased

drought severity. The third objective was to examine the
relationship between the land surface productivity and
climate variables (based on rainfall and temperature) in
order to generate productivity projections in response to
climate change scenarios.

Data and methods

Study area

The study was conducted in the Limarí River Basin,
located in the semi-arid region of Chile between coor-
dinates 30° 15′ N, 71° 45′ W and 31° 30′ S, 70° 15′ E,
with a total area of 11,696 km2 (Fig. 1). It is bounded by
the extremely dry Atacama Desert to the north and by
the Mediterranean Central Chile farther south. The main
feature of the terrain is the Andes Range to the east,
which reaches an altitude at 5500 m a.s.l. and gradually
decreases to the west, coinciding with the Limarí River
delta in the Pacific Ocean.

The study area has a semi-aridMediterranean climate
regimen with spatial intra- and inter-annual variations.
The cumulate annual precipitation ranges from 100 mm
in the coastal area to 300 mm in the Andean region,
averaging 125.7 mm annually (Verbist et al., 2010). The
inter-annual variability of precipitation is linked to cli-
matic events that occur irregularly at intervals between 2
and 7 years, with positive rainfall anomalies during El
Niño events and below normal rainfall anomalies during
the La Niña cycle (Verbist et al., 2010).

The mean annual temperature is 16.6 °C, with a
minimum and maximum of 9.4 and 23.8 °C, respective-
ly. Minimums occur during the winter season, coincid-
ing with precipitation and snow events over
1000 m a.s.l., allowing snow accumulation in winter
and snowmelt in the following seasons, often resulting
in high stream flows during the late spring and summer
months (Vicuña et al., 2011).

The national cadaster of land use and vegetation
(CONAF, 2004) states that the main cover is natural
vegetation (77%), followed by barren soil (18.3%) and
agriculture (3.3%). Three main natural vegetation types
dominate the landscape: (1) coastal shrublands and
grasslands, characterized by fog-dependent species,
mainly bushes and succulents, (2) inland shrublands
and grasslands, present in the interior of the valley,
occupying plains and hills and characterized by more
xerophytic species, and (3) high Andean steppe, over
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2000 m a.s.l. including sparse bushes and peatlands
(CONAF, 2004). Agricultural land cover is concentrated
alongside rivers and streams in the valley and mainly
consists of perennial fruit cultivars (annual crops and
vineyards) (Parga et al., 2006).

MODIS vegetation productivity and phenology

NDVI time series data at 16-day composite intervals and
250-m spatial resolution (MOD13Q1 product from
www.daac.ornl.gov/MODIS) were used to calculate
the phenological metrics analyzed in this study. Three
metrics were generated with this information: spring
productivity (SPNDVI), start of season (SOS), and
seasonal amplitude (AMP). SPNDVI represents the
accumulated spring primary productivity and was
generated by combining the NDVI data values from
October to December for each year. SOS is a timing
metric that represents the Julian day when vegetation
productivity starts its annual activity. SOS corresponds
to the time (day of year) at which the NDVI of a pixel
increases by 10% with respect to the difference between
the baseline NDVI and the maximum NDVI for that
season (Jönsson & Eklundh, 2004). Seasonal amplitude
is a vegetation greenness metric represented by the
difference between the peak NDVI value and the aver-
age of the NDVI values at the start and end of the
growing season. Both, yearly SOS and AMP, are land

surface phenological metrics obtained by processing the
NDVI time series data using the TIMESAT software
(Jönsson & Eklundh, 2004; www.nateko.lu.se/timesat).
These three annual metrics were generated for the study
site from 2000 to 2013, resulting in a total of 42 images
(14 per metric) that was subsequently used in the inter-
annual trend and climate scenario analyses.

Satellite temperature and rainfall

Temperature data were based on the MODIS 8-day
LST/E product (MOD11A2) from 2000 to 2013.
Land surface temperature images have a 1-km pixel
resolution and temperature data are expressed in
degrees Kelvin. The winter thermal sums (T) from
July 11th through September 29th were used be-
cause preseason temperature is a critical environ-
mental factor that affects the inter-annual variability
of spring phenology (Wang et al., 2015). Degrees
Kelvin were converted to degrees Celsius and neg-
ative values to 0 °C, under the assumption that this
temperature was the threshold for low vegetation
activity and negative temperatures would not make
a significant difference to the very low NDVI values
obtained on those dates. Finally, a yearly winter
thermal sum value was obtained by summing all of
the T images from 11/6 through 29/9 (corresponding
to composites 24 to 34, respectively).

Fig. 1 Study area. a Chile—outlined in green. b Limarí River Basin delimitation outlined with a yellow line. c A general view of the
savanna-like landscape in the mid-basin. d An example of the high Andean steppe landscape over 2000 m elevation
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Due to insufficient rain gauge datasets, the
Tropical Rainfall Measuring Mission (TRMM) sat-
ellite products were used as a proxy for the spatial
distribution of rainfall at the study site. The
TRMM was designed to examine the precipitation
structure, rate, and distribution for latitude ranges
±50° (Kummerow and Barnes, 1998). Castro et al.
(2015) analyzed TRMM-derived precipitation in
the central Andes range, with a Mediterranean
climate, and established a good performance for
medium magnitude rainfall events; however, relief
and snow negatively affected the estimates. Precip-
itation data consisted of the monthly multi-satellite
precipitation analysis (TMPA 3B43 version 7)
product on a 0.25° × 0.25° latitude-longitude grid
(NASA Earth Observing System Data and
Information System, EOSDIS, 2013). Monthly data
was summed for each year to generate annual
rainfall (PP) from 2000 to 2013. To avoid the
spatial inconsistencies of rainfall data, the average
rainfall of all TRMM pixels was used, removing
pixels that were located above the mean elevation
(1500 m a.s.l.).

Productivity and phenology trends

The NDVI time series-based metrics provided the basis
for examining trends in ecosystem productivity and
phenological dynamics at different elevation levels and
for different types of land cover. Regressions of the three
metrics were developed using time functions in a linear
model and computed on a pixel by pixel basis:

yi ¼ ai þ βi*xi þ εi ð2Þ
where yi is the functional metric based on NDVI
(SPNDVI, SOS, or AMP) for a specific pixel i, and ai,
βi, and εi are the intercept, slope coefficient, and residual
of the linear regression for the same pixel (i), respec-
tively. Significant trends in the annual metrics were
determined based on the slope coefficient (β) of the
simple linear regression model described above (Van
Leeuwen et al., 2013), considering a p value ≤0.1.

Analysis of the relationship between productivity
and climate data

To examine the relationship between climatic variables
and ecosystem productivity, a multiple linear regression

was applied, using PP and T, as explanatory variables,
and SPNDVI as the response variable:

SPNDVIi ¼ ai þ bi � PPi þ ci � T i þ εi ð3Þ
where ai is the regression intercept for pixel i, bi and ci
are the slope coefficients for PP and T for pixel i,
respectively, and εi is the residual at the pixel level.

For each pixel, the slope regression coefficients of
both explanatory variables were used to examine the
independent effects of the climatic variables on spring
productivity. A 90% confidence level was used in the
analyses because semi-arid systems are spatially and
seasonally variable, essentially implying a heteroge-
neous data structure. Moreover, images with coarser
spatial resolutions were resampled to 250 × 250 m,
allowing the maximum amount of heterogeneity in the
response variables to drive the analyses and results.

Productivity projections and climate change scenarios

To achieve the third objective of this study, productivity
projections were obtained by substituting projected cli-
mate data in the multiple linear regression model (Eq. 3)
using temperature and precipitation data from ground
stations, instead of the LST (T) and TRMM (PP) sensors.
Projected climate data were obtained by a three-step
weather generator downscaling method. The first step
was the extraction of the probabilistic trends in tempera-
ture and precipitation from several global climate models.
The second step generated yearly temperature and precip-
itation data using the extracted trends for the different
station gauges of the basin, and the third step consisted
of a K-nearest neighbor (K-NN) disaggregation method
applied to monthly precipitation and temperature data.
This method considers the natural variability, making it
necessary to use several realization series. In our study, the
yearly average of 100 series was used.

Two stations at different altitudes were selected for
climatic projection: La Paloma Embalse (30.7° S 71.03°
W, 320 m a.s.l.) and Las Ramadas (31° S 70.6° W,
1380 m a.s.l.). For each station, representative pixels with
similar rainfall data were selected within a 3-km radius.
Representative concentration pathway (RCP) climate
change scenarios were selected to obtain PP and T pro-
jections from 1980 to 2100. RCP 8.5 represents a high-
emission scenario, in which radiative forcing reaches over
8.5 W/m2 by 2100 and continues to rise, while RCP 2.6
represents a scenario where radiative forcing peaks at
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approximately 3 W/m2 before 2100 and then declines
(van Vuuren et al., 2011). These data were used within
the multiple linear regression models to obtain the mean
projected productivity of the 1981–2020, 2021–2060, and
2061–2100 periods. Finally, the productivity changes
(expressed as a percentage of the baseline values) in
natural vegetation pixels surrounding the stations were
evaluated using the 1981–2020 temperature and precipi-
tation projections as a basis for comparison.

Results

Vegetation spring productivity and phenological trends

There was a steady decline in the value of SPNDVI within
the Limarí River Basin from 2000 to 2013 (Fig. 2). Of
the land area, 61.4% displayed a significant negative
trend (p < 0.1), affecting 974,000 ha that were mainly
located below 2000m a.s.l. On the other hand, 10.3% of
the surface displayed positive SPNDVI trends (p < 0.1),
with 90% of these areas located above 2000 m. The
remaining 28.2% of the surface had no significant
SPNDVI trend. The average annual change in productiv-
ity was −2.45% with respect to the mean SPNDVI
(Table 1).

The majority of the surface area (78.4%) did not
show a significant SOS trend, while 19.1% of the sur-
face area (mainly located above 2000 m a.s.l.) displayed
a negative trend implying an earlier SOS (Table 1). This
comportment showed a clear phenological difference
between low and mid-elevation vegetation cover and
high-elevation vegetation cover. In contrast, the remain-
ing 2.5% of the surface area displayed a positive SOS
trend (later SOS) and was concentrated mainly in the
lower part of the basin. The SOS average for higher
elevation vegetation cover was at Julian day 230
(August) and had a negative trend of −5 days per year.
In the lower part of the basin, the SOS was at day 180
(June), displaying positive trends and with SOS begin-
ning 6 days later per year.

Similar to the SOS phenological metric, the ampli-
tude did not show a significant trend in most (almost
80%) of the surface area, but a statistically significant
negative trend was observed in areas with a high eleva-
tion (Fig. 2), mostly at a mean altitude of 2800 m. The
mean amplitude was 0.2 NDVI units, while the pixels
with a negative trend averaged −0.007 NDVI units per
year.

The SPNDVI relationship with precipitation
and temperature

The results obtained from the multiple linear regression
between PP, T, and SPNDVI as a dependent variable
indicated that 68.7% of the whole study area exhibited
significant vegetation responses to precipitation
(Table 2). These significant values, as seen in Fig. 3a,
were mainly positive slope pixels, denoting a direct
relationship between PP and SPNDVI below 2000 m.
Conversely, in the upper basin, a significant number of
pixels had negative slope values, implying an indirect
relationship between rainfall and spring productivity. In
contrast to PP, there were significant values related to
temperature across 38.3% of the whole area (Fig. 3b),
with positive slope pixels in highlands and negative
slope pixels in lowlands (Table 2).

Finally, Fig. 4 shows how the SPNDVI trends are
distributed spatially in the basin and how these trends
behave in relation to precipitation and temperature. Veg-
etation along river streams (riparian and agriculture
cover classes) did not show significant trends or signif-
icant values for PP and T. Positive SPNDVI trends were
observed in the upper basin, with significant PP and T
relationships for some pixels. Negative trends were
mainly related to PP in the mid-basin and to T in the
low basin.

The highest positive PP slopes were indicative of the
strong influence of precipitation on semi-arid vegeta-
tion. According to the regression model, each additional
mm/year would increase the SPNDVI by 0.035 units
(0.19% of the mean SPNDVI, Table 2.)

SPNDVI projections for the RCP 2.6 and 8.5 climate
change scenarios

After examining land pixels within a 3-km radius
around the weather stations, 471 pixels were selected
for La Paloma station and 252 for Las Ramadas, using
the significant multiple linear regression results as a
selection criteria. The majority of these had significant
relationships with the PP variable (Fig. 5). La Paloma
station (located at 320 m a.s.l.) had a greater SPNDVI
decline compared to Las Ramadas (1380m a.s.l.) station
using the projected future climate data (Fig. 6). There
was an 11.72% productivity decrease in the 2060–2100
period compared to the baseline period (1981–2020)
when using RCP 8.5 scenario for La Paloma, while for
Las Ramadas, this decrease was 3.26% for the same
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Fig. 2 Average (2000–2013) values of productivity (SPNDVI average
spring NDVI values) and phenological variables (SOS start of
season—Julian day, AMP - NDVI seasonal amplitude—represented
by the difference between baseline and maximum NDVI value) are

shown in (a), (c), and (e), respectively (left hand side). Annual change
ratesarerepresentedbythelinearregressionslopevaluesforSPNDVI(b),
SOS (d), and AMP (f) (right hand side).White pixels represent non-
significant trend values
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scenario (Table 3). As expected, the RCP 8.5 scenario
resulted in higher vegetation productivity decreases than
the RCP 2.6 scenario. Nevertheless, La Paloma always
displayed a greater decline regardless of the climate
scenario.

As seen in Table 3, the PP- and T-related pixels
indicated a large decrease in productivity for La Paloma
(−19% in RCP 8.5 and −7.86% in RCP 2.6), while in
Las Ramadas, the projections indicated an increase in
productivity (3.62% in RCP 8.5).

Discussion

Inter-annual trends of vegetation productivity and phe-
nological functional traits were analyzed using MODIS
NDVI 2000–2013 time series data. The results showed a
general decrease in vegetation spring productivity over
this period for practically all of the study sites below
2000 m a.s.l., which were mainly composed of
shrublands with different densities. Moreover, the anal-
ysis of climatic variables in the relationship with

productivity trends suggests that precipitation explained
this reduction in productivity for most of the lower
basin. Temperature is also relevant but mostly in lower
areas below 500 m a.s.l. Finally, future productivity
projections suggest that lower altitude natural vegetation
will undergo a more severe decline than vegetation in
the higher basin.

At this regional scale, a wide variety of natural veg-
etation communities, with different dynamics, could be
identified along the elevation gradient. The 14-year
productivity and phenology trend analysis showed con-
trasting results among the elevation cline. In the higher
altitudes of the basin, spring productivity displayed
positive trends with temperature. Nevertheless, NDVI
amplitude trends in these areas were negative, suggest-
ing that higher winter temperatures reduced the differ-
ence between baseline and peak NDVI values. Further-
more, areas with negative SOS trends (earlier start of
growing season) were also observed in these areas.
Similar behavior has been observed by Van Leeuwen
et al. (2013) using a 1982–2011 advanced very high
resolution radiometer NDVI time series data for South

Table 1 Summary of significant (p ≤ 0.1) vegetation productivity (SPNDVI) and land surface phenological trends and their associated spatial
extent and annual rate of change from 2000 to 2013

Productivity and
phenology metrics

Trend Total surface
(thousand ha)

Total
surface (%)

Mean slope
value

Metric mean
(2000–2013)

% rate of change
(slope*100/mean)

SPNDVI Negative 974 61.4 −0.005* 0.22* −2.45
Positive 163 10.3 0.003* 0.08* 5.81

AMP Negative 323.5 20.4 −0.007 0.20 −3.89
Positive 20.5 1.3 0.009 0.21 4.22

SOS Negative 303.4 19.1 −5 230.4 −1.3**
Positive 39 2.5 5.79 179.9 1.58**

AMP amplitude, SOS start of the growing season

*SPNDVI: values are daily average NDVI units

**SOS % rate of change is over 365 days

Table 2 Overview of the multiple linear regression results, in which productivity was a function of precipitation and temperature. The
results show significant slope values for the whole extent and the percentage rate of change of NDVI relative to the mean NDVI

Environmental
variables

Slope Surface
(thousand ha)

Percentage of
total extent (%)

Mean slope regression
coefficient

Percentage rate of change
with respect to mean
NDVI (%)

Precipitation Negative 168.9 10.64 −0.015 −0.084
Positive 921.5 58.07 0.035 0.195

Temperature Negative 297.5 18.74 −0.019 −0.106
Positive 310 19.53 0.012 0.065
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America. The results indicate that highland vegetation in
semi-arid regions had undergone a phenological shift,
governed by an earlier start of the season, which could
explain the greater spring productivity. Higher winter
temperatures generate an earlier snowmelt, allowing the
sparse vegetation, and peatlands to begin photosynthetic
activity sooner than expected. Moreover, this vegetation
displayed a negative amplitude trend, which was

probably related to the higher NDVI value at the start
of their season and/or a lower NDVI value for the
seasonal peak. In conjunction, Jeganathan et al. (2014)
found a decreasing trend in the seasonal amplitude in
high latitudes from 1997 until the present day. The
relationship between precipitation and productivity in
the upper basin showed that wetter years would result in
less productivity. These results are consistent with

Fig. 3 a The productivity-precipitation relationship expressed by
the significant NDVI/PP slope values obtained from the multiple
linear regressions between SPNDVI as a function of PP. b The
productivity-temperature relationship expressed by the significant

slope values obtained from the multiple linear regression between
SPNDVI as a function of T. White pixels represent non-significant
slope values. Legend values are ×10,000 their original values in
NDVI units per 1 mm in (a) and per 1 °C in (b)

Fig. 4 Spatial relation between
SPNDVI trends from 2000 to 2013,
and the response of NDVI to
precipitation and temperature, as
represented by significant NDVI/
PP and NDVI/T slopes. NS not
significant
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Squeo et al. (2006) who found that the spring produc-
tivity of highland vegetation (over 2500 m a.s.l.) de-
creased in rainy years, while it increased in drier years,
probably due to the colder temperatures in rainy years.
Below 2000 m a.s.l., there were strong productivity/
climate relationships, with no significant phenological
trends.

The high number of significant pixels that were de-
pendent on precipitation confirmed the strong effects it
has on the variability of inter-annual productivity.
Shrublands, which were the main ecosystems in the
semi-arid basin below 2000 m a.s.l., had clear negative
productivity trends, with a predominantly positive rela-
tionship with precipitation. Many authors have consis-
tently found NDVI anomalies related to precipitation
irregularities in semi-arid and arid regions (Nezlin
et al., 2005, Fensholt et al., 2012), emphasizing that
rainfall is a limiting factor for vegetation growth. Some
other studies have included temperature in their analysis
and have found positive correlations with the NDVI in
inter-seasonal analysis (Propastin et al., 2006, Eckert
et al., 2015). The productivity decline is higher when
the relation with precipitation and/or temperature is
stronger, with precipitation being a greater contributor
due to the vegetation-water-dependence. In the lower
basin (below 500 m a.s.l.), where coastal fog influences
vegetation (Gutiérrez and Squeo, 2004) with high daily
humidity, temperature dependent pixels displayed a neg-
ative relation between T and productivity. The
shrubland/grassland vegetation of these lowland areas
might be affected by higher evaporation rates,

decreasing the chances of moisture transpiration.
Kariyeva et al. (2012) related decreasing productivity
values with higher temperatures using remotely sensed
data for Central Asia. Furthermore, Barron-Gafford
et al. (2012) reported that increasing temperatures could
negatively impact plant growth and increase water
stress, principally in semi-arid grassland ecosystems.

The future productivity projections in this study
were assumed to be linearly dependent on ground-
measured PP and T values, meaning that the pro-
ductivity projections were dependent on the mag-
nitude of the slopes and projected climate values.
The projected productivity values for lower eleva-
tion locations displayed higher rates of decline
than higher elevation locations regardless of the
percentage decrease in precipitation, which was
the same for both stations. This depended mainly
on the precipitation slope values, which were four
times higher at La Paloma station (low altitude)
than at Las Ramadas station (high altitude). More-
over, lower elevation vegetation had more signifi-
cant pixels related to temperature (T), with nega-
tive slope values that intensified the productivity
decline due to the higher projected temperatures.
Whereas lower elevation areas had less rainfall
than higher areas, the results indicated that the
vegetation established in dryer areas was more
dependent on the rainfall regime. Therefore, its
productivity would be more prone to a shift if
these regimes changed. As shown in Table 3, a
20% rainfall decrease in the La Paloma area would

Fig. 5 La Paloma and Las
Ramadas stations in Limari River
Basin. Circles represent the 3-km
radius area used to select pixels.
Pixels are presented in colors,
representing the productivity
change in the 2060–2100 period
using the 1981–2020 period as a
basis for comparison
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imply a decline in productivity of about 12% when
projected to the end of this century.

Certain environmental processes and ecosystem
functions, such as water and energy fluxes, erosion

Fig. 6 Projected productivity (SPNDVI) values from 1981 to 2100 for two RCP scenarios. a La Palama station. b Ramada station

Table 3 Overall productivity projections for vegetation near La Paloma and Las Ramadas stations for the RCP 2.6 and 8.5 scenarios. The
percentage change is with respect to the mean projected productivity for the period of 1981–2020

All pixels PP-related pixels T-related pixels PP- and T-related pixels

Period 2021–
2060 (%)

2061–
2100 (%)

2021–
2060 (%)

2061–
2100 (%)

2021–
2060 (%)

2061–
2100 (%)

2021–
2060 (%)

2061–
2100 (%)

La Paloma
(RCP 2.6)

−3.26 −4.57 −-3.04 −4.24 −9.63 −14.62 −5.36 −7.86

La Paloma
(RCP 8.5)

−4.72 −11.72 −4.19 −10.08 −12.89 −35.7 −7.26 −19

Las Ramadas
(RCP 2.6)

−0.74 −0.85 −0.80 −0.94 −0.71 −0.8 0.72 1.51

Las Ramadas
(RCP 8.5)

−1.50 −3.26 −1.62 −3.57 −2.53 −7.20 0.09 3.62
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rates, fodder production, and agricultural yields, are
linked to vegetation productivity (Gessner et al.,
2013). Although these relations were outside the scope
of our study, high declining productivity areas are prob-
ably the most vulnerable and prone to desertification.
This process is self-accelerating, with land degradation
resulting in the destruction of the land’s productive
potential (Nezlin et al., 2005). Further interdisciplinary
studies are needed to better understand the physiological
mechanisms by which vegetation responds to precipita-
tion and temperature changes.

Anthropogenic pressures, such as land-use change,
livestock grazing, and wood extraction, were not
included in the analysis as drivers of change and were
beyond the scope of this study. The exposure and
proximity of vegetation to human settlements could
therefore have influenced the NDVI signal during the
study period, expanding the actual reduction. Although
it was not measured in this study, Blanco et al. (2008)
analyzed the grazing effects on annual net primary pro-
ductivity using the NDVI for semi-arid rangeland in
Argentina and observed a greater grazing impact in drier
years. Both studies could be used to measure the spatial
vulnerability, including natural and anthropogenic fac-
tors. The short analysis period (14 years) was another
limitation, because trends obtained from linear regres-
sions could be more strongly influenced by the severe
drought that this region has experienced in the recent
years. The analysis of longer time periods could include
the effects of the ENSO phenomenon. Nevertheless,
studying the particular effects of climatic anomalies on
vegetation activity could provide complementary infor-
mation regarding the trends in the vegetation response to
climate variables (Gessner et al., 2013). Spatially dis-
tributed moderate resolution precipitation data would
improve the significance of our results and might also
help further analyze temporal lags and accumulation
periods. Finally, the results obtained in this work can
nourish other interesting areas of studies such as effects
of land degradation (in terms of the potential primary
productivity), in the human well-being considering bio-
climatic comfort and health (Cetin, 2015), availability of
provisioning and ecosystem services support, land-use
planning and policies, monitoring of species and func-
tional biodiversity, and among others. This new knowl-
edge can be used by specialist in the development of
new plans and policies oriented to adapt the society to
the new scenarios of climate change that are
transforming the biosphere.

Conclusions

Semi-arid ecosystems are impacted by reduced water
availability and anthropic pressure. This is a key con-
cern for the increasing social and environmental vulner-
ability of these areas. Ecosystems are threatened not
only by direct human-induced impacts but also by indi-
rect global climate change. Changing climate patterns
makes ecosystem resilience an essential quality to en-
sure their adaptive capacity and the sustainability of
their ecological processes. Managing our landscapes
under changing earth system conditions makes it even
more necessary to analyze and monitor vegetation con-
ditions and responses to climate variables. Climate and
remotely sensed time series data serve as a useful tool.

The aim of this study was to provide a better under-
standing of the spatial distribution of changes in a semi-
arid ecosystem in response to a changing climate at the
regional scale, including an elevation gradient. To
achieve this, and to ensure that the method could be
reproduced in other regions, remote sensing with a high
temporal resolution was used. Easily accessible and
consistent MODIS global data provided for replicability
and will allow for ongoing analysis to determine trends
in vegetation-climate dynamics.

Phenology, productivity, and climate maps have
helped to identify the range of land cover and ele-
vation zones in which changes are occurring, and
where they could be attributed to precipitation and/
or temperature shifts. The interactions between land
surface productivity, phenology, and climate vari-
ables were complex and seemed to stratify within a
continuum of land cover types and elevation gradi-
ents. Future productivity projections can be used to
monitor and understand the sensitivity of vegetation
to climate change impacts. Moreover, this informa-
tion allows us to identify ecosystems that are vul-
nerable to climate change, so encouraging future
research, monitoring, and management programs to
examine the adaptability and resilience of changing
ecosystems. Land managers and decision-makers,
with land exposed to climate change, can consider
this information for planning land-use changes and
adaptive management strategies.
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