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Abstract This paper assesses the harm that human-in-

duced land degradation poses on terrestrial ecosystems. We

propose and define a hazardous impact (HI) indicator and a

method to quantify this degradation and promote sustain-

able land use under the pressure resulting from population

growth. Taking human appropriation of the net primary

productivity owing to land-use conversion (HANPPluc) as a

proxy, the quantification of HI was developed with support

from remotely sensed net primary productivity (NPP) data

and using the co-kriging method. A case study in the karst

area of south China showed that HI in the study area

decreased from southwest to northeast. Areas with the

highest level of HI occupied 4.77 % of the total area and

were distributed in northwest Sichuan Province, southwest

Yunnan Province, and southern Guangxi Autonomous

Region. Lower HI areas were mainly located in Hunan

Province and Hubei Province. This indicates that land use

has a strong impact on karst rocky desertification. To

maintain a decreasing trend in HI, a land-use policy must

guide human activity. In the karst areas of south China, HI

and rocky desertification have similar spatial distribution

and intensity. This suggests that HI can effectively reveal

adverse effects on the ecosystem due to human-induced

land degradation, and that it can potentially be applied to

other related issues. We also argue that NPP reduction and

HI level do not follow a simple 1:1 relationship, so revi-

sions may be needed when applying the proposed indicator

and approach to other regions. This approach also needs to

be improved in its accuracy in terms of natural vegetation

extraction.

Keywords Hazardous impact indicator � Human-induced

land degradation � Terrestrial ecosystem � HANPPluc �
Co-kriging � Karst areas in south China

Introduction

Land use alters the structure and functioning of terrestrial

ecosystems (Vitousek et al. 1997). Also regarded as the

‘‘colonization of terrestrial ecosystems’’ (Fischer-Kowalski

and Haberl 1998; Haberl et al. 2001, 2004a, b; Krausmann

et al. 2003), land use is an undeniable leading cause of land

degradation (Wessels et al. 2004, 2007). It is estimated that

39–50 % of all land has been transformed or degraded by

humanity (Reynolds et al. 2007). Human-induced land

degradation has led to hazardous impacts on the service

and function of terrestrial ecosystems (Bai et al. 2012;

Bridges and Oldeman 1999; Fasona and Omojola 2009;

Millennium Ecosystem Assessment 2005; Roberts et al.

1999; UNCCD 1993). The momentum of human popula-

tion growth has created an urgent need to quantify the

hazardous impact of human-induced land degradation on

terrestrial ecosystems.
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To quantify this, we must first distinguish between land

degradation caused by human land exploitation and that

caused by climatic change on broad spatial scales; yet,

there are still few well-established procedures for such an

analysis. Recently, residual trend (RESTREND), a rela-

tively new method, has been proposed in several studies for

this purpose (Evans and Geerken 2004; Wessels et al.

2007). This method identifies the rainfall period that is

most related to the annual maximum NDVI (NDVImax) and

therefore the proportion of biomass triggered by rainfall, by

performing regression calculations between different peri-

ods of accumulated precipitation and NDVImax; positive or

negative deviations in biomass from this relationship,

expressed in the residuals, are considered to be human-

induced. After arranging the residuals in their temporal

order, there is a clear negative trend, indicating an

increasingly worse response of the NDVImax to rainfall.

This negative trend, if it proves to be statistically signifi-

cant, indicates an area experiencing human-induced

degradation (Evans and Geerken 2004). The RESTREND

method is useful for controlling the effects of precipitation

in order to detect human-induced land degradation (Wes-

sels et al. 2007) and has been successfully applied in arid or

semiarid areas where vegetation production is highly cou-

pled with precipitation (Bai et al. 2008; Li et al. 2012;

Wessels et al. 2007). However, it suggests that this NDVI-

based method could only be used in arid or semiarid areas,

since the NDVI variation is shown to have low relevance to

precipitation in rainy areas (Wessels et al. 2007), even

though its applicability and effectiveness have not been

evaluated beyond arid and semiarid areas. These studies

have established the idea that human-induced degradation

can be detected by comparing actual vegetation levels with

potential levels (Evans and Geerken 2004; Wessels et al.

2007; Zhou et al. 2015).

More recently, human appropriation of net primary

productivity (HANPP), an integrated socio-ecological

indicator that can be used to quantify human domination of

ecosystems (Vitousek et al. 1997) and to understand and

map important aspects of land-use intensity, has been

developed (Erb et al. 2013; Haberl et al. 2007, 2014;

Kuemmerle et al. 2013) and successfully used to detect

human-induced land degradation (Haberl et al. 2014; Zhou

et al. 2015; Zika and Erb 2009). Changes in NPP resulting

from land conversion and land use [i.e., the difference

between productivity of potential vegetation (NPPpot) and

productivity of actual vegetation (NPPact)] are also denoted

as HANPPluc (Haberl et al. 2007, 2014; Krausmann et al.

2013). Among the processes that contribute to HANPPluc,

land degradation is an environmental and developmental

issue of global importance (Zika and Erb 2009). Human-

induced soil/land degradation leads to substantial levels of

HANPPluc (Haberl et al. 2014), commonly resulting in the

temporary or permanent reduction in the productive

capacity of land (Zika and Erb 2009). Therefore, HANPPluc
appears to be more suitable to express the hazardous

impacts of human-induced land degradation on terrestrial

ecosystems. There is thus a need to quantify its hazardous

impact on terrestrial ecosystems (Nel et al. 2014; Nichol-

son et al. 1998; Wessels et al. 2004), but HANPPluc
includes both positive and hazardous aspects (Cao et al.

2014; Plutzar et al. 2016).

Karst terrain accounts for about 15 % of the world’s

land area, or about 2.2 million km2, and is where around

17 % of the world’s population, or about 1 billion peo-

ple, live (Xiao and Weng 2007). Ford and Williams

(1989) suggested that 25 % of the world’s population

rely largely or entirely on karst waters, including deep

carbonate aquifers. The south China karst area, the

Earth’s largest, merits the highest international level of

protection (Williams 2008), as it is home to about 100

million people (Cai 1996). Rocky desertification, which

is caused by complex human land-use activities on the

fragile karst ecosystems, induces the most serious land

degradation in this area (Xiao and Weng 2007; Xiong

et al. 2009). In most cases, human land-use activities,

including cultivation, deforestation, grazing, and burning

(Tian et al. 2008), play a critical role in rocky deserti-

fication (Jiang et al. 2014). Due to the close connection

between irresponsible land-use and karst environmental

problems, studies of human-induced land degradation in

karst areas have received increased attention (Grau et al.

2003; Gutiérrez et al. 2014; Williams 1993; Xiong et al.

2009). Its hazardous impact in this area must be studied

if the damaged environment is to be rebuilt and a sus-

tainable ecosystem achieved.

The main goal of this study is to propose an analytic

method for quantifying the hazardous impact of human-

induced land degradation on terrestrial ecosystems. In the

following sections, we will first describe the methodolog-

ical framework, taking HANPPluc as a proxy. Then, in a

case study, the proposed method will be applied to the

south China karst region. Last, we will discuss the research

findings and shortcomings in detail.

Methodology

Basic idea and research framework

Land degradation has a broad range of definitions, which

essentially describe the circumstances of reduced biological

productivity (Reynolds and Stafford Smith 2002; UNCCD

1994; Wessels et al. 2004, 2007). Serious land degradation

ultimately results in long-lasting and observable loss of

vegetation cover and biomass productivity over time and
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space (Haboudane et al. 2002; Wessels et al. 2012). Pro-

ductivity shows significant negative trends when human-

induced land degradation is introduced (Wessels et al.

2004, 2007; Xu et al. 2010), so loss of productivity has been

widely used to detect and monitor it (de Jong et al. 2011;

Prince et al. 2009). We therefore define the hazardous

impact of human-induced land degradation (denoted as HI),

specifically restricted to karst areas, as destruction of ter-

restrial ecosystem services and functions caused by degra-

dation-induced human land-use activities. More

specifically, the destruction of services and functions leads

to potential productivity loss. From the perspective of dis-

aster risk science (Blaikie et al. 2014; Burton 1993; Shi

2002), a karst terrestrial ecosystem is a receptor of hazard,

while human-induced land degradation is the hazard source.

For quantifying HI, three basic hypotheses are put forward:

Hypothesis 1 Because human-induced land degradation

(unsustainable land use) ultimately leads to the reduction in

potential ecosystem productivity where HANPPluc—the

difference between NPPpot and NPPact (Haberl et al.

2007, 2014)—is over 0, the ecosystem is affected by

human-induced land degradation. Further, where

HANPPluc is over 0 and is increasing, the terrestrial

ecosystems are experiencing aggravated hazardous impacts

caused by human-induced land degradation. The intensity

of HI can be expressed quantitatively by Eq. 1.

HI ¼ HANPPlucþ
NPPpot

ð1Þ

where HANPPlucþ is HANPPluc over 0, and NPPpot is the

potential NPP. HI ranges from 0 to 1; a bigger HI means

human-induced land degradation has a more hazardous

impact on the terrestrial ecosystem.

HANPPluc? is worked out by Eq. 2.

HANPPlucþ ¼ NPPpot � NPPact ðIf NPPpot [NPPactÞ ð2Þ

where NPPpot is the potential NPP, and NPPact is actual

NPP.

This hypothesis does not deny that changes in land use,

such as from farmland to urban, affect HANPPluc. However,

the hypothesis fits well with the conditions in the karst area

of south China, where human land use dominates the pro-

cess of land degradation and human-induced land degrada-

tion is the main cause of destruction of terrestrial ecosystems

(Kiernan 2010; Wang et al. 2004; Williams 1993; Xiong

et al. 2009). We also emphasize that this hypothesis should

be carefully checked and may need to be revised to adapt to

other regions (see ‘‘HI, human-induced land degradation and

reduction of ecosystem productivity’’ section).

Hypothesis 2 It is believed that natural vegetation still

exists in protected areas, according to the research by

Hobbs and Harris (2001). Natural vegetation is vegetation

that exists under current environmental conditions and

without disturbance from human activities, according to

Niche (Hutchinson 1965) and restoration ecology (Hobbs

and Harris 2001).

In this case, natural vegetation is defined as vegetation

that is distributed in world and national protected zones.

The methods for obtaining natural vegetation are described

in ‘‘Natural vegetation extraction’’ section.

Hypothesis 3 The potential productivity is equal to cur-

rent actual productivity if the vegetation remains undis-

turbed by human land use, that is, NPPpot equals NPPact in

non-degraded areas.

Further, according to Tobler’s first law of geography

(Tobler 1970), the potential productivity of degraded areas

should be equal or similar to that of natural vegetation

regions when the degraded and non-degraded areas have

identical or similar natural conditions. If the non-degraded,

potential production of the land can be inferred, the con-

dition of the rest of the land can be mapped relative to this

NPP (Boer and Puigdefabregas 2003; Wessels et al. 2008).

Therefore, if NPPact of natural vegetation is known, then

regional NPPpot can also be predicted in degraded areas,

taking most correlative natural factors as co-variables.

In this case, MODIS MOD17A3 NPP in a natural veg-

etation area was taken as reference data, and the co-kriging

method (Couckuyt et al. 2013; Kennedy and O’Hagan

2000) was adopted to predict NPPpot in other areas. The

methodologies for predicting NPPpot are described in

‘‘Potential productivity prediction using the co-kriging

method’’ section.

In summary, quantifying the hazardous impact of

human-induced land degradation on a terrestrial ecosystem

is done in three general steps (Fig. 1): (1) extraction of

natural vegetation data based on local land-use data, (2)

prediction of potential productivity using the co-kriging

method, and (3) calculation of HI.

Procedures for calculating HI are shown in Eqs. 1 and 2.

The methodology for obtaining natural vegetation and

predicting NPPpot is described in the following sections.

Natural vegetation extraction

The types and characteristics of natural vegetation show a

regional difference because of different natural circum-

stances. Therefore, natural vegetation data should be

extracted for each site.

In order to ensure the representativeness of natural

vegetation in our study areas, where the primitive vegeta-

tion is forest (Ramankutty and Foley 1999; Ray and Adams

2001), a metric of tree height was introduced. Zeng et al.
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(2007) pointed out that secondary forest in degraded areas

has lower tree heights than primitive forest because of thin

and infertile soil caused by human-induced land degrada-

tion. Liu et al. (2009) and Du et al. (2013) observed that

vegetation was significantly degraded in unprotected areas

and that tree height was far lower than in protected areas.

According to Zeng et al. (2007) and Du et al. (2013), the

height of trees in primitive forests was over 8 meters in

protected areas but generally \ 5 m in degraded areas.

Therefore, 8 meters of tree height was introduced as a

threshold to extract natural vegetation.

With the support of databases of world protected areas

(IUCN and UNEP-WCMC 2015), national-level nature

conservation zones (State Forestry Administration of China

2013), a land-use map of the study area (Friedl et al. 2010),

and tree height data distributed by NOAA (Simard et al.

2011), natural vegetation can be extracted by applying a

threshold of 8 meters.

Potential productivity prediction using

the co-kriging method

Co-kriging (Kennedy and O’Hagan 2000) is a type of

kriging in which the correlation between the high-fidelity

model and the low-fidelity model is exploited to enhance

prediction accuracy (Couckuyt et al. 2013). It is appealing

because it takes important natural factors into consideration

as covariates (Gong et al. 2014). Two steps are needed

when using the co-kriging method.

Correlative analysis between NPPpot and natural factors

The relationship between NPP and natural factors was

analyzed by Pearson’s correlation analysis (Eq. 3):

r ¼
P

X � �Xð Þ Y � �Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

X � �Xð Þ2
P

Y � �Yð Þ2
q ð3Þ

where r is the correlation coefficient, X is the NPP value, �X

is the mean NPP, Y is some natural factor, and �Y is the

mean value of the natural factor. The correlation coefficient

is between -1 and 1. The higher the correlation coefficient

value, the greater the impact on NPP.

The total contribution of the temperature, precipitation,

and solar radiation to NPP variation is 85 % (Liu et al.

2014), and relative humidity can also significantly alter the

magnitude of NPP (Pan et al. 2014). Thus, temperature,

precipitation, solar radiation, and relative humidity were

selected as natural factors. Sunshine hours were used in this

study instead of solar radiation, since solar radiation was

not recorded in the study area. The temperature, precipi-

tation, sunshine hour, and relative humidity data from

every weather station were transformed into raster data by

the kriging interpolation tool in ArcGIS.

Using co-kriging to predict NPPpot

The colocated co-kriging estimator (Wang et al. 2013) is

written by Eq. 4:

2. Prediction of NPPpot

Unnatural vegetation

Region
NPPpot

HANPPluc HI

3. Construction of HI

Natural Covariates
factors

Co-kriging

Residuals

1.Extraction of natural vegetation

HANPPluc+HANPPluc >0

Sample
NPPpot=NPPact

Natural
vegetation

Tree height >8m
NO

Natural vegetation
YES

Region
NPPact

Protected
areas

Land-use data

World protected
areas

National-level nature
conservation zones

Tree height data

MODIS
NPP

luc+

pot

HANPPHI =
NPP

Fig. 1 Basic concept for quantifying HANPPluc-based hazardous impacts caused by human-induced land degradation
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Z
ð1Þ�
OCKðuÞ ¼

Xn1ðuÞ

a1¼1

kOCKa1
ðuÞZ1ðua1Þ

þ
XNv

i¼2

kOCKi ðuÞ½ZiðuÞ � mi þ m1� ð4Þ

with the single constraint that all weights must sum to one

(Eq.5):

Xn1ðuÞ

a1¼1

kOCKa1
ðuÞ þ

XNv

i¼2

kOCKi ðuÞ ¼ 1 ð5Þ

where Z
ð1Þ�
OCKðuÞ is the predicted NPPpot value primary

variable Z1 at an unknown location u; Z1ðua1Þ are the

measured NPPpot values of the primary variable within the

neighborhood of location u; kOCKa1
ðuÞ refers to the weights

associated with each of the measured NPPpot values of the

primary variable; Nv is the total number of variables

including the primary variable and secondary variables;

Zi(u) is the colocated datum of the ith secondary variable;

kOCKi ðuÞ is the weight of the colocated datum of the ith

variable; m1 and mi are the overall means of the primary

variable and the ith secondary variable, respectively.

Weights were calculated by using the colocated co-kriging

equation system, which was omitted here.

Data sets

Data sets used in this study are shown in Table 1.

The MODIS MOD17A3 NPP, a NASA product from

2000 to 2013, is widely used to assess the NPPact of

ecosystems by land use/land cover (Conijn et al. 2013;

Indiarto and Sulistyawati 2014) and was adopted to rep-

resent the NPPact of natural vegetation. This improved

MODIS primary production data set is now widely used for

monitoring ecological conditions, natural resources, and

environmental changes (Zhao et al. 2005).

Case study

Description of study area

The study area (Fig. 2) is the 452,000 km2 karst region

(State Forestry Administration of China 2012) located in

south China, containing Guizhou Province, Yunnan

Province, Sichuan Province, Guangxi Autonomous

Region, Guangdong Province, Hunan Province, Hubei

Province, and Chongqing City. This area is located in a

tropical monsoon climate and subtropical monsoon cli-

mate zone with an annual precipitation of

1000–2200 mm and annual temperature of 16–22 �C.
The average NPP is 610–680 gC m-2 a-1. Due to irra-

tional land use, NPP has regional differences that vary

from 0 to 1300 gC m-2 a-1 (Huang et al. 2013). In

2012, the population density was 217 persons per km2,

which was 152 % of the national population density

(State Forestry Administration of China 2012). The cul-

tivated land per capita is 0.08 ha for the whole area and

0.033 ha in some counties with intensive desertification.

An estimated 40 % of the land is cultivated. The popu-

lation and land use are increasing, resulting in severe

Table 1 Data sets

Data name Contents Data sources (organization and Web site link)

Study area Karst region

Vector file

The carbonate rock outcrops originate from the World Map of

Carbonate Rock Outcrops v3.0, University of Auckland, http://web.

env.auckland.ac.nz/our_research/karst/

LUCC

data

Evergreen forest, deciduous forest, and mixed forest.

1 km 9 1 km, 2000

MOD12Q1, https://lpdaac.usgs.gov/products/modis_products_table/

mcd12q1

Forest rehabilitation data, 2002–2012 China Forestry Statistical Yearbook, State Forestry Administration of

China

Vegetation Height of trees, raster, 1 km 9 1 km NOAA. http://www.nasa.gov/topics/earth/features/forest20120217.

html

Protected

area

National-level nature conservation zones, vector file,

2013

State Forestry Administration of China. http://www.gov.cn/test/2012-

04/18/content_2116472.htm; http://www.forestry.gov.cn/portal/slgy/

s/2445/content-684347.html

World protected areas, vector file, 2013 The World Database on Protected Areas, IUCN and UNEP, http://

www.protectedplanet.net/search

NPP data MODIS MOD17A3 NPP, Raster, 1 km 9 1 km,

2000–2013

Numerical Terradynamic Simulation Group (NTSG).University of

Montana. ftp://ftp.ntsg.umt.edu/pub/MODIS/NTSG_Products/

MOD17/GeoTIFF/MOD17A3/GeoTIFF_30arcsec/

Climate Temperature, precipitation, sunshine hours, relative

humidity, monthly data from 752 weather stations,

2000–2013

National Meteorological Information Centre, http://cdc.cma.gov.cn/

home.do

Environ Earth Sci  (2016) 75:1127 Page 5 of 18  1127 

123

http://web.env.auckland.ac.nz/our_research/karst/
http://web.env.auckland.ac.nz/our_research/karst/
https://lpdaac.usgs.gov/products/modis_products_table/mcd12q1
https://lpdaac.usgs.gov/products/modis_products_table/mcd12q1
http://www.nasa.gov/topics/earth/features/forest20120217.html
http://www.nasa.gov/topics/earth/features/forest20120217.html
http://www.gov.cn/test/2012-04/18/content_2116472.htm
http://www.gov.cn/test/2012-04/18/content_2116472.htm
http://www.forestry.gov.cn/portal/slgy/s/2445/content-684347.html
http://www.forestry.gov.cn/portal/slgy/s/2445/content-684347.html
http://www.protectedplanet.net/search
http://www.protectedplanet.net/search
ftp://ftp.ntsg.umt.edu/pub/MODIS/NTSG_Products/MOD17/GeoTIFF/MOD17A3/GeoTIFF_30arcsec/
ftp://ftp.ntsg.umt.edu/pub/MODIS/NTSG_Products/MOD17/GeoTIFF/MOD17A3/GeoTIFF_30arcsec/
http://cdc.cma.gov.cn/home.do
http://cdc.cma.gov.cn/home.do


rocky desertification. The karst area of Guizhou, Yunnan,

and Guangxi Provinces is 8,876,000 km2 and is 66.2 %

of the national karst area (Liu et al. 2009).

NPPpot in karst areas of south China

Distribution of natural vegetation

The distribution of natural vegetation in the karst area of

south China is shown in Fig. 3.

There were 8485 natural vegetation samples, and all of

them were located in world protected areas and national-

level nature conservation zones.

NPPpot in karst areas of south China

The correlation of natural factors with NPPpot Correla-

tion coefficients between NPPpot and annual precipitation,

annual relative humidity, annual average temperature, and

annual sunshine hours in natural vegetation are shown in

Table 2 for 2000–2013.

Table 2 shows that, for 2000–2013, when the average

temperature was higher than the annual average tempera-

ture, the dominant factors were sunshine hours, annual

precipitation, and annual mean temperature, and when the

average temperature was lower than the annual average

temperature, the dominant factors were sunshine hours,

annual precipitation, and annual mean humidity. According

to Liu et al. (2014), cold temperatures can cause a sudden

decrease in NPP. Therefore, in high-temperature years, we

used co-kriging with sunshine hours, annual precipitation,

and annual mean temperature as co-variables to construct

the model to predict NPPpot. In low-temperature years, we

used co-kriging with sunshine hours, annual precipitation,

and annual mean humidity as co-variables to construct the

model to predict NPPpot.

NPPpot prediction validation Leave-one-out cross vali-

dation (Fig. 4) was applied to validate the results of pre-

dicted NPPpot.

Figure 4 shows that the adoption of the co-kriging

interpolation in high-temperature and low-temperature

Sichuan

Yunnan

Hunan

Hubei

Guangxi

Guizhou

Guangdong

Chongqing

120°0'0"E

120°0'0"E

110°0'0"E

110°0'0"E

100°0'0"E

100°0'0"E
30

°0
'0

"N

30
°0

'0
"N

20
°0

'0
"N

20
°0

'0
"NKarst area

Study area

0 200 400 km

Fig. 2 Study area
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years satisfied the needed precision. Figure 4a shows that

the predicted NPPpot results are on average

0.41 gC m-2 a-1 lower than the real NPPpot. The points

are in a concentrated distribution, and the fit degree is

0.694. Most values of real NPPpot and predicted NPPpot of

primary forests are approximately 400 gC m-2 a-1 and are

in line with the productivity of primitive forests in the

study area. From Fig. 4b, the predicted NPPpot results are

on average 0.3 gC m-2 a-1 lower than the real NPPpot.

The points are in a concentrated distribution, and the fit

degree is 0.722. Most values for the real NPP and predicted

NPP of primary forests are approximately 400 gC m-2 a-1

and are in line with the productivity of primitive forests in

the study area. Above all, the accuracy of the NPPpot of the

study area satisfied the needed precision.

Spatial distribution of NPPpot in karst areas of south

China NPPpot in karst areas of south China from 2000 to

2013 was obtained (Fig. 5).

There are few yearly differences in NPPpot; it is higher in

the southwest and lower in the northeast. Yunnan, southern

Guangxi, and southern Guangdong had the highest potential

NPP; Guizhou and southern Sichuan had moderate poten-

tial; and Hubei, Hunan, and Chongqing had the lowest. The

reason for this pattern is that the southwestern region is

nearly covered in virgin forest. Most of the original forest is

evergreen broadleaf forest, and the NPP of evergreen

broadleaf forest is higher than other vegetation (Huang et al.

2013). The NPP of primary forest has a negative correlation

with longitude and latitude and positive correlation with

sunshine, so in the southwest area of study, the NPP also

had a high value. The value of NPPpot was highly variable in

east Yunnan and Guizhou, especially in the eastern region

of Yunnan, which had a three-year drought from 2009 to

2011, causing severe damage to vegetation (State Forestry

Administration of China 2012). In this area, NPPpot was

probably influenced by natural factors.

HI in karst areas of south China

Spatial distribution of HI

HI was classified into nine grades (Jiang 2013): \0.05,

0.05–0.1, 0.1–0.2, 0.2–0.25, 0.25–0.3, 0.3–0.35, 0.35–0.4,

0.4–0.5, and [0.5. The annual average HI from 2000 to

2013 is shown in Fig. 6a. The proportion of HI in different

provinces is shown in Fig. 6b.

Figure 6a, b shows that the HI of the study area was

unevenly distributed. The study area with HI between 0 and

0.05 was the largest, at 43.47 % of the total area, while the

area between 0.1 and 0.2 was 13.98 %. The area between

0.4 and 0.5 was 6.4 %, and the area above 0.5 was 4.77 %.

HI in the study area decreased from southwest to northeast.

The area with the highest HI was located in northwest

Sichuan Province, southwest Yunnan Province, and

southern Guangxi Autonomous Region. Moderate HI was

located in southwest Guizhou Province. Lower HI areas

were in Hunan Province and Hubei Province.

The pattern of HI in south China is consistent with karst

rocky desertification (KRD) in south China. Some studies

Fig. 3 Distribution of natural

vegetation
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(Jiang et al. 2014; Sweeting 2012) have found that in south

China, Yunnan had severe KRD and Guizhou had moder-

ate rocky desertification. The distribution of HI followed

the same pattern. Specifically, the pattern of HI in Guizhou

was similar to the degree of KRD. Using the KRD land

data from Bai et al. (2013), we found a relationship KRD

land with HI in Guizhou (Table 3).

As shown in Table 3, the percentage of KRD land,

which was found by Bai et al. (2013) in 2000, was similar

to the percentage of HI in Guizhou. The root mean square

error (RMSE) for the percentage of KRD and the per-

centage of HI is 4.25. In lower KRD areas, where there is

little KRD or potential KRD land, the percentage of KRD

was smaller than the percentage of HI, and the RMSE was

5.88. The error was larger than average because area with

the lower KRD was affected by both natural and human

activities. However, in areas with moderate, severe, and

extreme KRD, the percentage of KRD was quite close to

the percentage of HI, and the RMSE was 1.23. Human

activity was the dominant factor in higher KRD areas, so

HI was a good estimator and could be used to explain KRD

areas highly affected by human activities.

HI may change due to rapid economic development and

intensive land-use/land-cover change (Sorrensen 2009). In

China, the Grain-for-Green Project was in effect from 2000

to 2010 (Lei et al. 2012; Uchida et al. 2005) as a policy to

alleviate severe land degradation problems (Lei et al. 2012;

Wang et al. 2007; Li 2004), and it reestablished the ter-

restrial ecosystem through human activity. As its comple-

tion in 2010, the projects had converted 14.67 million ha of

farmland into forestland and grassland, and participants

had planted trees on 17.3 million ha of barren mountains

and lands suitable for afforestation. It thus greatly

improved natural environments across China and made

significant progress in afforestation. In order to find the

relationship between HI and afforestation, we calculated

annual HI per province from 2000 to 2013 (Fig. 7a) and

compared annual HI with the annual afforestation ratio

(total afforestation area/total counties area) (Fig. 7b).

In Fig. 7a, the linear trend shows that HI decreased, but

that the reduction was not severe. The decreasing coeffi-

cient is -0.002, and the fit degree is 0.28. The annual mean

HI of the study area fluctuated from 0.13 to 0.22, and each

province fluctuated between 0.03 and 0.27. The annual

mean HI of Yunnan was the highest, and Chongqing was

the lowest. Figure 7b shows that HI had a wavelike

reduction, and the afforestation ratio rose from 2000 to

2013. This suggests that the negative effects of human

activities on ecosystems weakened, and the positive effects

were enhanced. HI decreased in most provinces from 2000

to 2008, which means ecosystems improved. These

increases were due to the forest rehabilitation policy and

indicated that afforestation on a large scale will reduce theT
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negative effect of human activities on ecosystems. How-

ever, from 2008 to 2010, the afforestation ratio increased

despite an increase in HI. Investment in the Grain-to-Green

Project was the least in 2008, delaying the improvement of

the ecosystem, so HI increased after 2008. When the

afforestation ratio continued increasing in 2011 and

reached its climax, HI dropped significantly. Above all, the

change in HI is related to afforestation.

Spatial variation in HI with human-induced land

degradation

In order to study the spatial variation in HI, we compared

HI in the year when the Grain-to-Green Project reached its

climax and HI dropped significantly (2011), when the

Grain-to-Green Project started (2000), and the most recent

year (2013). The result is shown in Fig. 8.

Figure 8 shows that low-HI areas expanded and high-HI

areas shrank from 2000 to 2011 and that low-HI areas

shrank and high-HI areas expanded from 2011 to 2013. The

proportion of areas with HI\0.05 was 41.65 % in 2000,

53.87 % in 2011, and 47.23 % in 2013. The proportion of

areas with HI[0.4 was 16.59 % in 2000, 11.81 % in 2011,

and 12.23 % in 2013.

From 2000 to 2011, high-HI area decreased yearly and

low-HI area expanded. The HI increased in Yunnan from

2000 to 2011 in high-HI areas. The growth of HI area

between 0.4 and 0.5 was 17.17 %, and the growth of HI

area [0.5 was 14.54 %. HI decreased in Guizhou from

2000 to 2011 in low-HI areas; it reduced 9.07 % in areas

with HI between 0.25 and 0.3, 24.08 % in areas with HI

between 0.3 and 0.35 and 29.14 % in areas with HI

between 0.35 and 0.4 compared with 2000. This means that

the ecological environment improved. This may be the

result of the Grain-to-Green Project, which led to a large

amount of reforestation (Qi et al. 2013). However, in

2011-2013, the high-HI area increased. HI decreased in

Yunnan from 2011 to 2013: 8.82 % in areas with HI

between 0.4 and 0.5 and 8.18 % in areas with HI[0.5. HI

increased in Guizhou from 2011 to 2013: 14.84 % in areas

with HI between 0.25 and 0.3, 12.3 % in areas with HI

between 0.3 and 0.35, and 8.01 % in areas with HI between

0.35 and 0.4 compared with 2011. This is consistent with

year in which the Grain-for-Green Project ended in 2010,

implying that the Grain-for-Green Project had a strong

impact on HI.

Factors driving the HI of human-induced land degradation

HI appears to have been highly influenced by the Grain-

for-Green Project. The change slope from 2000 to 2013 for

HI is shown in Fig. 9a. The total afforestation area per

county from 2002 to 2012 was calculated from the data in

Table 1 (Fig. 9b). A Pearson’s correlation analysis was

used to study the relationship between the afforestation

ratio and total afforestation area and between the average

and total HI (Table 4).

The Grain-for-Green Project had a strong impact on HI

spatially. Figure 9a shows that the spatial variation trend of

HI was lower in the middle of the study area (mostly west

Guizhou). In the same location, Fig. 9b shows that the total

afforestation area was correspondingly higher. The spatial

variation trend of HI was higher in the northwestern and

southern regions of the study area, as shown in Fig. 9a. In

summary, the size of the forest area correlates in space with

the variation trends of HI. This is consistent with the

conclusions of the China Rocky Desertification Commu-

nique (State Forestry Administration of China 2012). The
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Fig. 4 Leave-one-out cross-validation results. a High-temperature year (2009), b low-temperature year (2012)
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Fig. 5 NPPpot of study area in 2000–2013
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Grain-to-Green Project mitigated the intensity of rocky

desertification to some extent.

The results show that the afforestation ratio is significantly

and negatively correlated with HI at the 0.01 level and that

the correlation coefficient is -0.209. The total afforestation

area is negatively correlated with total HI at the 0.01 level,

and the correlation coefficient is -0.29, showing that the

Grain-to-Green Project had a negative correlation with HI.

Zhang et al. (2014) suggested that the Grain-to-Green Project

accelerated land-cover transition in Yunnan and reduced HI in

the ecosystem. This matches findings from other regions of

southwest China (Brandt et al. 2012). In addition, karst

landscapes were in a fluctuating state of restoration because of

the implementation of ecological construction projects (Yue

et al. 2013). Therefore, both previous studies and our results

illustrate that by human land-use activities have a strong

impact on HI. To continue this decreasing HI trend, land-use

policies are strongly recommended.

Fig. 6 a Annual mean HI from 2000 to 2013. b Proportion of HI in different provinces
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Fig. 7 a HI variation per province from 2000 to 2013. b Relationship between HI and afforestation

Table 3 Percentage of KRD

land and corresponding HI in

Guizhou Province

Type of karst rocky

desertification (KRD) land

Percentage of KRD

(%)

Grade of HI Percentage of HI

(%)

No KRD 35.38 \0.05, 0.05–0.1 39.18

Potential KRD 29.07 0.1–0.2, 0.2–0.25 33.97

Light KRD 21.65 0.25–0.3 13.57

Moderate KRD 11.86 0.3–0.35, 0.35–0.4 9.98

Severe KRD 2.01 0.4–0.5 2.95

Extremely KRD 0.02 0.5–1 0.35
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Discussion

HI, human-induced land degradation, and reduction

in ecosystem productivity

This paper proposed a new indicator, HI, to quantify the

hazardous impacts of human-induced land degradation on

terrestrial ecosystems. The core meaning of this indicator is

based on the fact (Reynolds and Stafford Smith 2002;

UNCCD 1994; Wessels et al. 2004, 2007) that human-

induced land degradation ultimately leads to a reduction in

terrestrial ecosystem productivity. Thus, the damaging

impact of human-induced land degradation can be mea-

sured by comparing NPP before and after degradation, that

is, NPPact - NPPpot (Haberl et al. 2007, 2014; Krausmann

et al. 2013). This hypothesis fits with the process and

consequences of human-induced degradation that occurred

in the past and also coincides with currently occurring

Fig. 8 Annual HI in study area. a 2000, b 2011, c 2013
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Fig. 9 a Change slope of HI from 2000 to 2013 and b total afforestation area per county from 2002 to 2012

Table 4 Pearson’s correlation

coefficient of HI and

afforestation ratio

Total afforestation area Afforestation ratio

Average HI -0.114** -0.209**

0.008 0.000

530 530

Total HI -0.290** -0.035

0.000 0.418

530 530

** Significant at p\ 0.01 level (two-tailed)
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degradation in karst areas in south China (Kiernan 2010;

Wang et al. 2004; Williams 1993; Xiong et al. 2009).

While the definition does not explicitly claim that a

reduction in NPP results from human-induced land degra-

dation, it does not deny that an increase in NPP has no

hazardous impact. That is, NPP reduction and HI level do

not have a 1:1 relationship.

In addition to land degradation, there are other human

activities that can lead to a reduction in NPP, which in turn

results in a higher HANPPluc. Several processes contribute

to HANPPluc: changes in NPP due to (1) changes in land

cover, such as clearing pristine ecosystems for agricultural

purposes (Haberl et al. 2014; Monfreda et al. 2008) or soil

sealing by construction of infrastructure and settlement areas

and (2) modifications of ecosystem patterns and processes

without changing land cover (i.e., within-land-cover chan-

ges), such as changes in NPP caused by modification of

vegetation structure, species composition, or soil fertility

(Zika and Erb 2009). Moreover, the NPP of agro-ecosystems

may be lower than the NPP of potential natural vegetation

without implying an unsustainable condition (Haberl et al.

2014; Monfreda et al. 2008), though up to 40 % of global

croplands may also be experiencing some degree of degra-

dation (Foley et al. 2005). Consequently, although a reduc-

tion in NPP is used to detect and quantify the extent and rate

of degradation (Diouf and Lambin 2001; Prince et al. 1998;

Prince 2002; Wessels et al. 2004, 2008), not all reductions in

NPP are an indication of degradation (Zika and Erb 2009).

On the other hand, an increase in NPP does not mean

that there are no hazardous impacts. The application of new

technologies has become one of the most important direct

drivers of changes in ecosystem productivity (Millennium

Ecosystem Assessment 2005). NPP can be raised over

NPPpot with the use of technologies that may jeopardize

future soil or ecosystem quality, e.g., through high input of

mineral fertilizers (Haberl et al. 2014). However, a large

portion of croplands, up to 40 % globally, according to

Foley et al. (2005), is not sustainable. Although the effects

of land degradation on productivity can sometimes be

compensated for with increased fertilization or irrigation

(Tilman et al. 2002), this may have high costs in terms of

energy input and ecological pressure, such as nutrient

leaching or soil degradation (Haberl et al. 2014). That is,

the onset of degradation is often masked by intensification

of land use; intensification usually exacerbates degradation

to maintain productivity on degraded soils (Daily 1995;

Tilman et al. 2002), which may eventually result in a

reduction in NPP later on. Therefore, modern land-use

practices, while increasing short-term supplies of material

goods, may undermine many ecosystem services in the

long run, even on regional and global scales (Foley et al.

2005), which reinforces the need for more sustainable

agricultural methods (Tilman et al. 2002).

Nevertheless, NPP reduction and HI do not have a simple

1:1 relationship. Many factors and human activities may

cause NPP change, and the relationship between NPP

reduction and human-induced land degradation is complex.

Therefore, some studies have emphasized that although

NPP reduction can be used to detect land degradation, more

fieldwork is needed to determine the specific causes of NPP

reduction (Prince et al. 1998; Prince 2002; Wessels et al.

2004, 2008; Haberl et al. 2014). In some areas, human

activities contribute only a small portion of NPP reduction,

e.g., 24 % of yearly potential NPP (based on the year 2000)

(Haberl et al. 2007). We also argue that, in some fragile

ecological environment areas, unsustainable human land

use, which ultimately leads to land degradation, may play a

key role in terrestrial ecosystem degradation and eventually

lead to significant NPP reductions. For example, under karst

conditions, strong reductions of NPP in many cases are

indicative of degradation effects (Kiernan 2010; Wang et al.

2004; Williams 1993; Xiong et al. 2009). Human land use

plays an especially critical role in the rocky desertified area

(Jiang et al. 2014; Tian et al. 2008; Xiao and Weng 2007;

Xiong et al. 2009) in the south China karst region, the

world’s largest karst area, which has a dense population

(Cai 1996). In this region, due to the characteristics of

mountainous topography, sloping cultivation is widely

applied. Sloping cultivated land accounts for 70 % of the

total cultivation area, and 20 % of land has a slope larger

than 25� (Huang et al. 2008). Such high intensity of sloping
farming has destroyed the original vegetation, resulting in

serious soil erosion, forming a large area of rocky deserti-

fication and ultimately reducing the NPP significantly (Bai

et al. 2013; Huang et al. 2013). In this area, the significant

reduction in NPP is as an irrefutable indicator of degrada-

tion effects. We therefore hypothesize that HANPPluc?
could be an indicator to reveal the hazardous impacts of

human-induced land degradation posed on terrestrial

ecosystems. The results also show that HI can indicate the

distribution and intensity of land degradation caused by

human land use in the south China karst area. We also

emphasize that this hypothesis should be carefully checked

and may need to be revised to adapt to other regions.

It is important that we meet the challenge of developing

strategies that reduce the negative environmental impacts of

land use across multiple services and scales while maintaining

social and economic benefits (Foley et al. 2005). HANPP, an

area-specific approach, can serve as an indicator of land-use

intensity, gauging impacts on terrestrial ecosystems in a defined

area (Haberl et al. 2014). This concept can also be extended to

other aspects of ecosystems (Haberl et al. 2004b). This paper

attempts to construct a HANPP-based hazardous impact indi-

cator to characterize negative aspects of human activities posed

on terrestrial ecosystems. This is only a small step, but we hope

to conduct deeper related research in the future.
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Uncertainty in predicting NPPpot

Natural vegetation extraction

There is a large body of research that has examined veg-

etation types prior to human impact in the study area.

Nicolas Ray and Adams (2001) found that most vegetation

in the area was forest and the rest was shrub

(25,000–15,000 B.P.). Ramankutty and Foley (1999)

pointed out that the natural vegetation of the study area in

the 1700s was forest. This paper assumes that the natural

vegetation of the study area was forest.

Most, but not all, of the study area where there is no

human interference is covered with forest. Thus, the

primitive forest that was used to estimate potential NPP

may be too large. Primary forest sample points showed an

uneven distribution; there are fewer sample points in the

northeastern and southwestern regions. Consequently, the

NPPpot spatial interpolation results in the northeast and

southwest may have errors.

Comparing the method to predict NPPpot

Some potential NPP models, such as the Miami, Thornth-

waitc, and Chikugo models (Lieth 1975), are based on

climate factors such as annual average temperature and

precipitation (Peng et al. 2007). However, it is difficult to

obtain actual NPP data to verify the accuracy of NPPpot
when using these models for the calculation. The potential

productivity of natural vegetation should equal its current

actual productivity, so we used spatial interpolation

methods based on the NPP of natural vegetation to predict

NPPpot. This study used three spatial interpolation meth-

ods: IDW, ordinary kriging, and co-kriging (Alves et al.

2013). The power of IDW is set from 1 to 4 and ordinary

kriging and co-kriging choose a stable optimization model,

spherical optimization model, exponential optimization

model, and Gaussian optimization model.

The fit of each prediction was assessed using five cross-

validation parameters (Johnston et al. 2001; Scattolin et al.

2008): the mean prediction error (ME), the root mean

square prediction error (RMS), the average standardized

prediction error (ASE), the mean standardized prediction

error (MS), and the root mean square standardized pre-

diction error (RMSS). The expectations for a spatial

interpolation model with a good fit are average ME and MS

prediction error close to 0, RMSS prediction error close to

1, a small RMS error and an ASE close to RMSS prediction

error (Scattolin et al. 2008). The results are shown in

Table 5.

As shown in Table 5, compared with IDW and ordinary

kriging, co-kriging with the spherical optimization model

has the best fit in the spatial interpolation and has the best

ability to predict the NPPpot both in high-temperature

(H) and low-temperature (L) years. The RMS and ASE

values were similar when using co-kriging to interpolate.

This demonstrates that the model accurately represents the

variability of the data; the MS value showed a good fit and

was close to zero, indicating a rather small error in the

estimation of NPPpot predicted values. The RMSS value,

close to the optimum value of 1, showed a good fit of the

model’s predicted values with the data that were collected

(Scattolin et al. 2013). According to Johnston et al. (2001),

if RMSS\1 or ASE[RMS, there is a tendency toward

Table 5 Validation of different

methods to predict NPPpot
Model ME RMS ASE MS RMSS

H L H L H L H L H L

IDW

Power 1 -0.88 -0.70 146.35 140.50

Power 2 -0.97 -1.00 143.92 137.89

Power 3 -1.06 -1.23 143.42 137.18

Power 4 -1.15 -1.41 144.07 137.61

Co-kriging

Stable -0.41 -0.63 150.38 145.70 7.59 155.96 -0.053 -0.004 20.86 0.94

Spherical -1.03 -0.60 151.24 145.62 173.90 165.31 -0.006 -0.004 0.87 0.88

Exponential -1.18 -0.30 147.13 137.25 15.73 15.55 -0.078 -0.005 9.70 9.07

Gaussian -0.41 -0.70 150.38 145.83 7.59 183.50 -0.053 -0.004 20.86 0.79

Ordinary kriging

Stable -0.59 -0.58 142.83 136.22 140.94 133.55 -0.003 -0.003 1.01 1.01

Spherical -0.62 -0.58 143.37 136.87 141.04 133.41 -0.004 -0.003 1.01 1.02

Exponential -0.60 -0.62 142.86 136.25 140.82 137.05 -0.003 -0.004 1.01 0.99

Gaussian -0.63 -0.62 143.28 136.54 141.22 133.55 -0.004 -0.004 1.01 1.02

H high-temperature year, L low-temperature year
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overestimation of the variance; if RMSS [1 or

ASE\RMS, there is a tendency toward underestimation.

The result interpolated by co-kriging with the spherical

optimization model slightly overestimated the real NPPpot.

This has also been found in other studies. Li and Heap

(2011) pointed out that kriging methods perform better

than non-geostatistical methods, such as IDW, and co-

kriging is better than ordinary kriging (Johnston et al. 2001;

Li and Heap 2011; Scattolin et al. 2013). Above all, co-

kriging is the best spatial interpolation method to predict

the NPPpot.

Comparing the NPPact data

MODIS MOD17A3 NPP was used in this study as the

actual NPP data. The MOD17A3 products derived from the

moderate resolution imaging spectrometer (MODIS) and

other sensors on the NASA Terra and Aqua platforms

(Griffith et al. 2014) were used with the BIOME-BGC solar

energy utilization model to build NPP prediction models to

simulate the terrestrial ecosystem. These products are being

used by scientists from a variety of disciplines, including

oceanography, biology, and atmospheric science.

MODIS MOD17A3 NPP can retrieve the actual pro-

ductivity (Conijn et al. 2013; Indiarto and Sulistyawati

2014) and has been widely used at the global and regional

level (Zhao and Running 2010). Zhao et al. (2005) com-

pared MODIS NPP with the ecosystem model-data inter-

comparison (EMDI) NPP data set and indicated that

MOD17A3 is a more reliable product. MOD17A3 NPP

data sets are now sufficiently mature to be used in a wide

variety of applications, particularly where regularly, spa-

tially referenced measures of vegetation activity are desired

(Running et al. 2004). Zhao et al. (2005) found that the

model used to calculate MOD17A3 is more reliable than

other models, and the addition of annual GPP and mean-

ingful annual QC make MOD17A3 more convenient for

the community user. He also found that the global MODIS

primary production data set is now ready to monitor eco-

logical conditions, natural resources, and environmental

changes. Consequently, this paper used MODIS NPP to

calculate NPPact of terrestrial ecosystem.

Further study

The proposed approach still needs improvement in the

accuracy of identification and the extraction of natural

vegetation in lower NPP areas. HI can be used in the areas

that have high NPP with intense human activities, but it has

a low accuracy in identifying and extracting natural veg-

etation in intense human activities with lower NPP. Further

studies can focus on how to improve the accuracy of

identification and extraction of natural vegetation in lower

NPP areas.

The driving force of HI needs to be further studied. The

change in HI is related to the land-use/land-cover change

effects on ecosystems, such as forest converted to culti-

vated land or construction land. However, other factors

also have a strong influence on NPP changes, e.g., climate

change. Methods to remove the change in NPP that is due

to climate change and find the driving force of the change

in HI should be studied further.

Conclusions

Understanding and accurately assessing the risk human-

induced land degradation poses to terrestrial ecosystem

provides a scientific basis for promoting sustainable land

use under the increasing pressure of population growth.

There is a need for an indicator and corresponding method

to quantify such hazardous impacts. This study proposed a

hazardous impact indicator (HI) that can quantitatively

express the negative effects of human-induced land

degradation on terrestrial ecosystems. Hypotheses and

procedures for quantifying HI were described in detail. The

HI construction is completed in three steps: (1) extracting

natural vegetation levels distributed in world- and national-

level protected zones; (2) predicting potential productivity

by using co-kriging based on the NPP of natural vegeta-

tion; and (3) calculating HI.

In the karst areas of south China, land with HI lower

than 0.05 accounts for 43.47 %, meaning that more than

half of this area is seriously affected by human-induced

land degradation. Spatially, HI decreased from southwest

to northeast. The highest HI areas were located in north-

west Sichuan Province, southwest Yunnan Province, and

the southern Guangxi Autonomous Region. A moderate HI

area was located in southwest Guizhou Province. Low-HI

areas were located in Hunan Province and Hubei Province.

From 2000 to 2011, high-HI areas decreased yearly, and

low-HI areas expanded, while high-HI areas increased after

2011. This is consistent with the period when the Grain-

for-Green Project was in effect, indicating that land-use

change due to human activity has a strong impact on KRD.

To maintain a decreasing trend of HI, land-use policy will

need to guide human activity.

In karst areas of south China, HI and rocky desertifi-

cation are well matched in spatial distribution and inten-

sity. The proposed HI approach proved to work well to

assess hazardous impacts in regions where human activities

play a leading role in land and ecological degradation, such

as karst areas. However, many factors and human activities

may cause NPP change. We therefore argue that NPP
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reduction and HI do not follow a simple 1:1 relationship.

Revisions may be needed when applying the proposed

indicator and approach to other regions, and the approach

still needs to improve its accuracy in identifying and

extracting natural vegetation.
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