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ABSTRACT

Ecosystem metabolism, that is, gross primary pro-

ductivity (GPP) and ecosystem respiration (ER),

controls organic carbon (OC) cycling in stream and

river networks and is expected to vary predictably

with network position. However, estimates of me-

tabolism in small streams outnumber those from

rivers such that there are limited empirical data

comparing metabolism across a range of stream and

river sizes. We measured metabolism in 14 rivers

(discharge range 14–84 m3 s-1) in the Western and

Midwestern United States (US). We estimated GPP,

ER, and gas exchange rates using a Lagrangian,

2-station oxygen model solved in a Bayesian

framework. GPP ranged from 0.6–22 g O2 m-2 d-1

and ER tracked GPP, suggesting that autotrophic

production supports much of riverine ER in summer.

Net ecosystem production, the balance between GPP

and ER was 0 or greater in 4 rivers showing

autotrophy on that day. River velocity and slope

predicted gas exchange estimates from these 14

rivers in agreement with empirical models. Carbon

turnover lengths (that is, the distance traveled be-

fore OC is mineralized to CO2) ranged from 38 to

1190 km, with the longest turnover lengths in

high-sediment, arid-land rivers. We also compared

estimated turnover lengths with the relative length

of the river segment between major tributaries or

lakes; the mean ratio of carbon turnover length to

river length was 1.6, demonstrating that rivers can

mineralize much of the OC load along their length

at baseflow. Carbon mineralization velocities ran-

ged from 0.05 to 0.81 m d-1, and were not differ-

ent than measurements from small streams. Given

high GPP relative to ER, combined with generally

short OC spiraling lengths, rivers can be highly

reactive with regard to OC cycling.

Key words: rivers; gross primary production;

Ecosystem respiration; carbon spiraling; gas ex-

change; ecosystem metabolism.

INTRODUCTION

There is a renewed interest in carbon cycling in

freshwater ecosystems as ecologists link metabolic

processes with regional carbon (C) budgets (Battin

and others 2009; Tranvik and others 2009), but

empirical measurements of metabolism in a wide

variety of freshwater ecosystems are lacking, as is
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our understanding of processes that control varia-

tion within and across ecosystems. Ecosystem size

and position in the landscape will control variation

in rates of C supply and in situ metabolism; for

example, lake size correlates with metabolism

(Staehr and others 2012). In the case of streams

and rivers, ecosystem processes such as C cycling

will vary both as a function of size (as volumetric

flow) and landscape position, given that the

downstream movement of water connects head-

waters with larger streams and rivers (Webster

2007). The effects of stream size and landscape

position on C cycling were initially conceptualized

as part of the River Continuum Concept (RCC)

where headwater streams were predicted to have

high rates of ecosystem respiration (ER) relative to

gross primary production (GPP), whereas mid-or-

der reaches were predicted to have higher GPP

relative to ER because of increased light availability

supporting autochthony combined with reduced

allochthonous inputs of C (Vannote and others

1980). In contrast, large rivers with high sediment

loads would revert to a pattern of higher ER rela-

tive to GPP, like headwater streams, because of

decreased light penetration in the water column

combined with the import of allochthonous parti-

cles from upstream. Data from selected river con-

tinua have supported the pattern of increasing

GPP/ER downstream from headwaters to non-

wadeable rivers (Meyer and Edwards 1990;

McTammany and others 2003).

Despite strong conceptual foundations and lim-

ited empirical data on how larger streams and rivers

function, metabolism estimates in rivers are far

fewer in number than those from small streams.

Only 10% of reach-scale metabolism estimates

(reviewed below) have been conducted in rivers

with discharge greater than 10 m3 s-1 (�20 m

width), whereas greater than >50% have been

made in streams less than 0.1 m3 s-1. Recent ad-

vances for estimating gas exchange from dissolved

oxygen (O2) data (Holtgrieve and others 2010;

Dodds and others 2013) make estimating metabo-

lism in rivers potentially as straightforward as in

small streams. In addition, understanding variation

and controls on metabolism in rivers will allow

ecologists to answer a variety of unanswered

questions in river networks. For example, river

food webs are based to a large degree on in situ

primary production (Thorp and Delong 2002; Cross

and others 2013), but there are few data on the

actual rates of primary production in rivers.

More broadly, ecosystem metabolism in rivers is

of general interest because of the potential for riv-

ers to store, mineralize, and transport terrestrial

organic carbon (OC) before reaching the coastal

zone (Battin and others 2008; Raymond and others

2013). It is well known that small streams can re-

spire large quantities of terrestrial OC (Marcarelli

and others 2011), yet the role of rivers is less

understood, despite evidence showing that big

rivers also transform terrestrial OC (Cole and Car-

aco 2001). Riverine metabolism estimates will also

facilitate the calculation of OC spiraling lengths

(Newbold and others 1982), allowing further

comparison among small streams and larger rivers.

The OC spiraling method examines downstream C

flux relative to mineralization and is a direct esti-

mate of the degree to which rivers mineralize ver-

sus transport OC. Oddly, ecosystem ecologists

rarely use this spiraling metric to describe the role

of streams and rivers in C cycling despite strong

theoretical (Webster 2007) and empirical (Thomas

and others 2005; Taylor and others 2006; Griffiths

and others 2012) examples.

Here, we measured metabolism of 14 rivers

ranging in size from 14 to 84 m-3 s-1 to link me-

tabolism metrics with OC cycling. We had 3

objectives: (1) develop a two-station model, solved

via Bayesian inverse modeling of metabolism

parameters, to measure metabolism in each of 14

rivers varying in physical attributes in Midwest and

Western US; (2) combine riverine metabolism

values with others from the literature to examine

how the balance of GPP and ER varies across a large

size range of streams and rivers; and (3) calculate

instantaneous metrics of OC spiraling to estimate

the degree to which river reaches can process OC.

METHODS

Study Sites

We chose 14 rivers in the Midwest and Western US

that varied chemically, physically, and geomor-

phically (Table 1, Online Appendix 1). This study

was part of a larger study investigating nutrient

cycling in rivers; thus, we chose sites to maximize

variation in suspended sediment and nutrient

concentrations. Sites in western Wyoming and

eastern Idaho had low nutrient and low suspended

sediment concentrations, central Wyoming and

Utah rivers had low to medium nutrient concen-

trations and medium to high suspended sediments,

and Midwestern rivers had generally higher nutri-

ents and low to medium suspended sediments

(Table 1). We chose the study reaches by taking

into consideration the proximity of bridges for

adding solutes, the presence of USGS gages for

measurements of discharge, and the presence of

R. O. Hall Jr. and others
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boat ramps for reach-scale sampling logistics. Rivers

varied in summer baseflow discharge from 14 to

84 m3 s-1 with an average of 39 m3 s-1.

Field and Laboratory Methods

At most sites, we performed two-station metabo-

lism estimates based on sampling dissolved O2

through time. We used 1–2 sondes to measure

dissolved O2 at each of 2 stations for 2 days giving

us 2–8 estimates of metabolism. We anchored 2–4

multi-parameter Hydrolab Minisondes equipped

with optical O2 sensors in areas of moderate

downstream flow, at stations 2.5–10.7 km apart

(mean 6.1 km) along each river, with mean dis-

tance between sondes corresponding to an average

of 2.7 h of travel time. We calibrated the sondes

river-side in a 100-L pot of air-saturated water that

we vigorously bubbled using an aquaculture air

pump and air stone. This method of bubbling

oversaturates O2 by 2%. Bubbling this pot in the

laboratory and measuring Ar (which has similar

diffusivity as O2) on a membrane-inlet mass spec-

trometer, we found that Ar was 2% (±0.15%)

oversaturated. This phenomenon is likely due to

oversaturation due to bubble-mediated gas ex-

change (for example, Hall and others 2012). We

corrected our oxygen data downwards by 2% to

counter this over calibration. Following initial cal-

ibration, we recorded O2 readings in this air-satu-

rated water to check calibration and that all sondes

remained within 2% of saturation; O2 readings

from sondes drifted little during the deployments

and thus did not need drift correction. We recorded

O2, temperature, and turbidity using these sondes

at 5-min intervals during 3-d deployments during

summer baseflow conditions (that is, July or Au-

gust).

We also collected physical and chemical data at

each site; discharge (Q, m3 s-1) came from nearby

USGS gaging stations or gages associated with up-

stream dams. We measured wetted channel width

(w, m) of the reach at approximately 70 locations

throughout the study reach using a laser range-

finder operated from a boat. We also conducted

solute tracer additions as part of nutrient uptake

experiments, adding Rhodamine WT (RWT) and

NaBr in separate pulse additions with target

downstream concentrations of 10 lg RWT L-1 or

50 lg Br- L-1. We monitored RWT at 4 stations

downstream of the release point using 4 Hydrolab

Minisondes equipped with fluorometric sensors

programed to record RWT concentration every

10 s, while Br- samples were manually collected

from the river thalweg at timed intervals and ana-

lyzed using ion chromatography (Dionex models

ICS-5000) using US-EPA standard method 300.0.

These tracer releases were used to calculate nomi-

nal travel time (that is, the time for 50% of the

solute to pass the downstream station), and mean

velocity (V, m min-1) was then calculated as reach

length/nominal travel time, while mean depth (z,

m) was estimated based on continuity, z = Q/(wV).

We also measured background water column

nutrients at each site as part of the nutrient uptake

experiments and reach-scale estimates were based

on the average of 3–5 samples collected at 4 sites.

We analyzed NH4
+-N using the phenol-hypochlo-

rite method (Solorzano 1969), NO3
--N using the

cadmium reduction method (APHA 1998), and SRP

using the ascorbic acid method (Murphy and Riley

1962) on a Lachat Flow Injection Autoanalyzer

(Lachat Instruments, Loveland, CO, USA).

To estimate C spiraling, we sampled particulate

OC (POC) and dissolved OC (DOC). We collected

POC from 3 grab samples taken in the thalweg at 4

locations from each river. Rivers averaged 0.6–

1.3 m deep and were turbulent; hence, we did not

take depth-integrated samples. For POC, we

immediately filtered a known volume of water in

the field onto pre-ashed and weighed glass fiber

filters (Whatman GF/F), air dried the filters and

stored them for transport to the lab where we dried

them at 60�C, weighed them, and combusted at

500�C. We reweighed the filters to obtain an ash-

free dry mass (AFDM) and converted to mg AFDM/

L given the volume of sample filtered; we assumed

that 50% 0f AFDM was C. Samples for DOC came

from triplicate samples at one location. These were

filtered with pre-ashed glass fiber filters (Whatman

GF/F), acidified with HCl to a pH of 2, and then

stored in acid washed and ashed borosilicate amber

vials (I-Chem, 40 mL). We transported samples on

ice to the laboratory, and refrigerated them until

analysis on a Shimadzu Total Organic Carbon

Analyzer (TOC-5000A; measurement precision of

±0.05 mg C L-1).

Metabolism Estimation

We estimated metabolism and gas exchange by

fitting a two-station Lagrangian model to the dis-

solved O2 data, except for the Muskegon, North

Platte, and Bear rivers where we used a one-station

method due to instrument failures or burial of the

upstream sondes. A two-station procedure mea-

sures metabolism in a defined reach of river be-

tween the upstream and downstream O2 sensors,

which allows estimation of reach-scale metabolism,

even below river discontinuities, such as dams,

R. O. Hall Jr. and others



which may be included in the upstream footprint of

one-station O2 measurements. A general model for

two-station metabolism is:

OdownðtþsÞ ¼ OupðtÞ þ GPP þ ER þ gas exchange;

ð1Þ

where Oup(t) is the upstream O2 concentration (g

O2 m-3) and Odown(t+s) is downstream O2 con-

centration of that same parcel of water following

travel time, s. GPP and ER are both expressed in g

O2 m-2 d-1, and represented as positive and neg-

ative rates of O2 production and consumption,

respectively.

An expansion of this model is

Odown tþsð Þ ¼ Oup tð Þ þ
GPP

z
�
Ptþs

t PPFD

PPFDtotal

� �

þ ER

z
s

þ Ks
Osatup tð Þ þ Osatdown tþsð Þ

2
�
Oup tð Þ þ Odown tþsð Þ

2

� � ;

ð2Þ

where z is mean depth (m), and Osatup and Osat-

down are O2 saturation concentrations upstream

and downstream (g O2 m-3). Gas exchange flux

was the gas exchange rate, K (d-1) multiplied by

the dissolved O2 saturation deficit, which we

averaged for the upstream and downstream sta-

tions. We use light to drive GPP in this model (Van

de Bogert and others 2007). For any parcel of wa-

ter, the fraction of light it accumulates is the sum of

the photosynthetic photon flux density (PPFD,

lmol m-2 s-1) accumulated in the time interval

from t to (t + s) divided by the daily total of PPFD

(PPFDtotal). Equation 2 has Odown on both sides;

we need Odown on the left side of the equation

because we are comparing modeled Odown with the

data. Following some algebra we get

Assumptions of this model are that GPP is a lin-

ear function of light intensity, ER is constant

throughout the day, and that the average of up and

down station O2 saturation deficit is representative

for the entire reach. We tested the assumption of

linear light relationships by using 1-station models

(equation 4 below) for 1 day on each river with a

Jassby–Platt light saturation function exactly fol-

lowing Holtgrieve and others (2010). Eight of 14

rivers had linear light response curves. Six showed

slightly curvilinear relationships, with increase in

GPP 3-10%, with a concomitant twofold increase

in the credible intervals. In a two-station model

with 3-h travel times, it would be necessary to di-

vide these travel times into 5-min intervals to cal-

culate and sum GPP for each. We felt that a

potential increase in accuracy of 10% for 6 of the

rivers did not warrant this increased model com-

plexity. We did not include a diel temperature re-

sponse for ER because the relationship of ER to

temperature is highly variable (Huryn and others

2014; Jankowski and others 2014), and thus, we

would have needed to estimate this parameter in

addition to GPP, ER, and K, possibly producing an

overfitted model. Gas exchange is estimated as K600

(d-1) and is corrected for temperature at each time

step based on Schmidt number scaling (Jähne and

Haußecker 1998). We convert this per time rate to

a gas exchange velocity (k600, m/d) by multiplying

by mean depth, z, to facilitate comparisons with

published gas exchange velocities. We used mod-

eled solar insolation data for equation 3 based on

geographic location and time of day and year.

For the 3 rivers using a one-station method

(North Platte, Bear, and Muskegon), we used the

following model (Van de Bogert and others 2007):

Ot ¼ Ot�Dt þ
GPP

z
� PPFDt

PPFDtotal
þ ER

z
Dt

þ KDt Osatt�Dt � Ot�Dtð Þ;
ð4Þ

where t is time of day and Dt is the time between O2

measurements. This model measures O2 change in

one place rather than tracking it downstream and

in a longitudinally homogenous river, one-station

analyses will give the similar results to a two-sta-

tion model (Reichert and others 2009). Of the 3

rivers, only the Muskegon had a dam located

47 km upstream, but we suggest that its influence

was negligible because the dam was located twice

the distance (1.6 V/K) for 80% of O2 turnover

(Chapra and Di Toro 1991).

OdownðtþsÞ ¼
OupðtÞ þ GPP

z
�
Ptþs

t
PPFD

PPFDtotal

� �

þ ER
z
sþ Ks

Osatup tð Þ�OupðtÞþOsatdown tþsð Þ
2

� �

1 þ Ks
2

: ð3Þ

River Metabolism and Carbon Spiraling



Based on the above models, we used a Bayesian

inverse modeling procedure to estimate metabo-

lism (GPP and ER) and gas exchange rate (K600)

roughly following Holtgrieve and others (2010).

Bayesian analysis treats parameters as random

variables with a corresponding probability distri-

bution and allows estimating uncertainty for the

modeled parameters. Because we solved for gas

exchange as well as GPP and ER, there is the risk of

overfitting the model, and posterior probability

distributions solved via a Bayesian approach al-

lowed us to examine this assumption closely. At all

but one sites we had two full days of data, and we

fit each daytime period separately starting at 22:00

the night before to 06:00 the day after for a total of

32 h.

Following Bayes rule, we calculated the posterior

probability distribution of the parameters as

PðhjDÞ / PðDjhÞ � PðhÞ; ð5Þ

where h is a vector of parameters, GPP, ER and K,

and D is the O2 data for the downstream or single

station. The likelihood of the data given h assumes

normally distributed error and is calculated as

L Djhð Þ ¼
Yn

i¼1

N Dijli; r2
i

� �
; ð6Þ

where the likelihood of D given h is the product of

likelihoods of the data relative to modeled down-

stream O2 concentrations (li; Þ and variance (r2
i ).

We simulated the posterior distribution P(h|D)

using a Metropolis algorithm and Markov-chain

Monte Carlo (MCMC) using function metrop in the

mcmc package for R (Geyer and Johnson 2013, R

Development Core Team 2011). We ran each chain

for 20,000 iterations following burn-in and we

started all MCMC chains with different parameter

values to ensure a global solution. We did not thin

chains and we adjusted the proposal distribution of

the Metropolis algorithm to achieve an acceptance

rate near 20%. For metabolism parameters, we

used minimally informative prior probability dis-

tributions (GPP � N (l = 5, SD = 10), ER � N

(l = -5, SD = 10). For gas exchange, we used the

nighttime regression method (Hornberger and

Kelly 1975) or empirical equation 7 from Raymond

and others (2012) to assign a normal prior proba-

bility distribution, where the mean and standard

deviation of the prior probability distribution were

the mean and standard deviation, respectively, of

the 4 slopes from nighttime regression measured by

the two O2 sondes over two nights or the error in

the predictive equation. Code for one- and two-

station models is in Online Appendix 5.

Calculation of C Spiraling

We calculated turnover length of OC for each river

following (Newbold and others 1982) where spi-

raling length (SOC, m) is the ratio of downstream

transport relative to mineralization and is calcu-

lated as

SOC ¼ Q� ½OC�
�HR � w

: ð7Þ

Discharge (Q) and stream width (w) were esti-

mated as described above, and the sum of POC and

DOC gives the organic C concentration [OC].

However, to calculate SOC requires an estimate of

heterotrophic respiration (HR, which is a negative

flux) that equals ER—AR, where AR is the respi-

ration by algae and macrophytes themselves. Typ-

ically, researchers assume that AR is some fraction

of GPP (for example, 0.2–0.5) but a recent analysis

suggests that the daily fraction of GPP (ARf) con-

sumed by respiration by algae is about 44% (Hall

and Beaulieu 2013). Assuming this fraction, we

estimated HR as

HR ¼ ER � ARf � GPP: ð8Þ

Turnover length of OC will depend strongly on

the size of the river. To compare mineralization

relative to [OC] (that is, [DOC] + [POC]), we cal-

culated a ‘‘mineralization velocity’’ (vf-OC, m d-1)

of OC as

vf�OC ¼ �HR

½OC� ð9Þ

analogous to uptake velocity measured in nutrient

uptake studies (Hall and others 2013). We con-

verted HR in O2 units to g C m-2 d-1 by assuming a

1:1 molar relationship between C and O in respi-

ration and we then compared vf-OC to those mea-

sured in other rivers and streams where OC

spiraling length was reported. Error in not perfectly

knowing ARf may introduce error into estimates of

vf-OC. Therefore, we calculated vf-OC 1000 times

with each replicate using a randomly selected

estimate of ARf from Hall and Beaulieu (2013) and

3 subsequent studies (Roley and others 2014;

Genzoli and Hall, unpublished data; Hall and oth-

ers, unpublished data). Finally, we compared SOC

to the estimate of river length estimated from GIS;

we defined the segment distance for each river as

the length of river downstream of a major reservoir

or confluence of large tributary and upstream of a

lake, reservoir, or much larger river. This designa-

tion of river length was not meant as a definition,

but rather to provide some context for considering

OC turnover length, SOC.

R. O. Hall Jr. and others



Statistical Inference

We used Pearson correlations to relate rates of

metabolism to predictor variables, and rates of C

spiraling to river size. Inference on this correlation

coefficient (r) was based on calculating default

Bayes factors for correlation (Wetzels and Wagen-

makers 2012), which can be interpreted as the

relative probability that a linear relation exists be-

tween 2 variables. Bayes factors greater than 6

constitute strong evidence in support of the alter-

native hypothesis (linear relation) versus a null.

We estimated error on metabolism estimates, GPP,

ER and K600, not as the parameter error from the

MCMC solutions, but rather on the bootstrap 95%

confidence intervals from the 2–8 metabolism

estimates (that is, the median value of the posterior

probability distributions) at each site. This approach

assumes no within-estimate error, which follows

the fact that the among-estimate error exceeded

the parameter error from any one MCMC solution.

We performed all statistics using R (R Development

Core Team 2011).

Figure 1. Data (thick gray

lines) and model fit (thin

black line) for 1

representative example of

the 2–8 metabolism

model fits for each of the

14 rivers. Each model

fitting procedure was

based on 1 day’s worth of

oxygen data. Y-axis units

are % O2 saturation to

facilitate comparison

among rivers.

Figure 2. Gross primary production (GPP) versus

ecosystem respiration (ER) for our 14 rivers (black points)

and other data (gray circles) show high variation among

studies. Line is GPP = ER. Axes are log scaled.
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We compared rates of metabolism in this study to

those from many other streams and rivers, collating

estimates of reach-scale, open channel metabolism

from Marcarelli and others (2011). We also added

newer studies to this dataset, of which several are

from similar-sized rivers as the ones studied here

(Online Appendix 4). We used locally weighted

regression (Trexler and Travis 1993) with a

smoothing parameter of 0.75 to visualize trends in

metabolism as a function of river discharge.

RESULTS

Models fit the data closely and had low error in

estimates of the parameters, GPP, ER, and K (Fig-

ure 1). The 95% credible interval on metabolism

parameters for any model fit averaged less than 10%

of the of value of the parameter itself (Table 1).

Variation in parameter estimates between the two

measurement days or among sondes was higher

than credible intervals within any one day (Table 1,

Online Appendix 2).

GPP and ER varied strongly among the 14 rivers

(Table 1; Figure 2); variation in GPP ranged from

0.6 to 22 g O2 m-2 d-1, and encompassed much of

the range of GPP measured previously in small

streams. However, for these rivers, unlike many

smaller streams, GPP and ER fell closer to the 1:1

line (Figure 2) suggesting that these 14 rivers had

low rates of HR relative to GPP. Neither turbidity

nor nutrient concentrations correlated with GPP or

ER in any of the rivers (Online Appendix 3). Nearly

all Pearson correlation coefficients were less than

|-0.48|, with corresponding Bayes factor of less

than 0.9, which provided no support for a linear

relationship between the metabolism parameters

and potential covariates (Online Appendix 3). Two

exceptions were benthic chlorophyll and total

chlorophyll which positively correlated with ER

(r = 0.76 and 0.78, respectively, with Bayes factor

>27 indicating strong evidence). Log transformed

GPP and |ER| were strongly positively correlated

with each other (Figure 2, r = 0.74, Bayes fac-

tor = 18.6).

Figure 3. Gross primary

production (GPP) (A),

Ecosystem respiration

(|ER|) (B), Heterotrophic

respiration (|HR|) (C), and

GPP/|ER| (D) as a

function of river

discharge. Black points are

the 14 rivers from this

study, gray are other data.

Axes are log scaled. Lines

are locally weighted

regression with

smoothing factor = 0.75.

The point far to the right

is from the Mississippi

river and represents the

largest possible size for a

North American river

(Dodds and others 2013).

Because of the zero

density in points between

the Mississippi River and

the second largest river in

the dataset, we did not fit

the regression line to the

Mississippi River.
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Figure 4. (A) Gas exchange velocity from O2 metabo-

lism model (k600, cm h-1) increased as a function

of river slope (%). Line is linear regression,

log10(k600) = 2.07 + 0.79 9 log10(slope), r2 = 0.89. (B)

Modeled gas exchange velocity lies close to that predicted

by model # 7 in (Raymond and others 2012). Line is 1:1.

Table 2. Parameters for Estimating C Spiraling Length: Dissolved Organic C Concentration (DOC), Partic-
ulate OC Concentration (POC), and Heterotrophic Respiration (HR)

River DOC

(g m-3)

POC

(g m-3)

HR

(g C m-2 d-1)

SOC (km) Segment

length (km)

vf-OC (m d-1)

Buffalo Fork 2.87 0.43 1.2 134 (123, 143) 44 0.351

Green River, WY 3.64 0.39 3.3 43 (25, 112) 103 0.812

Henry’s Fork 2.91 1.06 3.1 123 (66, 433) 120 0.787

Snake River 2.53 0.46 1.4 200 (159, 254) 136 0.473

Salmon River 3.03 0.41 1.2 123 (88, 183) 184 0.360

Tippecanoe River 4.32 0.69 1.6 104 (87, 125) 173 0.310

East Fork, White River 1.53 0.43 1.3 38 (27, 59) 246 0.672

Muskegon River 4.9 0.07 1.3 164 (127, 215) 235 0.259

Manistee River 1.74 0.10 1.0 108 (74, 177) 169 0.553

North Platte River 5.27 0.08 1.9 251 (199, 321) 217 0.354

Bear River 4.08 1.08 0.2 814 (508, 1605) 323 0.045

Green River at Ouray 3.09 0.98 0.3 422 (283, 709) 542 0.069

Green River at Gray Canyon 3.48 14.52 1.1 748 (719, 773) 542 0.060

Colorado River 2.98 2.17 0.3 1194 (403, inf) 264 0.055

SOC is OC spiraling length, values in parentheses represent 5 to 95% quantiles of a bootstrap distribution from varying HR. Segment length is length of river between major
upstream tributaries and larger downstream rivers or lakes. vfOC is the OC mineralization velocity.

Figure 5. Mineralization velocity of organic carbon (vf-

OC) was positively correlated with discharge. Gray points

are data from other studies, black points are 13 rivers in

this study. Error bars are the 5 to 95% quantiles of vf-OC

calculated from a bootstrap of heterotrophic respiration

(HR) from Hall and Beaulieu (2013). This error repre-

sents uncertainty in HR estimates. Pearson correlation

(r = 0.5) and Bayes factor (127) support strong evidence

for a positive relationship.
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River size affected variation in metabolic rates

and GPP/|ER|. GPP and ER were highly variable,

but peaked in mid-sized rivers (Figure 3). Estimates

of heterotrophic respiration in our 14 rivers span-

ned a broad range, but were not as high as some

streams with less than 10 m3 s-1 discharge. The

ratio GPP/|ER| increased with increasing river size,

and large streams and rivers did not have low val-

ues of GPP/|ER|. For example, 50% of rivers with Q

less than 10 m3 s-1 had GPP/|ER| less than 0.3. On

the other hand, in rivers with Q greater than 10 m3

s-1, only 14% had GPP/|ER| less than 0.3.

Gas exchange (K600) varied among the rivers

(Table 1), with a mean of 5.7 d-1 and a range of

0.5–16 d-1; gas exchange rates corresponded to a

mean gas exchange velocity (k600) of 20.8 cm h-1

with a range of 2–71 cm h-1. Gas exchange rate

was uncorrelated with river depth, but river depth

only varied twofold among the 14 rivers. River

slope strongly predicted gas exchange velocity

(Figure 4), and k600 fell closely to the prediction

estimate based on empirical equations used for

many studies (Raymond and others 2012) (Fig-

ure 4). The 1:1 prediction line explained 84% of

the variation in these 14 rivers relative to the 76%

R2 in Raymond and others (2012).

Organic C spiraling lengths (SOC) averaged

319 km and ranged from 38 to 1193 km, and SOC

lengths were generally similar to their respective

river segment lengths; median ratio of SOC to seg-

ment length was 1.6 with a range of 0.2–4.7

(Table 2). Arid-land rivers with high suspended

organic sediment loads and low HR (for example,

Green River at two Utah sites, Colorado River, and

Bear River, UT) had much longer SOC than other

rivers (Table 2). Mineralization velocities (vf-OC)

for the 14 rivers averaged 0.37 m d-1 and ranged

from 0.05 to 0.81 m d-1, and when combined with

previous studies, vf-OC correlated positively with

discharge (r = 0.50, Bayes factor = 127, strong

evidence) (Figure 5).

DISCUSSION

Gross primary production and ER varied strongly in

our 14 rivers; this variation corresponded to that of

other previous measurements in similar-sized riv-

ers. One river, the Henry’s Fork, ID had among the

highest GPP ever measured for a stream or river.

Others, like the Bear River, UT had low rates of

metabolism. The 4 rivers in the Midwestern US had

moderate rates of metabolism with low variation

among them. Despite evidence showing that GPP

can increase as a function of stream or river size

(Figure 3) (Finlay 2011), variation in metabolism

among rivers was large enough that rivers have no

characteristic rate of metabolism.

Because we measured metabolism on only

2 days, during summer baseflow conditions, we did

not have a large within-river dataset to examine

uncertainty on our estimates. As such, we used a

Bayesian method that allowed us to examine

parameter error within any one day (Holtgrieve

and others 2010). This approach becomes necessary

when solving for gas exchange as well as metabolic

parameters to avoid equifinality among parameter

estimates. In fact, we found low rates of parameter

error. Variation between the two measurement

days was higher than error estimated via compu-

tational Bayesian approach on any one day, sug-

gesting that these within-day error estimates may

not represent day-to-day error well.

GPP and ER

GPP ranged widely in our 14 rivers from among the

highest rate ever measured (for example, Henry’s

Fork) to low rates that were similar to those mea-

sured in small, forested streams. Despite this high

variability, we were unable to statistically assess

controls on variation of GPP among our 14 rivers.

Time series of metabolism clearly show that tur-

bidity can control rates of GPP in a river (Hall and

others 2015). We certainly expected that variation

in turbidity would control GPP among rivers, but

we found only weak correlation between GPP and

turbidity (Online Appendix 3), even though vari-

ation in turbidity was high, suggesting that some

other processes were controlling variation.

We acknowledge that we only measured meta-

bolism for 2 days; it is very likely that antecedent

conditions (for example, time since last flood) may

have controlled the rates of GPP that we measured.

Variation in the metabolism of one river can be as

large as variation among rivers, and a strong role

for antecedent conditions has been noted (Uehlin-

ger 2006; Roberts and others 2007; Beaulieu and

others 2013). One river, the Muskegon, had an

unexpected dam release, tripling discharge the day

before our metabolism estimates. This spate may

have affected metabolism.

Despite these limitations, we can observe some

anecdotal evidence for controls on GPP; for exam-

ple, the rivers with the two highest rates of GPP

(Green River, WY and Henry’s Fork, ID) were lo-

cated below water storage impoundments. Rivers

below dams typically have stable flow and low

turbidity and can have high benthic algal biomass

with correspondingly high rates of GPP (Davis and

others 2012). Henry’s Fork also has substantial
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inputs of groundwater-fed springs; high metabo-

lism has been measured previously in other spring

streams (Odum 1957; Hall and others 2003; Hef-

fernan and Cohen 2010). In contrast, Buffalo Fork,

WY drains mountain wilderness and is olig-

otrophic, and had correspondingly low rates of

metabolism. However, we emphasize that we did

not design the overall study to statistically tease out

controls on river metabolism, but rather to assess

rates and variation of riverine nutrient uptake

(Tank and others, unpublished data). Statistically

examining controls on metabolism would have

required many more rivers (Bernot and others

2010), or we would have selected all rivers along a

gradient of a predicted controlling variable, such as

nutrient concentrations, in one region of the

country.

GPP and ER were highly coupled in these 14

rivers (Figure 2), and unlike in some streams, we

did not find high riverine ER associated with low

rates of GPP. This finding suggests that despite an

overall pattern of GPP/|ER| less than 1, rivers may

not have extremely high rates of HR, at least during

baseflow when they are not transporting large

amounts of terrestrial C and GPP is high. The

relationship between GPP/|ER| as a function of river

discharge across the 14 rivers, combined with the

full meta-analysis dataset, supports this conclusion

with small streams having the potential for both

low and high ratios of GPP/|ER|, whereas rivers

greater than 10 m3 s-1 had GPP/|ER| greater than

0.3 in 85% of the observations. Higher rates of GPP

in rivers have been previously noted in other meta-

analyses of stream metabolism, with the interesting

twist that human perturbation has a stronger effect

on metabolism in small streams relative to rivers

(Finlay 2011). Studies that measure metabolism

within a river network have found a similar pattern

of increasing GPP/|ER| with downstream position in

the network (Meyer and Edwards 1990; McTam-

many and others 2003); increasing GPP/|ER| with

river size could be due to increasing GPP, decreas-

ing HR, or both.

Theory predicts that lower rates of HR should

occur in downstream reaches because most terres-

trial (that is, allochthonous) OC inputs are miner-

alized in the headwaters (Webster 2007), yet HR

peaks in middle river discharge (Figure 3). Rather,

rivers tended to have high rates of ER, but do not

have the negligible rates of GPP found frequently in

small, often shaded, headwater streams (Figure 3).

Alternatively, the pattern of somewhat lower HR in

larger rivers may be an artifact of the rivers and

time chosen for metabolism estimates. Rivers

occupying a floodplain may have large spikes in HR

during flooding periods (Colangelo 2007; Dodds

and others 2013), which are notably not included

in the 14 estimates of river metabolism that we

present here. In addition, as shown by Meyer and

Edwards (1990), rivers with large quantities of

terrestrially derived DOC may have high rates of

ER relative to GPP, though we note that they too

found a pattern of increasing GPP/|ER| with

increasing stream order.

Many small streams had |ER| � GPP, but we

suggest that it is not possible to have GPP � |ER|

because of a necessary upper limit to GPP/|ER|. For

example, high rates of GPP will result in higher ER

because of the combination of associated respira-

tion of the autotrophs along with heterotrophic

organisms contained in stream biofilms. The frac-

tion of GPP, that is, autotrophic respiration (AR),

will determine this upper limit; given a mean

fraction of GPP respired each day (ARf) of 0.44 (Hall

and Beaulieu 2013), we calculate that GPP/

|ER| = GPP/(GPP 9 0.44) = 2.2. Thus, we predict

that the upper limit of GPP/|ER| is 2.2 because, on

average, 44% of GPP constitutes daily autotrophic

respiration. Indeed, only 1.1% of GPP/|ER| values

exceeded 2.2, suggesting that this value may rep-

resent an upper bound for autotrophy in rivers.

Gas Exchange

The 14 rivers had variable gas exchange and river

slope was the primary predictor of gas exchange

velocity (k600, Figure 4); gas exchange was lowest

in Bear River, UT which had gas exchange similar

to a low-wind lake (Cole and Caraco 1998). Gas

exchange was highest in the Henry’s Fork, which at

71 cm h-1 approached that of the steep, whitewa-

ter section of the Colorado through Grand Canyon

(Hall and others 2012). The slope of the regression

line between river slope and k600 was lower for

these 14 rivers than for multiple measurements in

the Colorado River in Grand Canyon (Hall and

others 2012), likely due to the broad range of

reaches through the Grand Canyon, ranging from

nearly still to extremely turbulent rapids. Our 14

rivers here did not display this within-river varia-

tion in river morphology, even for the pool-drop

section of the Green River in Gray Canyon. Nev-

ertheless, gas exchange predicted using empirical

equations matched closely with our data, even

more closely than the original data used to derive

these equations (Raymond and others 2012).

There is much interest in understanding gas ex-

change in rivers to estimate global gas fluxes

(Raymond and others 2013). With this study, we

show that across a few medium-sized continental
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rivers, gas exchange can vary widely. For the pur-

poses of an accurate metabolism estimate, it is

necessary to estimate gas exchange for each river

because the log–log relationship in Figure 4 has

twofold prediction error. Optimistically, with high

GPP and low rates of O2 turnover (K600), it is pos-

sible to model gas exchange using solely O2 data,

with no need to perform an experimental gas tracer

addition (for example, SF6) in these rivers. For the

purposes of scaling gas exchange, where it is

impractical to empirically measure gas exchange for

an entire river network, the method employed by

Raymond and others (2012) is likely the best

available for these medium-sized rivers in the sense

that it is unbiased (though with large prediction

error) and captures much of the variability in k600.

C Spiraling

Spiraling lengths for OC were generally long, but

variable, in these 14 rivers. In 7 cases, SOC was

shorter than the length of the river segment that

we measured, suggesting that there can be com-

plete turnover of the OC pool along the length of

some rivers. Functionally, rivers with an SOC

roughly equal to segment length have turned over

more than 50% of the OC pool in that length, al-

though a caveat to this conclusion is that we

evaluated these rivers at baseflow discharge. High

flows associated with storms or snowmelt would

assuredly result in much longer OC spiraling

lengths because the OC flux would increase more

than any increase in organic matter processing

(that is, HR) during high flow periods. Notably, the

singular aspect of C cycling that most C spiraling

studies (ours and others) generally overlook is that

most OC transport will occur during periods of high

flow, resulting in substantial intra-annual variation

in SOC (Meyer and Edwards 1990). However, our

analysis shows that, at least at baseflow, hetero-

trophic activity can drive substantial mineralization

of OC along a river’s length. Given scaling rela-

tionships between element spiraling length and

river length, a constant vf-OC means that spiraling

length increases less than proportionally with

downstream distance from headwaters (Hall and

others 2013). We suggest that OC mineralization

and subsequent turnover of OC pools occurs to the

same degree in larger streams and rivers as in the

more well-studied small streams.

It is important to note that although GPP/|ER| is

higher in rivers than headwaters, it is clear that

there is substantial processing of allochthonous C in

rivers supported by the high rates of HR across a

range of stream and river sizes (Figure 3). This point

has also been noted previously by Cole and Caraco

(2001) for large rivers; these findings suggest that

rivers are important sites for the mineralization for

OC. Alternatively, this ‘‘allochthonous’’ C fueling

excess ER downstream could be C produced via

autochthonous production that is subsequently

transported, and then mineralized, in downstream

river segments (Genzoli and Hall, unpublished

data).

From the perspective of C cycling, data from

these 14 rivers combined with that from the liter-

ature support that rivers are reactive ecosystems.

With the current interest in examining how

freshwater ecosystems contribute to regional and

global C budgets (Battin and others 2008, 2009;

Raymond and others 2013), we suggest that rivers

may strongly influence mineralization and fixation

of new C in addition to their more obvious role in

the longitudinal transport of C. In fact at baseflow,

mineralization and transport are balanced such that

OC can turn over completely in some river reaches.

In rivers without substantial groundwater inputs

containing terrestrial sources of dissolved CO2, we

may expect that net ecosystem production (NEP)

for rivers will roughly equal CO2 emissions, as has

been found for the Hudson River (Cole and Caraco

2001). Metabolism and C spiraling data from this

study represent an approach to examine the bio-

geochemical mechanisms controlling riverine C

cycling, but only represent a snapshot in time. In

the future, we expect that time series of metabo-

lism data will provide estimates across a range of

seasonal and hydrologic conditions, supporting a

more thorough understanding of the role of rivers

in C cycling.
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