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Abstract Based on the hydro-meteorological data over the

past 50 years (1961–2010), the runoff change of the Kaidu

River was predicted for the future 30 years (2011–2040).

Two statistical downscaling models, the Statistical

DownScaling Model (SDSM) and the Statistical Analog

Resampling Scheme (STARS), were used to downscale the

HadCM3 outputs for projecting the future climate scenar-

ios of the basin. The Soil and Water Assessment Tool

(SWAT) hydrological model was driven by the projected

climate scenarios to generate the future runoff. Modeling

results suggested that the SWAT model can well duplicate

the recorded runoff changes in the basin and thus can be

applied to simulation of future runoff changes. Both the

SDSM and the STARS models performed well in simu-

lating the temperature but relatively poorly in simulating

the precipitation. Under the A2 and B2 scenarios the basin

will experience a significant increasing trend in tempera-

ture and an indistinctive change trend in precipitation

during the entire forecast period. Under the S1–S3

scenarios, both temperature and precipitation do not exhibit

distinctive changes. In terms of river runoff, the predicted

average annual runoff will be relatively abundant during

the period from 2010s to 2020s but obviously short after

2020s under A2 scenario and will be kept relatively steady

under B2 scenario. The predicted runoff will fluctuate

drastically with no any significant trend under S1–S3 sce-

narios. The relatively high runoffs under S2–S3 scenarios

seem to indicate the importance of temperature increasing

in generating runoff. The scenario-based predictions sug-

gest that moderate emission (e.g., B2) or moderate warm-

ing (e.g., S2) is beneficial to maintaining the expected level

of runoff in the future.

Keywords SWAT � Statistical downscaling � Runoff

prediction � Kaidu River

Introduction

The current water-related problems facing humanity, such

as flood disasters, water shortage and water-related eco-

logical deterioration, are mostly resulted from the human

disturbances of natural water cycle processes and natural

climates. The AR5 of IPCC (2013) pointed out that in the

twenty-first century global warming will further intensify

the Earth’s water cycle, making the high-latitude areas

even wetter and mid- and low-latitude areas even drier,

melting more glaciers and reducing spring snow covers in

the Northern Hemisphere.

In the arid and semiarid areas, the hydrological pro-

cesses of rivers were sufficiently documented to have

responded to global warming sensitively over the past

several decades (e.g., Hu et al. 2015; Wang et al. 2013;

Myktybekovna et al. 2014). For example, many studies
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showed that the river flow originated from high mountains

in the arid Central Asia has increased during the past

30 years primarily due to enhanced glacial melting (Hu

et al. 2015; Wang et al. 2013; Zhang et al. 2010). However,

some rivers that are also originated from high mountains

have experienced flow decreases or even disruptions

because of the intensified agriculture irrigation-related

water interception (Xu et al. 2013; Zhang et al. 2012). Even

worse, some terminal lakes have shrunk or even dried up

completely. The most well-known terminal lakes that

experienced human-resulted shrinkage include the Lop Nor

(Yuan and Yuan 1998; Fan et al. 2009), the Taitema Lake

(Chen et al. 2003) and the Aral Sea (Deng and Long 2011;

Wu et al. 2009). It is apparent that the natural hydrological

processes and patterns have been dramatically altered by

human-resulted changes in climate and in hydrology. It is

undesirably anticipated that the natural hydrological pro-

cesses and patterns in the arid and semiarid areas will be

more dramatically altered by these human-resulted chan-

ges. It means that the societies in the arid and semiarid

areas will face stronger-than-ever challenges in managing

water resources, and thus, the need for predicting future

water-resource availability is pressing. This paper is a

scenario-based academic exercise attempting to predict

future water-resource availability in Kaidu River, one of

the headwaters of the Tarim River in southern Xinjiang,

Northwest China.

The Kaidu River is the primary river feeding the

Bosten Lake, the latter being the largest inland freshwater

lake in China. The lake level once reached the record

high in 2002 (1049.4 m a.s.l), being 4.6 m higher than the

record low in 1986 (1044.8 m a.s.l) primarily because of

the increase in temperature. Since 2002, however, the lake

level has kept dropping to the present level (1045.0 m

a.s.l) mainly due to the decrease in water input caused by

upstream water interceptions combined with climate

change. It is now a well-accepted paradigm that predic-

tion, planning and management of water resources are

becoming increasingly crucial for the big river basins in

terms of the security of food production and the health of

natural ecosystems. This paradigm is also appealing to the

Kaidu River basin. Most previous studies have focused on

the past change of hydro-climatic processes in the basin

(Chen et al. 2013a; Xu et al. 2008; Tao et al. 2007), but

very few on the future change of hydro-climatic processes

in the basin. In this paper, the SDSM (Statistical

DownScaling Model) and the Statistical Analog Resam-

pling Scheme (STARS) were used to project the future

climate scenarios and the Soil and Water Assessment

Tool (SWAT) was used to simulate the river runoff

changes in the Kaidu River under different climate

change scenarios for the future 30 years (2011–2040).

Study area

The Kaidu River is situated on the northeastern edge of the

Taklimakan Desert, the second largest desert in the world

(Fig. 1). It lies between 41�470–43�210N and 82�520–
86�550E, with a drainage area 4.79 9 104 km2 and a main

river length of 560 km. The river originates from the

southern slope of the Tianshan Mountains in Northwest

China. It discharges into the Bosten Lake, and the Boston

Lake is in turn the headwater of the downstream river, the

Konqi River that flows into the Lob Nor. Since the Kaidu

River inputting the Boston Lake and the Konqi River

outputting the Bosten Lake are hydrologically linked, the

linked system (Kaidu–Bosten–Konqi) is thus called the

Kaidu–Konqi River basin.

The Kaidu River is the predominant contributor of the

Bosten Lake, occupying more than 80 % of the inflowing

water. The average annual runoff at the Dashankou

hydrological station (a control station at the mountain exit)

was 35.05 9 108 m3 for the period 1961–2010. It supplies

water not only for the oasis development of the Kaidu–

Konqi river basin but also for the ecological maintenance

of the lower reaches of Tarim River.

The Kaidu–Konqi River basin belongs to the continental

arid climate. The mean annual temperature was -4.2 �C
(Bayanbulak station) in mountainous area and 8.9 �C
(Hejing, Yanqi and Bohu stations) in plain area for the

period 1961–2010. Precipitation falls mainly between June

and August with a large heterogeneity both in time and in

space. It generally decreases along a NW–SE transect of

decreasing elevations. The mean annual precipitation ran-

ges from 300 mm to 500 mm in mountainous area and

decreased to only 50–100 mm in plain area (Chen et al.

2013b).

Materials and methods

Data preparation

Data used for running the SWAT model include the fol-

lowings: (1) digital elevation model (DEM) with a reso-

lution of 90 9 90 m obtained from the International

Scientific Data Service Platform, Chinese Academy of

Sciences (http://www.cnic.cn/zcfw/sjfw/gjkxsjjx); (2) land

use type (1/100,000) and soil type and properties (1/

1,000,000) obtained from the Environmental and Ecologi-

cal Science Data Center in the West of China (http://

westdc.westgis.ac.cn); (3) meteorological data including

daily sequences of precipitation, temperature (maximum

and minimum), wind velocity, relative humidity and solar

radiation at the Bayanbulak meteorological station for the
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period 1961–2010 obtained from China Meteorological

Data Sharing Service System (http://data.cma.cn); (4)

hydrological data: daily discharge at the Dashankou

hydrological station for the period 1981–2010 obtained

from Xinjiang Bayingolin Mongol Autonomous Prefecture

Water Conservancy Bureau.

Three data sets were used in SDSM. The first was the

station meteorological data including daily maximum

temperature (Tmax), daily minimum temperature (Tmin) and

daily precipitation (P) at the Bayanbulak station. The

second was National Centers for Environmental Prediction

(NCEP) reanalysis data including the grid NCEP reanalysis

data sets covering the Bayanbulak station for the period

1961–2000. For the sake of spatial resolution consistency

with the data of general circulation model (GCM) outputs,

the NCEP data were reinterpolated into a standard coor-

dinate system (2.5� latitude 9 3.75� longitude) over the

entire watershed. The NCEP data sets contain 26 general

circulation factors (i.e., temperature, sea-level pressure,

wind speed and direction, 850 and 500 hPa geopotential

height field, vorticity, divergence and relative humidity).

The third was GCMs data including the HadCM3 devel-

oped by the Hadley Center for Climate Prediction and

Research in British. The HadCM3 was demonstrated to

perform relatively well compared to other models in sim-

ulating climate in Asia (Shi et al. 2005). The two emission

scenarios of HadCM3, A2 and B2, representing the high

and moderate emission levels, were considered to predict

runoff variations for the period of 2011–2040.

Models

Soil and Water Assessment Tool

The Soil and Water Assessment Tool (SWAT) is a

watershed-scale and processes-based distributed hydro-

logical model developed by the Agricultural Research

Service at the US Department of Agriculture. It was

developed to quantify the impact of various manage-

ment strategies on water discharge, sediment and water

quality in large complex catchments (Gassman et al.

2007). It can be run in daily, monthly or yearly time

steps. In this paper, it was run in daily step to simulate

the river flow at the Dashankou station for the period

2011–2040.

The daily flow during 1981–2010 was split into two

segments for calibration and validation of the model:

1981–1990 was the calibration period, and 1991–2010 was

the validation period. The simulated flows were compared

to the observed ones at both daily and monthly scales.

The model performance was evaluated using the Nash–

Sutcliffe efficiency (ENS, Nash and Sutcliffe 1970), the

percent bias (PBIAS, Moriasi et al. 2007) and the coeffi-

cient of determination (R2).

Fig. 1 Sketch map of the study area and hydrological and meteorological stations
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where Qobs
i and Qsim

i are the ith observed value and simu-

lated value for daily flow, �Qobs
i and �Qsim

i are the means of

observed and simulated data for daily flow, and n is the

total number of daily flow observations.

ENS indicates how well the plot of observed versus

simulated data fits the 1:1 line. ENS values range between

�1 and 1.0 (1 inclusive), with ENS = 1 being the ideal

value. ENS[ 0.5 means satisfactory according to Moriasi

et al. (2007). PBIAS measures the average tendency of the

simulated data to be larger or smaller than their observed

counterparts. The optimal value of PBIAS is 0.0, with

lower magnitude values indicating more accurate model

simulation. Positive values indicate an underestimation of

observation, while negative values indicate an overesti-

mation (Gupta et al. 1999). R2 describes the portion of total

variance in the measured data that can be explained by the

model. R2 ranges from 0 to 1, with higher values indicating

less error variance, and typically values greater than 0.5 are

considered acceptable (Moriasi et al. 2007). In summary,

the modeling performance can be categorized or ranked

into four levels (Table 1).

Statistical DownScaling Model

The Statistical DownScaling Model (SDSM) is a down-

scaling tool developed by Wilby et al. (2002) and has been

widely used in many fields like meteorology, hydrology

and environmental assessment (Abdo et al. 2009; Duan and

Mei 2014; Huang et al. 2011; Zuo et al. 2011). In this

paper, the SDSM (version 5.2) was used to develop the

future climate scenarios of the basin.

Three procedures involved in the SDSM modeling. The

first procedure was identification of the screen variable.

That is, the seasonal correlation analysis, partial correlation

analysis and scatter diagram were used to identify the

relationships between the predictor variables (i.e., NCEP

variables) and predictands (i.e., precipitation, Tmax and

Tmin). The variables that were significantly correlated with

predictands were selected as predictors. The second pro-

cedure was model calibration. That is, multiple linear

regressive equations were established between the predic-

tands and the identified predictors. Since the distribution of

daily precipitation is highly skewed, a fourth root trans-

formation was applied to the original precipitation to

establish the needed transfer functions. The third procedure

was application of transfer functions, i.e., the established

transfer functions were used to downscale the outputs from

the HadCM3 and validated the regression equations.

Statistical Analog Resampling Scheme

The Statistical Analog Resampling Scheme (STARS) is a

resampling approach based on the weather analogs (Or-

lowsky et al. 2008). It is based on the assumption that

weather states from segments of the observation period

may occur again or very similar to the occurred weather

states during the simulation period. Hence, the simulated

series are constructed by resampling from segments of

observation series consisting of daily observations.

Because the simulated series consist of the observations

and fields from the observation period, the physical con-

sistency of both simulated fields and combinations of dif-

ferent variables is ensured. As the only external constraint

to the simulated series at a given location, two parameters

of a regression line (e.g., mean and slope) are prescribed.

They are the parameters that the simulated annual means of

a characteristic climate variable at this location have to be

featured.

The scheme provides a fast and easy-to-use tool, which,

unlike many of its alternatives, is relatively independent on

complex driving information (e.g., extensive GCM out-

puts). As the simulation series consist of station observa-

tions, plausible data with respect to every aspect of local

weather conditions are generated—a feature which any

kind of dynamically generated grid box series lacks. The

scheme has been widely adopted in many recent studies

(Julia and Friedrich 2015; Orlowskya and Fraedrich 2009;

Orlowsky et al. 2010). According to the temperature

change range in this century under the different RCP sce-

narios in AR5 (IPCC 2013) and with the consideration of

Table 1 Criteria for evaluating

the performance of SWAT

model

Level ENS PBIAS (%) R2

Very good 0.75\ENS B 1.0 -10 %\PBIAS\ 10 %

Good 0.65\ENS B 0.75 -15 %\PBIAS B -10 % or 10 % B PBIAS\ 15 %

Satisfactory 0.50\ENS B 0.65 -25 %\PBIAS B -15 % or 15 % B PBIAS\ 25 % [0.5

Unsatisfactory ENS B 0.50 PBIAS B -25 % or PBIAS C 25 %
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climate change of the basin in mountainous area during

1961–2010 (Zhang et al. 2014), the temperature change

scenarios in this paper were prescribed as 0, 0.5 and 1 �C
for the future 50 years (2011–2060), representing the low

(S1), moderate (S2) and high (S3) warming levels,

respectively. The climate outputs for the next 30 years (i.e.,

2011–2040) were used and analyzed for the hydrological

predictions.

Uncertainty analysis method

The cumulative probability was used to quantify the pos-

sible impact of climate change on hydrology (Liu and Tao

2012). First, we calculated the relative change percentage

of annual runoff to the baseline period (1961–2010) under

the five climate scenarios (A2, B2, S1, S2 and S3). Second,

we used the cumulative distribution functions (CDFs) to

calculate the probability distribution of runoff change.

Results and analysis

Calibration and validation of models

SWAT

By using the Sufi-2 algorithm integrated in the SWAT-

CUP, the sensitivity analysis and calibration were carried

out. In this study, 28 parameters related to runoff were

analyzed and 16 of them were finally chosen to perform the

calibration. After automatic and manual calibrations, the

optimal values of parameters were obtained. Figures 2 and

3 show the observed and simulated daily flows in calibra-

tion and validation periods (1981–1982 was taken as

preheat period so that the results were not shown),

respectively. The modeling results were assessed by ENS,

PBIAS and R2 indices. Figures 2 and 3 show that the model

performed well on both daily and monthly scales in both

calibration and validation periods (Table 2). All the indices

were within the good or satisfactory levels (Moriasi et al.

2007, also see Table 1). In general, the model performance

in simulation was acceptable and can be used for the

hydrological simulation.

SDSM

The selected predictor variables for each predictand are

shown in Table 3. Both station-observed data and NECP-

generated data during 1961–1990 were used to calibrate the

model. The coefficient of determination (R2) and the

standard error (SE) offered by the SDSM were used to

evaluate the model performance. R2 reveals the degree of

independent variables (predictors) jointly explaining the

dependent variable (predictand) in the regression equa-

tions. SE mirrors the sensitivity of predictands to

predictors.

The R2 of daily Tmax and Tmin regression equations in the

calibration period was 0.59 and 0.43, and the SE of them

was 3.40 and 3.58 �C, respectively, indicating that the

selected predictors can explain the predictands relatively

well (Table 4). Compared to the temperatures, the precip-

itation was explained by the model not very well with R2

and SE being 0.12 and 0.29 mm, respectively. Similarly,

the data of 1991–2000 were used to validate the model.

The R2 of daily Tmax, Tmin and P in the validation period

was 0.61, 0.49 and 0.15, and the SE of them was 3.35,

3.48 �C and 0.29 mm, respectively.

Fig. 2 Observed and simulated daily river flows by the SWAT during the calibration period, 1983–1990. a Hydrograph, b scatter plots

Environ Earth Sci  (2016) 75:1126 Page 5 of 14  1126 

123



Except the statistics (R2 and SE) offered by the SDSM

itself, correlation coefficient (r) was also calculated to

evaluate the comparison between the simulated and the

observed sequences (Fig. 4). It could be found that the

correlation coefficients for temperature simulations were

all above 0.96, reaching ‘‘very good’’ level, and the cor-

relation coefficients for monthly precipitation were above

0.38, reaching the relatively satisfactory level (Table 4).

Overall, the SDSM performed extremely well in tempera-

ture simulation and performed reasonably well in precipi-

tation simulation.

STARS

The daily temperature and precipitation during 1961–2010

at the Bayanbulak station were used to check the per-

formance of STARS in climate projection. The former

period (1961–1985) was the training period, and the latter

period (1986–2010) was the reference period. Figure 5

shows that the simulated data agreed with the observed

ones very well in the reference period. The correlation

Fig. 3 Observed and simulated

daily flows by the SWAT during

the validation period,

1991–2010. Upper panel

precipitation, lower panel river

discharge

Table 2 Assessment of simulation results by the SWAT model in

both calibration and validation periods

Statistics Scale ENS PBIAS (%) R2

Calibration (1983–1990) Daily 0.69 1.05 0.71

Monthly 0.88 1.98 0.88

Validation (1991–2010) Daily 0.62 7.41 0.67

Monthly 0.81 7.74 0.84

Table 3 The optimal predictors screened by the SDSM for the three predictands

Predictand Tmax Tmin P Explanatory note

Predictor p_z p_z p_u p_z: vorticity at surface; p500: 500 hPa geopotential height; p8_z: vorticity at 850 hPa; shum: near surface

specific humidity; temp: mean temperature at 2 meters high; p5_u: zonal velocity at 500 hPa; r500: relative

humidity at 500 hPa; r850: relative humidity at 850 hPa; p_u: zonal velocity at surface; p_zh: divergence

at surface; p5_z: vorticity at 500 hPa

p500 p5_u p_z

p8_z

shum

temp

r500

r850

shum

p_zh

p5_z

p500

r850
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Table 4 Statistics of simulation

results by the SDSM in

calibration (1961–1990) and

validation (1991–2000) periods

Period Tmax Tmin P

R2 SE r R2 SE r R2 SE r

Calibration 0.59 3.40 0.97 0.43 3.58 0.96 0.12 0.29 0.39

Validation 0.61 3.35 0.96 0.49 3.48 0.96 0.15 0.29 0.38

The temperature series used daily data, and the precipitation series used monthly data

R2, the coefficient of determination; SE, standard error (�C, mm); r, correlation coefficient between

observed and simulated series

Fig. 4 Comparisons between

the simulated and observed

values (Tmax, Tmin, P) by the

SDSM in calibration period

(a) and validation period (b).

Temperatures used daily data,

and precipitation used monthly

data in figures
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coefficients were 0.89, 0.89 and 0.13 for daily Tmax, Tmin

and P and 0.97, 0.98 and 0.77 for monthly Tmax, Tmin and

P, respectively. Again, the simulations were better in

temperature than in precipitation. In general, the model

performed well and can be used in the projection of future

climate change.

Projections of future climate scenarios

Annual variations

Based on the validated SDSM and STARS, two sets of

future climate scenarios were obtained for the basin. One is

obtained by inputting the daily Tmax, Tmin and P from the

HadCM3 during 2011–2040 into the SDSM to get the

station (Bayanbulak) climate scenarios under A2 and B2

emission scenarios (Fig. 6a1–a3). Another is obtained by

inputting the three prescribed warming scenarios (S1, S2

and S3) into the STARS to get the corresponding Tmax, Tmin

and P of the period from 2011 to 2040 at the Bayanbulak

station (Fig. 6b1–b3).

The annual variations of the projected Tmax, Tmin and

P showed large differences between the two sets of climate

scenarios. Under A2 and B2 scenarios, both Tmax and Tmin

appeared strong increasing trends, especially after 2020.

However, precipitation did not show any obvious trend.

Under the three prescribed warming scenarios, both Tmax

and Tmin exhibited decreasing trends under S1 and S2 and

an increasing trend under S3. The simulated precipitation

then showed decreasing trends under S1 and S3 and an

increasing trend under S2. Overall, the mean annual Tmax

and Tmin in the future 30 years differed less between the

two sets of climate scenarios than the annual precipitation

that has a 70-mm difference between two sets of climate

scenarios.

Seasonal variations

The intra-annual variations of the projected variables sug-

gested that there were no large differences in Tmax and Tmin

among the scenarios and also among the different pro-

jecting periods (Fig. 7). The projected temperatures had

similar distributions, and the Tmax and Tmin ranged within

-20 to 20 �C and -30 to 10 �C, respectively. For the

projected precipitation, the peaks occurred between June

and August for all the scenarios and also all the projecting

periods, but the projected amount varied significantly.

Under S1–S3, the peak volume could reach 60–80 mm.

Under A2 and B2, the volume could only reach *50 mm.

As for the decadal variability, the precipitation during

2030s is generally lower than that of 2010s and 2020s,

suggesting that the future air could become much drier

under warming climate.

Runoff prediction

Annual runoff

The runoff (m3/s) at the Bayanbulak station for the period

2011–2040 was predicted by inputting the five scenario-

based projections of daily Tmax, Tmin and P. Figure 8 shows

the annual runoff (estimated by daily river flows, 108 m3)

for both the baseline period 1961–2010 with observed

values and the projection period 2011–2040 with simulated

values.

The simulated annual runoffs under A2 and B2 fluctu-

ated with relatively small amplitudes (28–49 9 108 m3)

compared with those under S1–S3 (22–54 9 108 m3)

(Fig. 8). On average, the mean annual runoffs under A2,

B2 and S2 during the projection period were larger than the

mean annual runoff of the baseline period

Fig. 5 Comparisons between the observed and simulated values by the STARS model in the reference period (1986–2010). a Tmax, b Tmin,

c P. Temperatures used daily data, and precipitation used monthly data in figures
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(35.05 9 108 m3) and the mean annual runoffs under S1

and S3 were smaller than that in the baseline period

(Table 5), but the difference was not large. It means that

the runoff in the future 30 years could be comparable with

that in the past *50 years.

In terms of the decadal change, the projected annual

runoffs could reach or exceed the level of baseline period

in the coming two decades (2010s and 2020s) under the

most scenarios, but in 2030s projected runoff could fall

below the level of baseline period. In other words, high

emission (A2) or higher (S3) and lower (S1) increasing

temperature could be disadvantageous to runoff production

in the basin.

Seasonal runoff

The projected seasonal runoff fluctuated dramatically

under each of scenarios (Fig. 9). Compared to the projected

seasonal runoff fluctuations under the three climate sce-

narios (S1–S3), the runoff fluctuations under the two

emission scenarios (A2 and B2) exhibited stronger trends

with smaller amplitudes. Under the high emission level

(A2), runoffs in all seasons except spring showed a

decreasing trend and were relatively abundant in the

coming 20 years (2010s–2020s) and relatively short in the

2030s in comparison with the baseline period. Under the

moderate emission level (B2), however, runoffs did not

show any significant decreasing or increasing trends. Under

the S1–S3 scenarios, runoffs changed dramatically without

any significant trends. In contrast, the higher the tempera-

ture, the more dramatic the fluctuation was. Taken toge-

ther, the most scenarios suggested that it is very likely that

runoff could decrease during the 2030s, especially in spring

and summer when agriculture was badly in need of water.

Uncertainty analysis

The results of cumulative probability distribution function

showed that the cumulative probability of runoff increase

was 66, 69, 43, 63 and 49 % for A2, B2, S1, S2 and S3

climate scenarios, respectively (Fig. 10). It means that

runoff under the two emission scenarios was most likely to

Fig. 6 Annual changes in the projected Tmax (a1, b1), Tmin (a2, b2)

and P (a3, b3) under A2 and B2 emission scenarios of HadCM3 (left)

and under the three prescribed climate scenarios (S1, S2 and S3)

(right) for the period 2011–2040 at the Bayanbulak station. The

annual values are shown in figures
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increase. But, the cumulative probabilities of runoff

increase under S1–S3 indicated that the moderate warming

(S2) but neither the lower (S1) nor the higher (S3) warming

was conducive to the runoff increase.

Discussion

Water-resource prediction is essential for the future sus-

tainable development of an area. It is especially the case for

arid and semiarid areas where water resource is a con-

straining factor for the sustainable development. In this

paper, the runoff change of the Kaidu River, an inland river

in Northwest China, was predicted for the future 30 years

(2011–2040) by the SWAT hydrological model and the

SDSM and STARS downscaling models. The modeling

results suggest that the SWAT model can perform well in

runoff simulation in the basin, further proving the suit-

ability of SWAT model applied in the arid region as pre-

vious studies (Zhao et al. 2015; Lu et al. 2012; Huang and

Zhang 2010; Chen et al. 2009). However, it still should be

noted that the SWAT model itself is not capable of simu-

lating the glacier’s melting process. In this paper, glaciers

were treated as snow in simulation, which may have some

impacts on results though glaciers are not much in our

study area. A suitable ice module should be studied and

embedded into the SWAT model in our future work for

more accurate results.

Fig. 7 Intra-annual changes in the projected Tmax (left), Tmin (middle) and P (right) under A2, B2, S1, S2 and S3 scenarios for the period

2011–2040 at the Bayanbulak station. Red line 2011–2020, blue line 2021–2030 and green line 2031–2040
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Downscaling techniques are critical to the accuracy of

future climate projection and then runoff prediction.

Clearly, both SDSM and STARS have been shown per-

forming extremely well in temperature simulation and

reasonably well in precipitation simulation in this paper.

The common problem in many current studies is that the

simulation and prediction precision of hydrological vari-

ables especially precipitation is rather low, which then

causing poor simulation of runoff. The lower precision of

precipitation simulation is often associated with the par-

ticularity and irregularity of precipitation processes. How

to reduce the uncertainty of precipitation is still one of the

difficulties in current climate change and water cycle

research (Xia et al. 2011).

The projections of future climate scenarios show that the

basin will experience a significant increase in air

temperature and an indistinctive change in precipitation

under A2 and B2 scenarios, which probably means that the

study area will experience a drying trend in the future

30 years. Meanwhile, the relatively abundant predicted

runoff from 2010s to 2020s but obviously short after 2020s

under A2 scenario also seems to verify the drying trend.

The drying is predicted to be shown especially in spring

and summer when agricultural is badly in need of water,

which will affect the sustainable development of social

economy of the basin. Thus, water shortage should be

prevented in advance, e.g., building more reservoirs in

mountains for not only storing water but also reducing the

evaporation losses. Compared with the high emission level

(A2), runoffs under the moderate emission level (B2) did

not show any significant increasing or decreasing trends.

The moderate emission level is more beneficial to the

maintenance of runoff.

Under the prescribed S1–S3 scenarios, temperature

(Tmax and Tmin), precipitation and runoff did not con-

formably increase accompanied with the increasing pre-

scribed mean temperature from S1 to S3. The precipitation

and runoff under the moderate warming scenario (S2) had a

relatively large increase compared with that under low

warming scenario (S1) and high warming scenario (S3).

High warming is not in favor of the precipitation and runoff

generations. More importantly, high warming often

increases runoff rapidly by the fast glacier melting in the

short term, but in the long run the melt water will drop

sharply as glaciers melt especially in the area with more

Fig. 8 The simulated annual runoff under A2 and B2 emission scenarios (a) and S1–S3 prescribed climate scenarios (b) during the forecast

period 2011–2040, together with the observed values during the baseline period 1961–2010

Table 5 The simulated mean annual runoff (108 m3) at the Bayan-

bulak station of Kaidu River during the forecast period 2011–2040

under the five climate scenarios

A2 B2 S1 S2 S3

2011–2020 39.92 38.45 33.90 37.00 34.20

2021–2030 38.54 34.63 33.33 39.40 39.47

2031–2040 33.04 37.99 33.40 33.57 30.67

Average 37.17 37.02 33.55 36.66 34.78

A2: high emission level; B2: moderate emission level; S1:

DT = 0 �C; S2: DT = 0.5 �C; S3: DT = 1 �C
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small glaciers which are easy to disappear. In the Kaidu

River basin, there are 832 glaciers, but most of them have

an area of 0.1–0.5 km2. Oppositely, low warming is also

not conductive to the precipitation and runoff generations

because of the slow water cycle. Thus, the moderate

warming (S2) but neither the lower (S1) nor the higher (S3)

warming was beneficial to the runoff increase.

Uncertainty research is a difficulty in global climate

change and water resources impact assessment (Coquard

et al. 2004; Taylor 2005). Uncertainties can originate

from many aspects, including GCMs, downscaling meth-

ods, hydrological models and parameters and the green-

house gas emission scenarios (Wilby and Harris 2006;

Kay et al. 2009; Chen et al. 2011). In this study, all of

these uncertainties are involved but not assessed, which

may affect the accuracy and reliability of results. The

uncertainty analysis should be strengthened in our future

work. Additionally, the biggest uncertainty often comes

from GCMs followed by downscaling method (Wilby and

Harris 2006), so an integrated model with multiple GCMs

together with different downscaling techniques should be

tried to reduce the errors caused by any one model or

technique.

Conclusions

Based on the hydro-meteorological data over the past

50 years (1961–2010), the runoff change of the Kaidu

River was predicted for the future 30 years (2011–2040) by

the SWAT hydrological model and the SDSM and STARS

Fig. 9 The simulated seasonal runoff under A2 and B2 emission scenarios (a) and S1–S3 prescribed climate scenarios (b) during the forecast

period 2011–2040

Fig. 10 The cumulative probabilities of runoff change under the five

scenarios
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two downscaling techniques. The primary conclusions

were drawn as follows.

1. The SWAT model can well duplicate the recorded

runoff changes in the basin, with the ENS, PBIAS and

R2 all reaching the satisfactory level. It can be applied

to the simulation of future runoff changes.

2. Both the SDSM and the STARS models performed

well in simulating temperature but relatively poorly in

simulating precipitation. Under the A2 and B2 scenar-

ios the basin will experience a significant increasing

trend in temperature and an indistinctive change trend

in precipitation during the projection period

(2011–2040). Under the S1–S3 scenarios, both tem-

perature and precipitation do not exhibit distinctive

changes during the period of 2011–2040.

3. The predicted average annual runoff will be relatively

abundant during the period from 2010s to 2020s but

obviously short after 2020s under A2 scenario. The

decreasing trends from 2010s to 2030s are shown in

each season. The runoff will be kept steady under B2

scenario. Under S1–S3 scenarios, the runoff will

fluctuate drastically without any significant trend.

The runoff is relatively high under S2 scenario.

4. Both the scenario-based predictions and the cumulative

probability distribution function suggest that moderate

emission (e.g., B2) or moderate warming (e.g., S2) is

beneficial to maintaining the expected level of runoff

in the future.
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