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a b s t r a c t

Cutaneous Leishmaniasis (CL) is an endemic vector-borne disease in the Middle East and a worldwide
public health problem. The spread of CL is highly associated with the socio-ecological interactions of
vectors, hosts and the environment. The heterogeneity of these interactions has hindered CL modeling
for healthcare preventive measures in endemic areas. In this study, an agent-based model (ABM) is
developed to simulate the dynamics of CL spread based on a Geographic Automata System (GAS). A
Susceptible-Exposed-Infected-Recovered (SEIR) approach together with Bayesian modeling has been
applied in the ABM to explore the spread of CL. The model is then adapted locally for Isfahan Province, an
endemic area in central Iran. The results from the model indicate that desertification areas are the main
origin of CL, and riverside population centers have the potential to host more sand fly exposures and
should receive more preventive measures from healthcare authorities. The results also show that
healthcare service accessibility prevented exposures from becoming infected and areas with new in-
habitants experienced more infections from same amount of sand fly exposures.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Leishmaniasis is caused by protozoan Leishmania parasites and
is strongly associated with victims' living conditions, e.g. poverty,
malnutrition, famine, illiteracy, and migrations. (Kumar, 2013). The
disease has threemajor forms with different clinical manifestations
(Handman, 2001), with Cutaneous Leishmaniasis (CL) being the
most common type. CL can be transmitted by the bite of a female
Phlebotomus sand fly (Swaminath et al., 2006), and considered to be
a zoonosis whichmostly has a gerbil specie as reservoir host (WHO,
1990). The disease is characterized by skin lesions, which typically
develop within several weeks or months after exposure and results
in severe scaring. No vaccine or drugs are available neither to
prevent the infection nor to erase the scars. Even though the dis-
ease is treatable and preventable via reducing contacts with sand
flies by using preventive measures, it remains a health hazard in
many developing countries where such prevention is not possible.
se (M. Rajabi).
WHO reports have indicated that 1.5e2.0 million new cases of CL
occurs each year worldwide (WHO, 2010). Among these cases,
nearly 90% of CL cases currently occur in Iran, Syria, Saudi Arabia,
Afghanistan, Algeria, Peru, and Brazil (Desjeux, 2004; Kumar, 2013,
Gramiccia and Gradoni, 2005).

CL is the most frequent vector-borne disease in Iran, with an
average of more than 22,000 cases in the last decade (Oshaghi et al.,
2010). Isfahan province, at the center of Iran, has long been known
as one of the most important endemic areas of CL (Arjmand et al.,
2014; Nadim and Faghih, 1968) and still experiences a large num-
ber of annual infections, with approximately 2200 occurrence in
2013. CL resulting from Leishmania major and Leishmania tropica
protozoa currently has epidemic status in Isfahan. Rhombomys
opimus, a domestic rodent, is the main reservoir host and Phlebo-
tomus papatasi is the most common CL sand fly vector in Isfahan
(Emami et al., 2009). Despite numerous preventive measures of
healthcare authorities and frequent research efforts during the last
30 years, the number of infections in Isfahan has remained prom-
inent and the disease recently began spreading to the non-endemic
regions of the province (Emami et al., 2009; Arjmand et al., 2014).

The spatial distribution of CL as a vector-borne disease is
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associatedwith the geographic range of its vectors and their habitat
preferences (Kitron, 1998). Sampling of sand flies and determining
the presence and abundance of intermediate host species is costly
and time consuming (Kassem et al., 2012). The dispersion of
sandflies and consequently the geographical distribution of CL can
be influenced by environmental factors (Ferreira et al., 2001; Rispail
et al., 2002; Kassem et al., 2012) and environmental andman-made
changes such as fast-growing urbanization, development of new
projects e.g., road building, mining, farming, forestry development,
military activities and deterioration in social and economic condi-
tions in the poor suburbs of cities (Desjeux, 2004; Dujardin, 2006;
Adegboye and Kotze, 2012). Hence, the modeling of CL spread
should comprise various environmental factors and also the in-
teractions between the environment, sand flies and humans. Agent
based models (ABMs), have the flexibility and capacity to incor-
porate these components. By simulating the individual behaviors,
ABMs operate at a scale at which disease dynamics are based.
Spatial analysis techniques can be applied with these simulation
models to identify environmental patterns associated with CL
vectors and are very helpful for identifying control strategies in un-
sampled areas (see Section 2). Hence, a spatial epidemiological
approach was conducted in this study to analyze and evaluate the
spread of CL by using an agent-based modeling method. The agent
based method was chosen in this research because properly com-
plied with requirements of such disease modeling problem (see
Section 2 for details). The study area is mainly focused on Isfahan
province in the central part of Iran (Fig. 1).

The rest of this paper is organized as follows. In Section 2,
previous studies in modeling CL spread and the applicability of
Fig. 1. Study area, Isfah
agent-based models in disease modeling are explored. In Section 3,
the local survey and data collection processes are described briefly.
In Section 4, themodel used formodeling CL dynamics is presented.
The results are expressed in Section 5. Discussions and ideas for
further work are represented in Section 6, and a short summary of
the paper and the conclusions are presented in Section 7.

2. Background

The impact of spatial analysis approaches on existing knowledge
regarding CL spread and incidence cannot be ruled out. Previously,
Nadim and Faghih (1968) considered geography in the epidemi-
ology of CL. Lysenko (1971) presented one of the first attempts at CL
mapping, in which the geographical distribution of CL cases was
illustrated using cartographic maps. It took a while for researchers
to consider spatial analysis as an explorative tool for CL epidemi-
ology rather than as a visualization tool. Mott et al. (1995) intro-
duced the application of geographical analysis for epidemiology
and predictive modeling of Leishmaniasis. Thereafter, spatial
analysis was used to identify and evaluate the underlying envi-
ronmental precondition factors that influence the CL epidemic
(Seid et al., 2014; Garni et al., 2014; Ali-Akbarpour et al., 2012).
Resurfacing of Geographic information systems (GIS) highlighted
the significant role of space when exploring the spread of CL. GIS
has frequently been combined with statistical and cluster analysis
methods to identify new CL epidemiological patterns (Salah et al.,
2007; Rodríguez et al., 2013; Mollalo et al., 2015; Adegboye and
Kotze, 2012). Spatial analysis methods have been utilized to
generate CL risk maps (Seid et al., 2014; Garni et al., 2014; Ali-
an province, Iran.
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Akbarpour et al., 2012). In addition, entomological researchers have
conducted studies inwhich GIS is used to understand the ecology of
CL sand flies (Karimi et al., 2014; G�alvez et al., 2010; Abdel-Dayem
et al., 2012; Kassem et al., 2012).

Although CL has been discussed in several spatial and non-
spatial themes, CL spread modeling and the impacts of the in-
teractions between the environment, vectors and hosts on the
spread have been briefly explored. Nevertheless, CL spread
modeling has been performed using mathematical modeling ap-
proaches (Chaves and Hernandez, 2004; Rabinovich and
Feliciangeli, 2004) and time series analysis methods (Lewnard
et al., 2014; Chaves et al., 2014; Chaves and Pascual, 2006). In
addition, in several studies, CL dynamics have been modeled by
considering only one of the potential factors. For example,
Barhoumi et al. (2015) highlighted the impacts of irrigating arid
regions in Tunisia on the population of CL sand fly vectors. Mollalo
et al. (2014) developed a model to discuss the relationships be-
tween vegetation cover and the incidence of CL. Garni et al. (2014)
explored the influences of land cover changes on the occurrence of
CL using GIS and remote sensing analysis.

Although the models mentioned above can be applied to CL
spread modeling, researchers have criticized them. For example,
although the interactions between the environment, hosts and
vectors in specific locations play important roles in the develop-
ment of an epidemic from an outbreak, the mentioned models do
not consider socio-ecological complex relations and individual
behavioral factors for epidemic progression modeling (Epstein,
2009). Moreover, the interactions between the key epidemiolog-
ical factors could not be realistically simulated using conventional
methods (e.g., differential equations) (Bonabeau, 2002). In addition,
most classical models neglect the population heterogeneity
(Bonabeau, 2002) and consider uniform mixing assumptions for
the spread of disease (Eubank et al., 2004). Classical models also
tend to smooth out fluctuations, making them susceptible to large
perturbations (Bonabeau, 2002). Accordingly, treating all compo-
nents of an epidemic as largely homogeneous entities is another
criticism of these models (Crooks and Heppenstall, 2012). Subse-
quently, modeling the disease dynamics in the mentioned models
is performed by focusing on the local interactions and ignoring the
complex situations of the environment (Birkin and Wu, 2012).

Agent-based modeling approaches have recently been used to
overcome the above mentioned shortcomings of conventional
models such as the heterogeneity problem and the complex in-
teractions problem (Crooks and Heppenstall, 2012). Using diverse
interactions between individual agents or between an individual
agent and the environment, ABMs provide a realistic simulation of
processes and their impacts.(Crooks and Heppenstall, 2012; Crooks
and Hailegiorgis, 2014). Moreover, agents canmake decisions based
on the knowledge they gain from the environment. This knowledge
enables ABMs to simulate dynamic situations. (Birkin and Wu,
2012). These simulations are more similar to reality and capable
of better representing the socio-ecological interactions of envi-
ronment than other modeling approaches (Van Dyke Parunak et al.,
1998; Crooks and Heppenstall, 2012).

The specifications mentioned above, make ABMs a proper
approach for simulating problems such as epidemics that comprise
landscape and natural resources. The mobility of ABMs make them
more appropriate for geospatial modeling which includes spatially
explicit variables and parameters (Crooks and Heppenstall, 2012).
In this regard, integrating ABM and spatial analysis has been
noticed as a powerful approach for evaluating and analyzing the
spread of diseases (Perez and Dragicevic, 2009) and has been
increasingly used in many spatial epidemiology applications for
different diseases (Crooks and Hailegiorgis, 2014; Lourenço and
Recker, 2013; Patlolla et al., 2006; Simoes, 2012; Linard et al.,
2009; Dion et al., 2011; Ajelli and Merler, 2009; Rao et al., 2009;
Perez and Dragicevic, 2009). However, the spread of CL using
ABM approaches has not been explored yet, which constructs the
main objective of this research.

Furthermore, with respect to vector-borne diseases, little work
has been carried out using ABMs and by analyzing habitat vectors
and reservoir hosts. For example, Linard et al. (2009) explored the
potential biting rate of malaria vectors in a land use/cover map
using a multi-agent simulation. Arifin et al. (2013) developed a
model to simulate the resource-seeking process of malaria vectors.
In this paper, an agent based modeling approach will be repre-
sented for CL spread modeling in which the mentioned drawbacks
of the current studies are covered along with four common chal-
lenges of ABMs in such applications (Filatova et al., 2013). First, the
behaviors of agents will be simulated using dynamic interactions
between environments, vectors and hosts. Accordingly, the ABM for
CL should provide knowledge of the socio-ecological interactions of
its three main actors, the environment, vectors and reservoir hosts.
Second, the simulation will be validated and verified using a rele-
vant uncertainty and sensitivity analysis. Third, the model will be
coupled with various socio-ecological factors to make it more
realistic. Fourth, different types of agents will be defined in a
spatially explicit environment to perform a habitat analysis of
vectors, hosts and the environment relative to CL spread.
3. Study area

The explorations and field survey of the authors in the study
region indicated that the infected area is a semi-arid plain located
at an altitude of 1400e1600 m. Several desertification areas exist
within the infected area, and Haloxylon plants are themost popular
species for desertification in Isfahan. The long roots of the plants
under the ground contain moisture and provide a suitable habitat
for local rodents, which host the CL parasite (Nilforoushzadeh et al.,
2014). These rodents live in large colonies composed of many
subgroups and create networks of underground burrows in their
favorite habitats (i.e., Haloxylons). The rodents are only active
during the spring and summer (April to October) and only appear
during the night and in the early morning outside of their burrows.
Their activities decrease significantly when the temperature de-
creases in the fall and winter. The underground burrows have
suitable and stable weather and provide rodent blood for phle-
botomine sand flies in the study area. Within these burrows, sand
flies can survive at temperatures of 35�e45� in the Isfahan summer.
Once the sand flies obtain rodent blood meal, they become a vector
for the CL disease. The (female) sand flies spread the disease by
biting humans during the night and in the earlymorning. Riverbeds
and embankments are also favorite habitats for the rodents (Abai
et al., 2010). Accordingly, several active colonies have been
observed in these areas in Isfahan province. Further explorations
indicated that a significant number of ancient underground water
transmission networks (Qanat) exist in the study area. These areas
were also considered as suitable habitats for the rodents because
several rodent activities were identified around these facilities.
Moreover, the registered CL cases in healthcare authorities indi-
cated that people working at livestock or poultry facilities have one
of the highest infection rates (approx. 50 annual incidences).
Accordingly, poultry and livestock facilities are considered as
another favorite place for rodents. Therefore, desertification, rivers,
embankments, Qanat, livestock and poultry are considered in this
study as the main habitats of rodents in the Isfahan province
(Fig. 2). These habitat layers together with the human demography
data provided the information framework for the model in this
study.



Fig. 2. Input data for the agent based model in this study.

M. Rajabi et al. / Environmental Modelling & Software 82 (2016) 330e346 333
4. Model

A Java-based simulation environment called Repast (North et al.,
2005) was used to implement the algorithms developed in this
study. The model description follows the ODD (Overview, Design
concepts, Details) protocol for describing individual- and agent-
based models (Grimm et al., 2010). In the remainder of this sec-
tion and after a brief overview of the model components and
processes (see section 4.1), the key concepts of model design,
including observations, sensing, interactions and stochasticity, are
described (see Section 4.2). Next, the details of model imple-
mentation are presented (Section 4.3).
4.1. Overview

4.1.1. Purpose
This model was developed to provide a spatiotemporal simu-

lation of the spread of CL in Isfahan Province, Iran. The main source
of the epidemic is the interaction between humans (host), sand flies
(vectors) and rodents (reservoir host) through the environment.
The model includes ecological factors that influence these in-
teractions and generate the simulation system of CL spread in the
study area. To skip complexities that result in the deviation of the
model from its defined purpose, some simplifying assumptions
have been made, which are detailed in the following sections.
4.1.2. State variable and scales
Fig. 3 represents a unified modeling language (UML) class dia-

gram of the components constructing the model. There are two
types of agents in the model, mobile agents and cell agents. Mobile
agents are divided in two classes, sand flies and humans. In addi-
tion it is worth to mention that rodents cannot transmit CL without
the sand fly intervention and have not been defined as mobile
agents in this study. Rodent habitats are assumed to remain un-
changed during model processes and the habitat information is
available for all agents in each field unit.

The mobile agents of this study are designed based on the epi-
zoology of a zoonotic CL in which each infection is a result of a
transmission cycle between an infected rodent as the reservoir, a
sand fly that has bitten an infected rodent as the vector, and
humans who have been bitten by infected sandflies (Yaghoobi-
Ershadi et al., 2001; Nadim and Faghih, 1968; Reithinger et al.,
2007). Even though there might be both non-infected rodents,
and non-vector sand flies in the study area, they have no role in CL
transmission cycle because non-vector transmission is rare
(Reithinger et al., 2007) and P. papatasi sand flies which maintain
the L. major parasite among rodents are known to be the main CL
vector in study area (Yaghoobi-Ershadi et al., 1994). Accordingly, in
this study only infectious Leishmania protozoa vectors are simu-
lated, and are considered as the main mobile agent of the study,
which represents a group of CL vectors that seek suitable habitat
locations. Sand fly agents have two behaviors, foraging and biting
humans.

Human agents are mobile and have four different states, sus-
ceptible, exposed, infected, and recovered. When human health is
not threatened by any sand fly group, humans are susceptible and
have no direct role in the model. Once a human has been bitten,
they become exposed and the environment is used to calculate
their probability of becoming infected or recovering.

Accordingly, cell agents generate a risk value based on the
number of infections for each location, which is calculated based on
their observations. Environmental parameters in each field unit are
assumed to be constant. They reflect the habitat suitability and thus
serve as a proxy for rodents, the main CL reservoir host in the study
area.

Two 12-h time periods were modeled to represent CL vector-
human interactions: (i) one hour after sunrise until one hour
before sunset and (ii) one hour before sunset until one hour after
sunrise. These two periods are simulated using two temporal res-
olutions: hour and day. Human and vector activities are impacted
by the temporal periods and resolutions. The main purpose of
choosing this timeframe was to represent the sand fly appearance
outside and inside the rodent burrows during spring and summer
seasons, with an average sunrise at 05:00, and sunset at 19:00
thorough the study area. Even though the sand fly exposure might
differ in different parts of study area during weekdays, the model
has been designed apathetic to weekdays here, because CL in-
fections occur a few weeks after sand fly's bites. CL has a long and
variant incubation period (Reithinger et al., 2007) and infection
symptoms might start a few days or weeks after a sand fly bite. This
indicates the infection could occur in any weekdays nevertheless
the occurrence date of exposure was in a weekend or in any
weekdays. With this in mind and in order to reduce the complexity
and increase the performance of the model, all risky activities of
humans in this study have been adjusted in a daily timeframe with
no discrimination between weekdays (see Section 4.3.2).
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4.1.3. Process overview and scheduling
The model simulates the interactions between sand flies and

humans across the landscape over time. The processes running
during each time step and their relations are illustrated in a UML
sequence diagram (Fig. 4). This diagram presents an outline of the
sequence of processes and the schedule of interactions between the
different agents at each discrete time step. Each process is defined
based on a certain class of agents according to the UML class
diagram.

First, the time counter is updated at each time step. Then, the
field unit values are updated according to environmental parame-
ters and the CL infection history. Next, cell agents are located in the
study area. Then, sand flies appear in the landscape at different
random locations and start seeking suitable habitats. Finally,
humans appear in the study area and movements occur according
to suitable target locations. At each step, agents of the same type
are processed using a random sequence. Some processes are only
activated under particular conditions, e.g., the infection probability
calculation only starts after a sand fly bites a human. Although sand
flies bite one of the humans within their perception range
randomly, the CL infection process is designed based on a suscep-
tible, exposed, infected, recovered process (SEIR) (see Sections
4.3.2.2 and 4.3.2.3).

4.2. Design concepts

4.2.1. Observation
Spatial and temporal variations in individual and population-

level processes have been observed in the model. These included
the number of biting sand flies, the number of susceptible, exposed,
infected and recovered humans, and the exposure sites. Moreover,
the location of mobile agents and the value of cell agents have been
tracked by recording the position, (x, y), of each mobile agent, and
the value of each cell agent at each time step.

4.2.2. Sensing
Mobile agents can calculate the distance to their desired loca-

tions and should know their underlying and neighboring cell
agents based on the Moore neighborhood (Weisstein, 2005).
Moreover, mobile agents know how to identify suitable habitats
within the environment. CL susceptibility has been addressed by
considering cell agents that can perceive the interactions among
hosts and vectors through their environment. Human agents sense
the population pattern, landscape and facility availability.

4.2.3. Interactions
The interactions between agents and between agents and the

environment are the main basis for the dynamics of the model.
Rodent habitats attract sand flies and sand flies transmit the CL
disease by biting humans. The environment provides all of the
mobile agents with their required resources and the spatiotem-
poral dynamics of interactions are influenced by the landscape
characteristics at each location. Accordingly, the interactions vary
within the study area and the agents will behave heterogeneously.

4.2.4. Stochasticity
There are several stochastic processes within the model to

present landscape heterogeneity and natural variations. The initial
locations of the agents, the infection probability of humans, the
movement of humans and foraging of sand flies all include ele-
ments of stochasticity. See Section 4.3.2 for details.

4.3. Details

4.3.1. Initialization
The model initializes with the landscape information of the

study area, including the spatial and non-spatial data. Grid cells
were assigned initial values of infection history, population pattern
(existence of new population), population, access to healthcare
services, land cover class, proximity to poultry and livestock facil-
ities, roads, rivers, Qanats and embankments.

The input data were extracted from reliable official data sources
as follows. The CL-related healthcare data were generated from
ministry of health records. The landscape data were prepared using
1:25,000 national cartographic center topographic data. The census
and demographic data were extracted from the records of national
statistic organizations. All of the parameters and data are summa-
rized in Table 1.
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4.3.2. Sub models

4.3.2.1. Spatially explicit environment. A geographic automata sys-
tem (GAS) (Torrens and Benenson, 2005) was used to take advan-
tage of both cellular automata and agent-based techniques for CL
spread modeling. The broader objective was to provide a spatial
approach for modeling the CL epidemic as a geographically com-
plex system comprised of landscape data (land cover, accessibility,
demography, etc.) and agent objects (CL vector, CL host). Thus, the
model is enabled to consider the heterogeneity of space and spatial
behaviors explicitly. According to Torrens and Benenson (2005), a
GAS consists of the following seven components:
GAS � fK; S; Ts; L;ML;N;RNg (1)

where K indicates a set of automata types in GAS. The first pair
denotes a set of states, S, and state transition rules, Ts, that are
associated with GAS. In the second pair, L dictates the location of
automata in the system and ML denotes the movement rules for
automata. In the third pair, N represents the neighbors of automata
and RN represents the rules that govern changes of the automata
relative to other automata.

According to GAS, two automata types (K), exist in the CL model



Table 1
Summary of input parameters and variables.

Parameters and data (Default) Values Reference/source

Population centers Type (cities, districts, villages) Ministry of Interior, National Statistical Center
Population
Population pattern (new inhabitants: (yes/No)

Accessibility Proximity to health centers (Abai et al., 2010)/(NCCa)
Proximity to roads
Proximity to rivers
Proximity to livestock and poultry
Proximity to Qanats
Proximity to embankments

Land Cover Desertification (Nilforoushzadeh et al. (2014), Mollalo et al. (2014))/(Forest and Rangeland
Organization)Dry farming

Irrigated farming and orchards
Urban and rural areas

CL notification CL incidences from 2007 to 2013
CL endemic areas

(MOH, 2013), Field data collected by authors with the collaboration of CCDCb

Population in living areas Villages: 28%, cities: 52%, nomadic villages: 10%, other:
10%

(MOH, 2013)

Population in working areas Military: 18%, farmer: 27%, poultry and livestock 2.5%,
Other:52.5

(MOH, 2013)

Sand fly perception range 1000 m Authors estimation
Maximum sand fly flight range 2500 m Linard et al. (2009)
Neighborhood to desertification

areas
2500 m Authors estimation

a National Cartographic Center, NCC, 1:25,000 Maps.
b Center for Communicable Diseases Control of Ministry Of Health (MOH).

Mobile Agents

Sta c data Layers

Cell Agents

Fig. 5. Geographic automata system for CL spread.
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within this study, including mobile agents and cell agents. The
geometries of both humans and sandflies are rigid (both are point
objects), their state is variable and they are both enabled to move.
Hence, according to Goodchild et al. (2007) they are modeled as the
same automata type in this study. The states of bothmobile and cell
agents change over time. The states of cell agents include their
susceptibility value which changes according to rules designed in
the susceptibility mapping (Section 4.3.2.6). The state of sand fly
agents refers to their activity level and changes through their
foraging behavior (Section 4.3.2.4). The state of human agents in-
dicates their SEIR situation and changes according to the SEIR
model and Bayesian modeling (Section 4.3.2.2, Section 4.3.2.3).
Although both types of agents are located in a certain location
within the study area, only the locations of mobile agents change
over time. Mobile agents can move and explore the entire study
area according to their desired habitats and designated rules. The
movement of sandflies is based on their foraging and the move-
ments of humans are according to their home and work places
(Section 4.3.2.4 and Section 4.3.2.5). Cell agents are static and have
no movements. All cell agents know their neighbors according to
the Moore neighborhood and recognize other automata types (i.e.,
mobile agents) and their interactions in their neighborhood. Sand
flies use the Moore neighborhood for their foraging and move-
ments. Human agents perceive their work place and home places
through the study area and use the Moore neighborhood when
roaming around these targets. The applied GAS in this study has
one additional component which allows creating a network be-
tween all of the automata types that are associated with each other
through interactions. This allows the cell agents to track the results
obtained from each interaction even after a few time steps when
the agent is no longer in their vicinity (Section 4.3.2.6) (Fig. 5).
4.3.2.2. CL SEIR model. An explicit representation of the in-
teractions between the CL host and the environment has been
generated using a Susceptible-Exposed-Infected-Recovered (SEIR)
model. The main objective was to model the infection process from
when a human is exposed to a CL vector until CL symptoms are
shown. The population is assumed susceptible to CL. The exposure
of a victim to CL is assumed to be associated with the existence of
sand fly agents in the underlying field unit.

An exposed agent preserves its state for a predefined incubation
period and then becomes infected based on a set of predefined
conditions. The collected qualitative and quantitative data from the
field surveys revealed that 98.31% of infected local people only
infected by CL once (MOH, 2013). Although they continued their
behavior and appeared in risky rodent habitat neighborhoods after
infection, they never became infected again. Thus, new inhabitants



Fig. 6. Bayesian modeling for infection probability.
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are more vulnerable to CL infection, and this influence has been
modeled using a population pattern parameter. For example, 17.71%
of all CL reported cases during the years 2010e2013 originated from
Paygah, a military base that attracts several new inhabitants
annually (MOH, 2013). New inhabitants are usually poorly
informed about CL vectors and have high vulnerability. Military
bases and nomadic tribal camps have been considered as newly
populated areas within Isfahan province. This parameter is influ-
ential at this stage, which can make the exposed agent, infectious.

Healthcare authorities have been informing local people about
the protection against CL vectors. Well-informed domestic people
use window screens, repellent sprays, clothes with adequate
coverage, etc., to increase their protection level. In addition, well-
informed people refuse to visit risky areas in the early morning
or during the night. We have considered these educational activ-
ities as a dissuasive factor for human agents to be infected by CL.
This parameter was calculated directly based on the access level to
health-centers in the study area. Consequently, infection results
from CL exposures vary considerably according to healthcare
accessibility and the population patterns of geographical regions.

We have assumed that the infected human populations are not a
CL reservoir host. Accordingly, a susceptible or recovered agent
cannot spread any L. major parasites. The infectious agents pass into
the recovery stage after a predefined lag.

4.3.2.3. Infection probability. As mentioned in Section 4.3.2.2, the
probability that an exposed agent becomes infected depends on the
population pattern and access to healthcare services. From a
geographical viewpoint, the probability that an exposed human
agent (E) becomes infected (I) is also associated with the landscape
characteristics of the area (i.e., field units). Various methods exist to
estimate the probability of the occurrence of a phenomenon based
on patterns of mapped socio-economic, environmental and de-
mographic data. Bayes' conditional probability theorem is a
PðAIjfV0ðrÞ;V1ðrÞ;…;VmðrÞgÞ ¼ PðfV0ðrÞ;V1ðrÞ;…;VmðrÞgjAIÞ � PðAIÞ
PðV0ðrÞ;V1ðrÞ;…;VmðrÞÞ (2)
powerful method that is used to estimate the probabilities of
occurrence of such events within a unit area. Bayesian probabilistic
modeling first assumes that an event can occur anywhere within
the study area by providing a prior probability for the event. Next,
various indicator map patterns are used to update the prior prob-
ability by using Bayes' rule to estimate the posterior probability for
each unit area. These posterior probabilities are calculated by
exposed human agents to complete the SEIR process. Given the
uncertainty associated with CL incidence as a phenomenon and its
relationships with landscape, agents have adopted conditional
probability in their decision making process to assess the nearby CL
susceptibility.

The indicator pattern maps for the Bayesian conditional prob-
ability are considered according to three main classes, (i) demog-
raphy (ii) healthcare facilities and (iii) main CL host habitats. The
demographic pattern contains areas with newly migrated or
nomadic populations. These areas contain the military bases and
temporary camps of nomads. The second class includes healthcare
centers, and the third class includes five maps that indicate the
candidate areas with most rodent colonies: desertification areas,
poultry and livestock areas, rivers, ancient water transmission fa-
cilities (Qanat) and embankment areas. Exposed agents use Bayes'
rule in a spatially explicit framework with landscape data and
information about healthcare services, population patterns and
previous CL incidences to calculate their infection probability
(Fig. 6).

In this study, Bayesian modeling to extract the infection prob-
ability of an exposed agent consists of three steps. First, the exposed
agent explores the spatial database, which contains all of the evi-
dence layers and highly infected villages as training points. Second,
the relationships between the training points and the evidence are
explored to determine which evidence layers are predictive. Third,
the weights are calculated. Finally, the evidence values will be
combined to produce posterior probability. When applied to assess
CL infections, Bayes' theorem is used to determine the probability
that sandflies in an exposure site will generate infections given the
local environmental conditions, as expressed in Eq. (2):
Where AI denotes that an infection will occur in field unit r, for
which fV0ðrÞ;V1ðrÞ;…;VmðrÞgindependent environmental condi-
tions are known.

4.3.2.4. Sand fly foraging. Sand flies randomly appear in the study
area. Next, they begin to search for their favorite places where the
rodent colonies are. Sand fly foraging is a two-stage process that
includes random flight when the habitat is not within the sand fly's
perception range and directional flight to the habitat when it is
perceived. Accordingly, sand flies skim in their habitats neighbor-
hood looking for blood meals. When they reach population centers,
they can expose human agents in their neighborhood; thus, these
humans' status becomes exposed. The sand fly perception and
flight range varies according to their activity level. During the day
they have their activity in a minimum level (first time period) and
during the night their activity level reach maximum (second time
period). The model also defines a mortality procedure for the sand
flies. The sand flies die following a certain number of time steps if
they are roaming (or lost) in a non-habitat neighborhood.

4.3.2.5. Human movement. Each human agent is assigned two at-
tributes which determines its movement scenario. First, an
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attribute in relation to where it lives which can be (i) city, (ii)
village, (iii) nomadic camp, (iv) other. Second, an attribute in rela-
tion to where it works including (i) farms (ii) military bases (iii)
poultry and livestock (iv) other. At the first time step human agents
are initialized according to the attributes. The population of
humans is assigned according to approximate proportion of CL
infections in ministry of health records during 2007e2013 (MOH,
2013) and also mentioned in Table 1. The correlation between a
living area and a working place has been set based on demographic
data acquired from the National Statistical Center. Hence, most of
the villagers are considered towork on their nearby farms (i.e. 70%),
some of them are assigned poultry and livestock workplace (i.e.
20%) and the rest will go to the other working places (i.e.10%).
Similarly, most of the inhabitants of nomadic camps are considered
towork on the nearby farm lands (i.e. 90%), and the rest will choose
other work places. In addition, most of the workers in military and
poultry and livestock are considered to be city inhabitants (i.e. 80%).
As mentioned before, there are two time periods in the model:
period 1, period 2. In period 1, agent looks for its assigned work
place and goes towards it. In period 2, agents finish their work and
move towards their homes. When a work place or living place for
an agent is considered as “other”, the agentwill appear randomly in
vicinity of roads, rivers and parks.

4.3.2.6. Susceptibility mapping. The susceptibility of a cell agent
depends on the abundance of sand fly exposures that result in in-
fections. Once an exposed agent changes its state to infected, the
underlying cell agent where the agent was exposed is identified
using the network attribute of the GAS. This cell updates its infec-
tion information and also updates the susceptibility map. Areas
with more susceptibility indicate the most probable risky cells
where a sand fly will find vulnerable victims. Sand fly behaviors are
assumed anthropophagous. Accordingly, sand flies prefer to bite
humans rather than other hosts.

4.3.3. Model outputs
The main outputs from the model include the number of agents

that are susceptible, exposed, infected and recovered in eachmodel
iteration and the susceptibility of each field unit. Through such
outputs, the spread of CL can be traced throughout the study area.

5. Results

5.1. Global sensitivity and uncertainty analysis (GSUA)

Uncertainty and sensitivity of the implemented ABM for CL is
here investigated using a two-step GSUA method: a screening
method proposed by Morris (1991), and a variance-based method
proposed by Sobol' (1990). The Morris method (Morris, 1991) as-
sesses the importance of each input factor qualitatively while the
Sobol' method (Sobol', 1990) evaluates the sensitivity and uncer-
tainty quantitatively. This two-step method has been applied in
several environmental studies for model evaluation and in-
vestigations (Convertino et al., 2014; Chu-Agor et al., 2011, 2012).
The twofold application of GSUA using Morris and Sobol' methods
is ideally suited for models that (i) have uncertain factors, (ii) are
complex and expensive to run, and (iii) have unknown structure (in
terms of factor importance and interaction) (Convertino et al.,
2014).

The GSUA in this study is based on a set of uncertain input
factors selected from the implemented ABM (see Table 2). These
factors are selected because of their associationwith CL host, vector
and reservoir host, thus the uncertainty is related to the location of
CL incidence with respect to these factors. However, no CL-related
uncertainty was identified for some of the ABM input factors
including: proximity to roads, rivers, Qanats, embankments and
health centers. For the uncertain land cover classes the uncertainty
is assigned as a discrete probability that represents the error in
classification of each land cover pixel. Since there were no previous
GSUA regarding the CL disease, or land cover of study area a field
survey was conducted to acquire a rough approximation of land
cover uncertainties. For example, according to the local field sur-
veys a desertification pixel whose class is 2 can be classified as 3
(Dry farming) or 4 (urban and rural areas) with a 15% probability.
Considering these uncertainty values, the categorical land cover
becomes a continuous variable in GSUA. For the population factors
a triangular distributionwas assigned to them in order to represent
their variability. The triangular distribution is based on a minimum
value, a most probable (default) value and maximum value ac-
quired from national statistics organization and MOH official re-
cords. The uncertainty of areas with new inhabitants has been
considered as a discrete distribution with 0 and 1 values. The CL
infection parameter has been considered as one of the uncertainties
of the model with a uniform distribution. The minimum and
maximum for the distribution range was assigned using the mini-
mum and maximum infection per 1000 people in the MOH regis-
tered records thorough Isfahan. Lastly, sand fly perception range
was also assigned a uniform distribution with the maximum value
of 2500m, equal to its flight range. The outputs considered in GSUA
are the CL susceptibility throughout the study region in two situ-
ations: (i) human agents can freely explore the whole study area,
(ii) there is no human movement around a 2500 neighborhood of
desertification areas.

The Morris method is performed in this study in five steps: (1)
the probability distribution functions (pdfs) are assigned (Table 2);
(2) sample points are generated; (3) ABM is executed using each of
the sample points to generate a set of outputs; (4) global sensitivity
analysis is performed; and, (5) the important input factors are
identified for the Sobol' variance-based analysis. Next, the Sobol'
method is carried out according to the same steps 1 to 4 of the
Morris method (Morris, 1991) except that sample points are
generated using the Sobol' method (Sobol', 1990). SimLab 2.2
designed for Monte Carlo-based uncertainty and sensitivity anal-
ysis (Saltelli et al., 2004) is used to perform GSUA of the ABM in this
study. In this case study ABM is executed with 130 Morris simu-
lations and 6656 Sobol' simulations.

5.1.1. Uncertainty analysis using Morris method
The Morris method (Morris, 1991) enables the qualitative

assessment of the each uncertain input factor of a model. It de-
termines the effects of input factors (i.e., negligible, linear, additive,
non-linear and interactive effects), based on the elementary effect
analysis (Saltelli et al., 2008). Morris method calculates, two
sensitivity measures for each input factor: (1) the mean elementary
effect, m; and (2) the standard deviation of the elementary effects, s.
Thesemeasures estimate the overall effect (i.e. the importance) and
the interaction with other factors respectively. The results of the
Morris method are presented here by plotting s on the vertical axis
and m on the horizontal axis for each input factor (Fig. 7). The results
show that most of the input factors with high variability effect on
the CL susceptibility (Fig. 7) are interactive factors. Accordingly, the
standard deviation of the elementary effect, s is predominant over
the mean of the elementary effect, m. Thus all points in Fig. 7 that
correspond to ABM input factors are above or around the diagonal
line. Moreover, this indicates the non-linearity of the ABM imple-
mented in this study for CL. The results show that PF (Population of
farmers) is the most important input factor of the model when
movements are restricted. It is surprising the importance of PF over
other input factors. This happens due to the important role of
farmers (human agents) in the SEIR model that largely affect the



Table 2
Input factors for GSUA and probability distributions assumed for the global sensitivity and uncertainty analysis. The adopted probability distributions for the input factors are:
discrete (“D”); uniform (“U”); and triangular (“T”) distributions.

No. Description Notation Range Distribution Default value

1 Areas with New inhabitants NI (0,1) D (0.3,0.7) 1
2 Desertification DE (2,3,5) D (0.7,0.15,015) 2
3 Dry farming DR (3,4,5) D (0.7,0.15,015) 3
4 Irrigated farming and orchards IO (3,4,5) D (0.15,0.7,015) 4
5 Urban and rural areas UR (3,4,5) D (0.15,0.15,0.7) 5
6 CL notification (per 1000) CL (0.100) U No default value
7 Population in villages PV (20,35) T 28%
8 Population in cities PC (40,60) T 52%
9 Population of nomads PN (5,15) T 10%
10 Population working in military PM (5,25) T 18%
11 Population working in farms PF (15,35) T 27%
12 Population working in poultry and livestock PP (1,5) T 2.5%
13 Sand fly perception range SP (500,2500) U 1000 m

Fig. 7. Morris factor importance and interaction.
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model output especially with the confined movements.
Factors UR, IO, PP, SP and PC have low importance considering

the Morris index pair (m, s) and also contributed almost equally
(very low) to the final output (Fig. 7). The input factors selected
after the Morris screening for the variance-based sensitivity anal-
ysis are CL, DE, PF, PV, PM, PN, NI, and DR, because their overall
importance for the CL susceptibility. The selection is performed on
the basis of a “visual inspection” of the Morris index pair (m, s) of
input factors. Morris index pairs close to the origin of the plots
haven't been considered important, and other pairs along the di-
agonal or pairs large m or s are important. The population of no-
mads, PN, and CL factors have lower importance than expected for
the model output and errors in these parameters do not affect the
output of ABM significantly. The low importance of CL factor is a
reflection of both the stochastic behavior of ABM but also of the
static design of the CL reservoir host in the model. Considering
Fig. 7, desertification and dry farming areas, population of villagers
result very important in the predicted CL susceptibility.
5.1.2. Sensitivity analysis using Sobol' method
The Sobol' method (Sobol', 1990) performs a quantitative anal-

ysis of model sensitivity based on the principle of variance
decomposition using variance based analysis (Chu-Agor et al.,
2011). Hence, the total variance of the model output is given by
the sum of the variances of all input factors (Saltelli et al., 2008).
The Sobol' method provides the ability to assess the influence of the
full range of variation of each input factor on the model output by
quantifying sensitivity measures which summarize the model's
behavior. The most common measure of sensitivity is the first-
order sensitivity index, S, that represents the main effect (direct
contribution) of each factor to the variance of the model output
(Convertino et al., 2014).
The results of the global sensitivity analysis are reported in

Fig. 8. The Sobol' first order index S, is calculated for the most
important input factors, after the Morris screening. The Sobol' first
order index measures the contribution of each input factor to the
uncertainty of the model (Convertino et al., 2014). The Sobol'
analysis reveals more variability of input factors than the Morris
method. The plots in Fig. 8 allow one to visually detect the most
important factors for each movement situation on the model pre-
dictions. The input factors DE, PF, DR AND PM are the most
important factors when there is no movement restriction. On the
other side, with movement restriction around the desertification
areas, the PF factor influences significantly model outputs (Fig. 8).
5.2. Model results

This section presents results based on the hypothesis focused on
spreading CL from the potential habitats of local rodents towards
humans based on the interactions between different disease com-
ponents (see Section 4.3.2). The results are discussed and explored
to investigate the infection process using the SEIR model. Initial
model explorations revealed that the model outputs agree with the
opinions of local CL experts and do not produce counter-intuitive
outputs.

Figs. 9 and 10 show the dynamics of susceptible, exposed,
infected and recovered human agents within the Isfahan province
with different population sizes. In addition, Figs. 9 and 10 show
how sensitive the model is to different population sizes. Two
different movement rules are used in the simulation. First, humans
can appear in different parts of the study area according to their
desired activities and landscape properties (Fig. 9). Second, humans



Fig. 8. (a) Sobol' first order index for the most important factors after Morris screening method. (b) Direct contribution of factors to the variance of model output when there is no
restriction on the movement of human agents (c) direct contribution of factors to the variance of model output when the movement of human agents is restricted.

Fig. 9. SEIR results. Without any restrictions. Each time step represents a 12-h period.
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cannot appear in a 2.5 km neighborhood in desertification areas
where most of the active rodent colonies are located (Fig. 10). The
2.5 km neighborhood is considered for the restriction area since it is
the maximum distance the CL vectors can fly in this model. In both
figures, the CL spread follows a traditional epidemiological curve.
Sand flies that have access to inhabitants rapidly increase the
exposure of the population to CL parasites. Without any movement
restrictions, the exposure results in a high exposure peak during
the first time steps that gradually decreases by the next time steps
(Fig. 9). During this spike, approximately 10e30% of the susceptible
populations are infected.

The results indicate that by increasing the population from 500
to 2000, the proportion of infected humans remains approximately
constant when human agents do not appear around desertification
areas (Fig. 10). However, without any movement restrictions, CL
infections have been changed increasingly as the population has



Fig. 10. SEIR results. With restriction in the movement. Each time step represents a 12-h period.
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increased. While the number of sand flies and desertification areas
were constant, this is not the case for people who appear within
sand fly territories. The number of people with access to areas
within sand fly vision ranges increases as people are allowed to
appear in risky neighborhoods of areas undergoing desertification.
According to Fig. 9, the appearance of people in these areas will
result in longer infection periods after the initial peak, and
restricting movements can result in a 24% decrease in the total
infected population.

Three highly infected areas in Isfahan province, including Pay-
gah, Varzaneh and Ejhiye, have been explored separately using the
model results (Fig. 11). More areas of desertification are located
around the cities of Paygah and Varzaneh, which makes themmore
exposed to CL from sand flies. Moreover, various well-equipped
health centers are located in Paygah relative to other cities,
mainly because it is closer to Isfahan, which is the capital of the
province. Although more CL infections occur in Paygah, many ex-
posures in Paygah do not result in infection. However, a larger
portion of the population is infected in Varzaneh, where most of
exposures resulted in infection. This result potentially occurs
because of the non-usage of sprays and mosquito nets in Varzaneh
due to less access to medical education and equipment. The com-
parison of SEIR in Paygah and Varzaneh indicates that the acces-
sibility to healthcare services and proper preventive equipment,
decreased 17% the probability of being infected from an exposure in
Paygah. In Ejhiye, the story is different, despite existence of several
desertification sites, the infections is still lower than other two
cities. It could be due to high proportion of once infected in-
habitants whichmakes them resistance to CL exposures. Restriction
of sand fly movements in this area resulted in approximately 45%
decrease in the peak of infections; However the infection process
lasted in a longer time period than before (Fig. 11).

Fig. 11 illustrates that restricting movements significantly de-
creases the number of infections in Varzaneh and has a slightly
significant influence on CL infections in Ejhiye. According to Fig. 11,
restricting movements does not change the infection rate in Pay-
gah, which can be interpreted as the influence of a large number
of new uninformed inhabitants. Because Paygah is a military base,
its population pattern changes each year, which makes it highly
vulnerable to CL infections. The results from different model runs
indicated an average increase of 15% in Paygah infections
compared with cities in similar landscapes because of its popu-
lation pattern.

Figs. 12 and 13 show the results of a typical run of the model
where the infection risk of field units has been calculated while
tracking CL infections. Areas with more risk value show a high
probability of CL exposure and infection. The spatial pattern of CL is
much more confined to desertification areas when there is no re-
striction tomovement (Fig.12). Accordingly, the spatial spread of CL
infections indicates that access to desertification areas affects the
pattern and extent of CL. As shown in Fig. 13, when agents are not
allowed to roam around desertification areas, CL is more localized
around nomadic villages south and west of the study area. In this
situation, CL infection is localized around areas with new in-
habitants (more nomads and new inhabitants) and begins to spread
along rivers (Fig. 13). A comparison of the maps in Figs. 12 and 13
show that the spatial patterns for Paygah are alike in both situa-
tions and that various highly infected areas occur in this area for
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both movements. However, the spatial patterns for Ejhiye and
Varzaneh are completely different in Figs. 12 and 13. In Ejhiye, in-
fections still occur in the area but have moved to the river neigh-
borhood and the southern villages with lower access to health
centers. By restricting movements in Varzaneh, most infections are
transmitted to the northern part of the city where the river passes.

From a disease control point of view, a lot can be done to reduce
the exposures around risky areas regarding the components of CL
transmission cycle. Since the sand flies' larvae are located mostly in
underground burrows, elimination of them is an expensive and a
long-term process which also needs receiving permissions from
higher-level organizations. Hereby, the most appropriate way to
control sand flies is to identify their exposure sites and do health-
care measures by informing local people, providing relevant pre-
ventive equipment, etc. Themodel simulations showed that vector-
human interactions occur not only near desertification areas but
also on riversides, extending up to 2 km from the river. This in-
dicates the importance of riverside population centers to receive
preventive measures while they had been noticed with less priority
before. Following desertification areas, the most frequent contact
area is that near the Zayande River, an important perennial river
flowing inside Isfahan. Contact mainly occurs in farmlands, parks,
and nomad camps and through poultry and livestock. Less contact
occurs in urban settlements, bush lands and woodlands, which was
an unexpected result. This interesting result which also was
confirmed by later field surveys showed the ability of the under-
lying system to simulate the interactions between environment
and the agents.

The outputs from simulation experiments were mainly consis-
tent with field observations, which increased the confidence of the
model although the availability of reliable validation data was
limited. The comparison between the field data and model pre-
dictions was restricted to highly infected areas that were not used
for training so they could be used for validation. The visual evalu-
ation of the predicted risks and validation data showed a consis-
tency between them.
6. Discussion

The results of this study revealed that the spatial situation of the
main contact places between humans and CL vectors is the most
important factor for exploring the spread of CL. This factor depends



Fig. 12. Identification of CL risky areas when there is no movement restriction around desertification areas. (a) Isfahan Province (b) Paygah region (c) Ejhiye region (d) Varzaneh
region.
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on the socio-ecological configuration of the landscapes in each
region. In this study, the physical and social characteristics of the
environment in Isfahan province were simulated to explore the
dynamics of these critical contacts by using an ABM. The model
developed in this study addresses the four challenges in spatial
ABMs mentioned by (Filatova et al. (2013)) including: (1) design of
agent decision models, (2) verification, validation and sensitivity
analysis, (3) integration of socio-demographic, ecological, and
biophysical models and (4) spatial representation. First, the agents'
behaviors were designed and parameterized using a SEIR model for
the human agents and by considering the ecological characteristics
of the sand fly agents. Second, the sensitivity of models to different
human populations was investigated using the epidemiological
curve and also a global sensitivity and uncertainty analysis was
performed to investigate the model uncertainties. Third, environ-
mental and demographic data and ecological information from the
CL vector and reservoir host were coupled in the CL ABM model to
provide a realistic vision for preventive measures of healthcare
authorities. Finally, a geographic automata system (GAS) was
adapted to the CL problem to represent the spatial heterogeneity of
the landscape in the model.

The main limitation of the developed CL model was a lack of



Fig. 13. Identification of CL risky areas when there is movement restriction around desertification areas. (a) Isfahan Province (b) Paygah region (c) Ejhiye region (d) Varzaneh region.
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calibration data. Moreover, the ecology of Rhombomys opimus be-
haviors and its habitats in Isfahan are not well understood.
Consequently, the model only represents risky areas based on the
assumed rodent habitats. Although several studies have proven the
roles of this rodent as the main CL reservoir host in Isfahan
(Yaghoobi-Ershadi et al., 1996; Nadim and Faghih, 1968; Akhavan
et al., 2010), the habitat analysis and rodent behaviors have not
been sufficiently explored. By resolving these issues, they can easily
be integrated into the model and improve the simulation
performance.

In a follow-up work from the authors of this study, the rodent
behaviors will be simulated with their ecological characteristics
and the CL agent-based model developed in this study will be
extended to explore various intervention scenarios based on the
dynamics of contacts between rodents, sand flies and landscape
configurations. We will explore hypotheses that include environ-
mental and human made changes (e.g., urban growth, land use
change) and healthcare authority interventions.
To our knowledge the CL ABMmodel is one of the first studies to

model the spread of CL based on interactions between hosts and
vectors considering socio-ecological attributes. This model pro-
vides a robust basis for exploring the transmission of CL through
the environment and possible healthcare measures for preventing
further infections.

7. Conclusions

In this paper, a spatially explicit agent-based model was used to
explore the spread of CL within a highly endemic area in central
Iran. The spread of disease was modeled by explicitly representing
the socio-ecological interactions between sand fly vectors, humans,
and their environment. An ABM was developed to simulate the
spatiotemporal dynamics of such interactions as components of a
complex system. The ABM approach allowed these components to
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behave based on socioeconomic and landscape factors. Moreover,
the ABM was integrated with a SEIR model here to provide the
ability to explore the spread of disease realistically.

Through simulations, the model showed how CL could spread in
different parts of study area with different healthcare availability,
population pattern, and environmental characteristics. The results
indicated that the spread of CL mainly originates from desertifica-
tion areas and that restricting human activities around desertifi-
cation areas could reduce the intensity of infections. However, even
with restrictions around desertification areas, the model results
indicated significant infections in riverside population centers
where haven't been noticed before. The results also confirmed that
availability of health centers can result in more protection against
sand flies and more resistance against CL exposures when there is
no possibility for restricting activities. Moreover, the results indi-
cated that places with new inhabitants are more vulnerable to sand
fly exposures and this raises serious concerns for a new wave of CL
infection regarding the new housing activities in Isfahan suburbs.

One pragmatic approach to control such vector-borne diseases is
to limit vector-host interactions. A better understanding of the
factors that influence the interactions can improve the quality of
preventive measures of healthcare authorities. The ABM developed
for CL within this study can be used to integrate and investigate
multiple factors and explore their interactions in a spatiotemporal
environment with spatial representation capabilities. The CL ABM
could be easily adapted to areas other than Isfahan and to other
vector-borne diseases by changing a few landscape and socioeco-
nomic variables.
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