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Abstract The chemical and strontium isotopic composi-
tions of four major rivers (Heihe, Shule, Beida, and
Shiyang) around the Badain Jaran Desert, northwestern
China, were measured to understand the solute sources of
surface water and rock weathering in the arid region. These
rivers have high total cationic charge (TZ") and total dis-
solved solids (TDS), averaging at 7379 pEq and
511 mg 17!, which are significantly higher than the global
river average. The increase in TDS and major ions (Na*,
Cl™, and SO,*") and TDS concentrations from upper to
lower reaches is ascribed to the evaporite dissolution and
the effect of evaporation in the arid and semiarid areas.
87Sr/%°Sr isotopic ratios of these rivers range between
0.71019 and 0.71628, with an average of 0.71328. The
chemical and ¥’Sr/%Sr isotopic analyses indicate that three
reservoirs (evaporites, carbonates, and silicates) contribute
to the total dissolved loads. The contributions of the dif-
ferent reservoirs to the dissolved load are first calculated
using a forward method in this area. The calculated results
show that the dissolved cation load is dominated by car-
bonates weathering and evaporites dissolution, and their
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contribution account for about 80 % of the total dissolved
cations for the rivers around the Badain Jaran Desert. The
proportion of the dissolved cations from silicates weath-
ering is 23.5, 10.8, 12.1, and 18.2 %, and the weathering
rate of silicates is 0.81, 0.76, 2.04, and 0.93 ton km > a~"'
for Heihe, Shule, Beida, and Shiyang, respectively.

Keywords Badain Jaran Desert - Northwestern China -
River water - Strontium isotope - Rock weathering

Introduction

The hydro-geochemical investigation of river waters pro-
vides important information on chemical and isotopic
compositions of the upper continental crust, weathering
rates of rock/soil, and the major ion geochemical cycles at
basin and global scales (Stallard and Edmond 1983, 1987;
Sarin et al. 1989; Palmer and Edmond 1992; Zhang et al.
1995a; Huh et al. 1998; Gaillardet et al. 1997; Viers et al.
2000; Qin et al. 2005; Xu and Liu 2010; Jin et al. 2011).
Since the pioneering work of Gibbs (1970), many studies
have focused on river geochemistry, including small
watershed for effect of lithology and climate control on
rock weathering (e.g., Bluth and Kump 1994; White and
Blum 1995; Gislason et al. 1996; Louvat and Allégre
1997), and the world’s major rivers for a more global
perspective (e.g., Hu et al. 1982; Berner et al. 1983;
Meybeck 1987; Summerfield and Hulton 1994; Gaillardet
et al. 1999; Galy and France-Lanord 1999; Chen et al.
2002; Chetelat et al. 2008). Up to now, the studies on
geochemistry of rivers draining desert areas are still scarce.
These rivers are generally not included in previous studies
on chemical weathering at the global scale due to their
small discharge.
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Researches about geochemistry of rivers in China are
mainly focused on large rivers in eastern monsoon region,
such as the Changjiang River and Yellow River (Zhang
et al. 1995a; Chen et al. 2002; Wu et al. 2005, 2008;
Chetelat et al. 2008; Xu et al. 2011), and Pearl River
(Zhang et al. 2007a; Gao et al. 2009; Xu and Liu
2007, 2010). However, inland rivers under arid and semi-
arid climate in northwest China are not arousing enough
attention. Four major rivers (Heihe, Shule, Beida and
Shiyang) around the Badain Jaran Desert in northwest
China are investigated in this study. This paper presents the
chemical and strontium isotopic compositions for these
rivers in the arid and semiarid environment. The purpose of
this paper is to discuss the hydro-chemical processes con-
trolling the water geochemistry, decipher the different
sources of solutes, and to quantify the contributions of the
various sources to the dissolved loads. The results can
provide information on the chemical weathering and the
controls over water chemistry of the river waters in the arid
environments.

Natural setting of study area

The study area is located in northwestern China, and it is
bordered by the Tengger Desert on the east, the Badain
Jaran Desert on the northeast, and the Qilian Mountains on
the southwest (Fig. 1). According to geographical charac-
teristics, the study area can be divided into the southern
Qilian Mountains and northern plains region. The elevation
in the plains ranges between 920 and 1650 m above sea
level, and it ranges from 2200 to 5500 m in the Qilian
Mountains. There are four major inland rivers in the study
area, and all of them originate from Qilian Mountains, they
are Shiyang River, Heihe River, Beida River, and Shule
River from east to west. The Heihe River is located in
E96°50'~102°00', N37°50'-42°40" and is the second largest
inland river in China. It has a length of 948 km, a total
drainage area of 142,900 km? and the mean annual dis-
charge of 37.55 x 10® m?, draining through Qinghai,
Gansu and Inner Mongolia provinces. The eastern sub-river
basin is the main river basin of the Heihe river system, has
a drainage area of 116,000 km? and the mean annual dis-
charge of 24.75 x 10® m®. The Beida River is the largest
tributary of Heihe River, flowing through Jiuquan County,
and finally converges into the main channel at Jinta
County. It has a length of 360 km, a drainage area of
6880 km” and a mean annual discharge of 6.53 x 10® m>.
The Shule River is the second largest river in this area, with
a length of 670 km and a drainage basin area of
41,300 km?> and a mean annual discharge of
15.13 x 10* m?®, it finally flows into Lop Nur area in
Xinjiang Province. The Shiyang River has a length of
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250 km, with an area of 41,600 km? and a mean annual
discharge of 15.75 x 10® m?, and drains into Qingtu Lake
at the north of Mingin County.

As far from the coast, the study area is mainly domi-
nated by an arid continental climate. In Qilian Mountains,
the annual mean air temperature varies from —5 to 4 °C
and the annual total precipitation averages at about
200 mm, and it increases to about 600—700 mm at higher
altitudes. In contrast, the average annual temperature ran-
ges from 5.8 to 10 °C in the plains area, and the precipi-
tation decreases from southeast to northwest in the
corridor, with 162 mm in Wuwei, 125 mm in Zhangye, and
86 mm in Jiuquan, while the potential evaporation ranges
from 1900 to 3500 mm.

The study area transects three geological units, the Qilian
Paleozoic geosynclinal fold zone, the Hexi Corridor
depression and the Beishan tectonic belt. The uplift of the
Qilian Mountains in the south has occurred since the end of
the Paleozoic and has formed an active fold and thrust belt
that extends along the northeastern margin of the Tibetan
Plateau (Tapponnier et al. 1990; Meyer et al. 1998). The
source areas and the upper reaches of these rivers are covered
with Proterozoic high-grade metamorphic rocks, Paleozoic
volcanic rocks, carbonate rocks, and clastic rocks and
granitoids of different stages (Wu et al. 1993,2004; Feng and
He 1996; Yang et al. 2002; Song et al. 2004; Hou et al. 2006;
Tseng et al. 2007; Zhang et al. 2007b). During the end of the
Paleozoic and throughout the Mesozoic, the embryonic form
of the Hexi Corridor was created. And then, from the late
Tertiary, especially from the end of the Pliocene and the
beginning of the early Pleistocene, intensive denudation and
erosion from the Qilian Mountains led to significant transfer
of clastic material to the basin depressions. During the fol-
lowing Quaternary, the clastic material in mountains was
brought into the basins by water flows, forming the thick
Quaternary aquifer of fluvial and alluvial sediments, and
some aeolian and lacustrine deposits. The lower reaches of
these rivers are mostly Quaternary alluvial-diluvial plains
containing massive beds of loess, sand and gravel, and
evaporites (mainly gypseous, mirabilite, halite) are widely
distributed in this area.

Sampling and analytical methods

River water samples from mainstream and major tributaries
of Heihe, Shule, Beida, and Shiyang River were collected
in October 2012, and the sampling locations are shown in
Fig. 1. Electric conductance (EC) and pH of the water
samples were measured in the field. Alkalinity was titrated
by using 0.010 M hydrochloric acid. Water samples was
collected by using 10 L high density polyethylene (HDPE)
containers, and immediately filtered through 0.22 pm
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Fig. 1 Sampling sites and geologic map of the river basins around the Badain Jaran Desert. Ar, Pt, Pz1, Pz2, Mz, Cz, and Qua

abbreviations of Archaean, Proterozoic, Early Paleozoic, Late Paleozoic,

Millipore membrane filters into a series of bottles for
analysis. Five hundred milliliter filtration was acidified to
pH < 1.6 with 6 M double sub-boiling distilled HNO; for
cations and strontium determination. Fifty milliliter filtered
water sample was stored directly in a polyethylene bottle
for anion determination. Then, each bottle was screwed
tightly and wrapped with para-film strip. All containers
were previously washed with hydrochloric acid and rinsed
with Milli-Q water (18.2 MQ cm) and dried.

Anions (C17, SO,*~, and NO; ™) were measured by ionic
chromatography (Dionex 120) with a precision of 5 %.

are the
Mesozoic, Cenozoic, and Quaternary, respectively

Major cations (K™, Na*, Ca*", and Mg”") and Sr con-
centrations were determined by ICP-AES (IRIS Intrepid II,
USA) with analytical precisions better than 5 %. Aqueous
silica concentrations were determined by spectrophotome-
try using molybdate blue method. Reagent and procedural
blanks were determined in parallel to the sample treatment.
Each calibration curve was evaluated by analysis of the
quality control (QC) standards before, during and after the
analysis of a set of samples.

For the determination of the 3”Sr/%°Sr ratio, based on Sr
concentration of each sample, a certain volume of water
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sample was prepared by evaporating it to dryness in a
Teflon vessel in ultraclean laboratory. The residue was then
dissolved in double distilled 2.0 N HCI, and strontium in
the solution was separated from matrix elements using a
cation-exchange resin (Dowex 50 W x 8 200—400 mesh)
in a quartz column by elution of 2.0 N HCI. The ¥’Sr/*°Sr
isotopic ratio was then analyzed with a VG-354 mass
spectrometer with five Faraday collectors. The total blank
was approximately 100 pg for the entire procedure. The
reproducibility was verified by periodic determinations of
the NBS 987 strontium standard. The average ®’Sr/*°Sr
ratio of this standard for 25 determinations was
0.710236 + 0.000012 (20, n = 25) during analysis.

Results and discussion
Major ion chemistry and Sr isotopes

The measured parameters (pH and EC), chemical and Sr
isotopic compositions of water samples are presented in
Table 1. Most of the water samples were alkaline with pH
values ranging from 6.96 to 8.54, an average of 8.16. The
extent of inorganic charge imbalance, characterized by the
normalized inorganic charge balance (NICB = 100 x
(TZT=TZ )/TZ", where TZ" = K* + Na®™ + 2Ca** +
2 Mg?*t, TZ~ = HCO;~ + CI” + NO;~ + 2S0,* in
HEq), was generally less than 10 %, indicating that the
contribution of organic ligands to the charge balance was
negligible. The total cationic charge (TZ") ranged between
3271 and 11,439 pEq, with an average of 7379 pEq, sig-
nificantly higher than those of the global river average
(TZ* = 1125 pEq, Meybeck 2003). The electric conduc-
tivity (EC) of the water samples varied from 303 to
952 uS cm_l, which had a linear relationship with the total
cationic charge measure in the rivers (R* = 0.92). The total
dissolved solids (TDS) varied from 249 to 895 mg L
with a mean value of 511 mg L™". The mean TDS values
of Heihe, Shule, Beida, and Shiyang river waters were 546,
503, 486, and 459 mg L™, respectively. In comparing with
other rivers worldwide (Gaillardet et al. 1999), these rivers
in arid region are with significantly higher dissolved solid
contents.

Variations of major ion compositions are shown in the
cation and anion ternary diagram (Fig. 2). Ca>" and Mg*"
were major cations in these rivers, with concentrations
ranging from 732 to 2361 umol L™" and from 357 to
3016 pmol L™', respectively. They accounted for
59.7-94.4 % of the total cations (Fig. 2a). HCO;~ was the
dominant anion with concentrations ranging from 1830 to
6365 pumol L™'. The next major anion SO,*~ had con-
centrations ranging from 262 to 2637 pmol L™'. HCO;~
and SO,*~ together accounted for 73.8-97 % of the total
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anions (Fig. 2b). There was no obvious difference in the
chemical composition among the four rivers; however,
some significant spatial changes can be observed along the
river main channels. The Nat, CI-, SO427, and TDS
concentrations of Heihe, Shule, and Beida gradually
increased from their upstream to downstream (Fig. 3a—d),
indicating a contribution of evaporites dissolution and
evaporation process in these inland rivers. Compared with
other rivers and global average, the studied rivers are
characterized by significant enriched Na™, SO,*~ and C1~
in major ion compositions. The strontium concentrations of
these rivers ranged from 2.16 to 13.0 pmol L~!, with an
average of 6.27 umol L™'. It is much higher than the
global average value of 0.89 umol L™ estimated by Pal-
mer and Edmond (1992). The Sr isotopic compositions
(87Sr/86$r) varied between 0.71019 and 0.71628, averaged
at 0.71328. The ®’Sr/*®Sr ratio spatial evolution may reflect
the geological setting of the river basin. In general, the
upper reaches at the Qilian Mountains drain old terrains
which consist mostly of metamorphic rocks, clastic rocks,
and granitoids, show high 878r/80Sr ratios, whereas the
lower reaches draining the Quaternary alluvial-diluvial
plains have low ®’Sr/*¢Sr ratios and high Sr concentrations.
Taking the Shule River as an example, the Sr** concen-
trations and ¥’Sr/*®Sr ratio evolution along the Shule main
channel are shown in Fig. 3e.

Source of solutes
Atmospheric and anthropogenic inputs

The solutes of river waters are generally products of rocks
and minerals weathering, dry and wet atmospheric depo-
sition, and anthropogenic inputs. In order to determine the
dissolved load deriving from rock weathering, the first step
is to correct for atmospheric and anthropogenic input. The
products of human activities go into river water by waste
input, such as agricultural fertilizers, animal waste, and
municipal and industrial sewage. The contribution of the
anthropogenic source to these rivers could be ignored in
this study as the lack of human activities in the desert
regions. The atmospheric input contains two principal
components: marine and soil dust. As these inland rivers
are far away from the ocean, it is reasonable to argue that
they may not be significantly influenced in chemical
composition by marine inputs. The soil dust input might be
important due to the poor covering of vegetation in mar-
ginal areas of the desert, and most solids in the soil dust are
salinized and enriched in soluble cations. However, the
contribution of the soil dust input could be regarded as a
part of rock weathering (Zhang et al. 1995b). Therefore,
the influence of the marine and anthropogenic inputs on the
dissolved load of the rivers in this study is negligible.
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Fig. 2 Ternary diagrams for the cations (a) and anions (b) in the rivers around the Badain Jaran Desert
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Rock weathering inputs

Stoichiometric analysis would provide some qualitative
information for tracing sources of major elements in river
waters (Fig. 4). Halite (NaCl) are the most common
evaporites in the arid regions. These rivers show signifi-
cantly high Na™ and Cl~ concentrations and a positive
correlation between them (R2 = 0.78, n = 78, except for
two samples in the upper Heihe), and display a trend
toward the 1:1 line at high concentrations for both con-
stituents (Fig. 4a). As the influence from sea salt is weak in
these inland rivers, halite dissolution should be a dominant
source of Na* and Cl™ in the rivers. Most river water
samples have equivalent ratios of Na™/Cl~ larger than one,
presumably indicating sources of Na¥ from dissolution of
mirabilite (Na,SO4-10H,0) and/or silicate weathering.
However, there is no strong correlation between Na*t and
SO,*~ (R* = 0.28, n = 80), implying that contribution
from mirabilite is not significant. The sources of Ca*" and
Mg>" can be determined from the (Ca** + Mg*")/HCO;~
equivalent ratio. Figure 4b shows that most samples have
the (Ca>™ + Mg”>")/HCO;™ ratio larger than one, the
excess of Ca’"™ and Mg>" over HCO;™ reflects extra
sources of Ca”* and Mg”* and is balanced by SO,*~. Most
of river waters have high concentrations of Ca**, Mg*"
and SO427 in the studied area. Gypsum (CaSO,4-H,0) and
other composite sulfates of Ca, Mg, Na, and K (e.g. bloe-
dite, anhydrite) may be also widely distributed in the desert

HCOj; (megq/L)

areas (Zhang et al. 1995b). However, water samples have
equivalent ratios of (Ca®>" + Mg*")/SO,>™ larger than one
and show significant excess in Ca®" and Mg*" (Fig. 4c).
The excess of Ca>* and Mg*" over SO,>~ could suggest an
additional supply by the weathering of both silicate and/or
carbonate rocks. In the source area and upper reaches of
these inland rivers, metamorphic rocks, carbonate rocks,
clastic rocks, and granitoids of different stages are exposed
on the earth surface; meanwhile, Quaternary deposits are
widely distributed in the middle and lower reaches, which
contains some carbonate as well. We calculated the excess
of (Ca®™ + Mg®hH* by subtracting SO,*~ from
the total Ca’"™ and Mg®" in river waters ((Ca®" +
Mg*hy* = (Ca** + Mg>")-S0,%7), and the variation of
(Ca** + Mg*)* with HCO;~ in Fig. 4d is used to
understand the weathering of carbonate and/or silicate
rocks. If the excess of Ca>" and Mg”" are mainly from the
weathering of carbonate, the (Ca**™ + Mg”)*’< and HCO;™~
should display a trend on the 1:1 line. Some samples from
the Shule and Beida are closer to the equivalent line
(Fig. 4d), and the other samples have (Ca®™ + Mg2+)*/
HCO;™ ratios significantly <1, indicating an additional
>amount of Na* and K* which may be derived from the
weathering of silicate rocks to balance the excess of
HCO;™.

Strontium isotopic composition (*’St/*°Sr) of river
water directly reflects that of the parent rock releasing as it
is not fractionated during weathering processes and

@ Springer
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Table 2 Elemental and Sr isotopic ratios of H,O-soluble minerals (evaporites) and acid-insoluble minerals (silicates) from sand sample

collected at the Badain Jaran Desert and its surrounding areas

Location Evaporite Silicate

K/Na Ca/Na Mg/Na Sr/Na 87Sr/36Sr K/Na Ca/Na Mg/Na Sr/Na 87Sr/30Sr
Badain Jaran® - 0.59 0.32 0.0021 0.71278 - - - - 0.71536
Badain Jaran® - - - - 0.71268 - - - - 0.71986
Tengger” 0.40 2.59 0.38 0.0095 0.7113 0.66 0.19 0.18 0.0026 0.72157
Dunhuang® - 15.6 0.66 0.0289 0.71196 - - - - 0.71510
Yanchi® 0.87 7.86 0.56 0.0128 0.71158 0.19 0.25 0.31 0.0025 0.71867

# Data are from Yokoo et al. (2001)
® Data are from Yokoo et al. (2004)
¢ Data are from Nakano et al. (2004)

independent of dilution and evaporation effects. Therefore,
87Sr/%°Sr ratios are often applied to identify the end-
members of rock weathering in a watershed (Négrel et al.
1993; Zhang et al. 1995b; Gaillardet et al. 1999; Millot
et al. 2003; Xu and Liu 2007). Based on the lithology of the
studied area, the headwater drainage areas on northern foot
of the Qilian Mountains are covered with Proterozoic high-
grade metamorphic rocks and Paleozoic sedimentary rocks.
Radiogenic strontium is supposed to be enriched in these
rocks, resulting in high ®’Sr/%®Sr ratios in the headwater of
rivers. However, the low reaches of rivers draining Qua-
ternary alluvial plains and desert areas have low ®’Sr/*°Sr
ratios. The relationships between ®’Sr/*°Sr and Na™/Sr*™
and Ca®"/Na™ molar ratios of these rivers are presented in
Fig. 5. It shows that different mixing trends of at least three
end-members for rivers, which are evaporite, carbonate,
and silicate. The geochemical characteristics of these end-
members can be deduced from the correlations between
87Sr/%°Sr and elemental ratios.

Desert sand and arid soils are composed of a mixture of
salinization minerals and other minerals derived from
provenance rocks and their weathered materials. Therefore,
the ®’Sr/*®Sr and ion concentration ratios of the different
rock weathering source for these rivers could be well defined

@ Springer

by those of various minerals in surface soil in the drainage
basin. Yokoo et al. (2001) reported elemental and Sr isotopic
composition of the H,O-soluble fraction from sand samples
collected at the Badain Jaran Desert. Their chemical and
X-ray diffraction (XRD) analysis showed that evaporite
minerals (mainly halite and gypsum) were dissolved in the
H,0-soluble fraction, and consequently, these elemental and
Sr isotopic ratios (Ca/Na = 0.59, Mg/Na = 0.32,
1000 x Sr/Na = 2.13, and ®’Sr/*°Sr = 0.712782) may
represent the evaporite end-member composition. Nakano
et al. (2004) also reported the H,O-soluble minerals have
87Sr/%0Sr ratios of 0.712680 of desert sand in the Badain
Jaran Desert. They also determined the elemental and
87S1/%Sr compositions of the acid-insoluble minerals in
surface soil and/or sand from the Badain Jaran Desert and its
surrounding areas (Yokoo et al. 2001, 2004; Nakano et al.
2004), and the ratios are presented in Table 2.
Identification of silicate end-member composition is
difficult because silicate rocks show variable ®’Sr/*°Sr
ratios and their Sr isotopic compositions are controlled by
the types and ages of the rocks. A recent research shows
that the aeolian deposits in the Badain Jaran Desert are
predominantly derived from the Qilian Mountains (Hu and
Yang 2016), and geochemical composition of the aeolian
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sand samples indicates these sediments should be mainly
derived from mixed source rocks of granite, granitoids, and
granodiorite. Therefore, the chemical and Sr isotopic
compositions of the silicate fractions in the desert sand
could be more representative of the mean composition of
the silicate end-member in the drainage basin area. Yokoo
et al. (2001) determined Sr isotopic ratios (0.715360) of
acid-insoluble minerals (silicates) in sand sample from the
Badain Jaran Desert. Chen et al. (2007) also reported that
Sr isotopic compositions of the fine-grained silicate frac-
tions (<75 pum) of the surface sand in the desert are quite
homogeneous, with an average of 0.716243. According to
Nakano et al. (2004), the acid-insoluble minerals have
87Sr/8Sr ratios of 0.719864 in the Badain Jaran Desert.
Unfortunately, they did not report the elemental composi-
tions of the acid-insoluble minerals in surface soil and/or
sand from the Badain Jaran Desert. Yokoo et al. (2004)
determined the elemental compositions of acid-insoluble
minerals in sand sample from the Tengger Desert, which is
adjacent to the Badain Jaran Desert. In this paper, we adopt
the elemental ratio values reported by Yokoo et al. (2004)
as the silicate weathering end-members for the studied
rivers (Table 2). Identification of carbonate end-member
compositions by river waters is not easy because there are
both weathering input of the primary carbonate and the
dissolution of carbonate formed by evaporation in arid soil
(Yokoo et al. 2001). We adopt the values for carbonate
end-member suggested by Wu et al. (2005) in the case of
the upper Huanghe River basin which is close to our study
area, with 60 &£ 30, 17 £ 11, 65 +£30, and
0.71050 £ 0.0005 for Ca/Na, Mg/Na, 1000 x Sr/Na, and
87Sr/%0Sr ratios, respectively.

Chemical budget and rock weathering sources
to river water

To estimate the contribution of the different sources to the
river water, a forward method is employed in this study.
The mass budget equation for any element X (C1~, SO4*,
Na*, KT, Ca®", and Mg®") in the dissolved load can be
written as:

[X]riv = [X]atm + [X}anth + [X]eva + [X]carb + [X]sil (1)

where riv river water, atm atmospheric input, anth
anthropogenic input, sil silicate, carb carbonate, eva
evaporite.

The calculation is based on some straightforward sim-
plifications of the budget equations. As discussed above,
anthropogenic and atmospheric inputs to the river water in
this study are negligible. All CI™ in rivers are assumed
deriving from evaporite (mainly halite), and balanced by
Na™. All SO4> in rivers are also assumed deriving from

evaporites, and balanced by Ca** and Mg”™. In addition, it
is assumed that all Kt are of silicate origin. K;; might be
overestimated in the area due to the existence of potassium
salt (e.g. sylvites). However, as the concentration of K*
accounts for less than 2 % of the total cations in river
waters, the uncertainty caused by the assumption that all
K" originates from silicates would be very small. The
residual calcium and magnesium are attributed to the car-
bonate weathering. With these assumptions, the above
equation can be simplified as follows:

[Clliy= [Clleva ()
[SOul = [SO4].y, (3)
[Na];, = [Cl],+ [Na]g (4)
[SOuleva= [Caleyyt Mgy, (5)
K= Kl (6)
[Cal,;,= [Cal,,,+ [Cal o +[Calg (7)
Mg, = [Mgey,+ Mgleu +[Mglg (8)

The proportional contribution of each reservoir to the
dissolved cation load (K", Na¥, Ca®", and Mg”>") of the
river waters can be calculated. The calculated contributions
of different sources to the dissolved cation load for these
rivers around the Badain Jaran Desert are illustrated in
Fig. 6. Overall, the dissolved cation load of rivers is
dominated by evaporite dissolution and carbonate weath-
ering. The contribution of evaporite and carbonate weath-
ering accounts for about 80 % of the total dissolved cations
for these rivers. The proportion of the dissolved cations
from silicates weathering (XCatg;) is 4-65, 815, 7-19 and
12-26 %, with an average of 23.5, 10.8, 12.1 and 18.2 %
for Heihe, Shule, Beida, and Shiyang River, respectively.
The contribution of carbonate weathering to the total dis-
solved cation load (XCat.,) accounts for 34.6 %

100%

% Carbonate

[‘I Silicate

I__’ Evaporite

80%

60%

40%

Contribution in %

20%

Beida

0%

Heihe Shule Shiyang
Fig. 6 Calculated contributions (in %) of the different reservoirs to
the total dissolved cation load for the rivers around the Badain Jaran
Desert. Evaporite dissolution and carbonate weathering dominated in

these rivers
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Table 3 Chemical weathering rates for the rivers around the Badain Jaran Desert

River Discharge Area Source of Cations  Silicate Carbonate Evaporite ~ Total rock
(10% m*/years) (km?) Eva. Sil. Carb. SWR? Cation® CWR? Cation%,;, TWR?
% tkm2a' tkm2a' tkm?a' tkm2?a' tkm?a' tkmZa'
Heihe 24.75 116,000 419 235 346 0.8l 0.64 1.91 0.93 1.27 3.99
Shule 15.13 41,300 53.0 108 362 0.76 0.52 3.48 1.61 1.76 6.0
Beida 6.53 6883 41.6 12.1 463 2.04 1.31 9.23 4.46 3.84 15.1
Shiyang 15.75 41,600 453 182 365 093 0.68 2.89 1.53 1.46 53

* SWR, CWR, and TWR represent silicate weathering rate, carbonate weathering rate, and total rock weathering rates, respectively

® Cationg; and Cation,,,; the sum of cation concentrations derived from silicate weathering and carbonate weathering

(10-66 %), 36.2 % (21-53 %), 46.3 % (25-58 %), and
36.5 % (15-57 %), and the contribution of evaporite dis-
solution to the dissolved cation load (XCat,,,) is 41.9 %
(15-61 %), 53.0 % (32-65 %), 41.6 % (34-58 %), and
45.3 % (26-63 %) for Heihe, Shule, Beida, and Shiyang
River, respectively.

To test the sensitivity of our calculation, a model con-
stituted of mass budget equations of Sr/Na molar ratios and
Sr isotopic ratios is employed for comparison.

For Sr concentration, the mass balance equation can be
written as:

(St/Na),= «(Na) x (St/Na),,,+ f(Na)

X (Sr/Na)g+7(Na) x (Sr/Na)g,, ©)

And for the Sr isotopic composition, the mixing equa-
tion can be written as:

(87Sr/868r)ﬁvx (Sr/Na),,, = a(Na) x (87Sr/gf’Sr)e
X (Sr/Na),,,+f(Na)
X (87Sr/86Sr) 1><(Sr/Na)

+ y(Na) x (87‘Sr/86Sr)
x (Sr/Na)

va

sil

car

(10)

car

Andoa+f+7y=1.

The fraction of Na from each end-member is denoted by
o(Na), f(Na), and p(Na). The results show that the pro-
portion of the dissolved cations from silicates weathering is
13.6, 30.0, 10.4, and 13.0 % for Heihe, Shule, Beida, and
Shiyang River, respectively. The propagated errors for the
different XCat (in mean) are 20 % for silicate, 10 % for
evaporites one, and 25 % for carbonate. For the calculation
of the proportion of the contributions, the major source of
uncertainties is the composition of the different end-
members. The difference between contributions of each
source estimated from Sr isotopes and the forward model
can be attributed to the uncertainty of carbonate end-
member composition.

The chemical weathering rate of rocks can then be
estimated by the mass budget and the surface area and

@ Springer

water discharges of the basin, expressed in ton km™2 a~".

The rate of silicate weathering (SWR) is calculated using
the Na, K, Ca, and Mg concentrations from silicate
weathering and assumes that all dissolved SiO, is derived
from the weathering of silicates.

SWR = ([Na]j+ [K]j+ [Ca]+[Mg] g+ [SiO2] ;)
x discharge/area (11)

The rate of carbonate weathering (CWR) is calculated
using the dissolved Ca and Mg from carbonate weathering
and HCOs, with half of the HCO5; from carbonate disso-
lution being derived from the atmosphere.

CWR = ([Ca]carb+ [Mg]carb+ 1/2[HCO3}carb)
x discharge/area (12)

We also calculated cationic weathering rates for silicate
and carbonate rocks (Cationg; and Cationg,s), and the
calculated results for the four rivers are listed in Table 3.
The SWR and cation-silicate weathering rate (Cationg;;) of
Heihe, Shule, Beida, and Shiyang River is 0.81, 0.76, 2.04,
and 093 tonkm 2a~', and 0.64, 0.52, 1.13, and
0.68 ton km ™2 a~', respectively. The CWR and evaporite
weathering rates of these rivers range from 1.91 to
9.23 ton km™? a_l, and from 1.27 to 3.84 ton km > a_l,
respectively.

Conclusions

Compared with the global river average, these rivers in the
arid region are significantly enriched in dissolved solids.
The dominance of Ca’*, Mg”, and HCO;™, and signifi-
cantly high content of SO,*~ and CI~ in major ion com-
position is the typical characteristics of these rivers. The
intercorrelations between ion and Sr isotopic ratios suggest
predominance of three end-members of rock weathering
sources to the solutes in the river water, which are evap-
orite, carbonate, and silicate weathering. The dissolved
load of the rivers is dominated by evaporite dissolution and
carbonate weathering. Average proportion of the dissolved
cations in river water from silicates weathering is 23.5,



Environ Earth Sci (2016) 75:1119

Page 15 of 16 1119

10.8, 12.1, and 18.2 % for Heihe, Shule, Beida, and
Shiyang River, respectively. The weathering rates of sili-
cate and carbonate are 0.81, 0.76, 2.04, and
093 tonkm>a~', and 191, 348, 923, and
2.89 ton km~2 a~! for these rivers, respectively.
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