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Abstract：Climate change scenarios have predicted significant alterations in precipitation 

patterns over most of the mid-latitude land areas by the end of this century, but the degree to 

which altered precipitation regimes influence terrestrial ecosystem function in arid regions is 

uncertain. Precipitation is a primary climatic factor that regulates ecosystem function in arid 

regions. Based on remote sensing and meteorological data from 2000 to 2013, we analysed 

the spatiotemporal variations in annual net primary productivity (NPP) for different land 

cover types in the arid region of northern China and quantified the effects of growing season 

precipitation (GSP) and seasonal distribution of precipitation (SDP) on NPP variability by 

using the ecological process CASA (Carnegie–Ames–Stanford Approach) model. Our results 

suggested that significant NPP increases were found in most of the vegetated areas, especially 

in grasslands and shrublands. Responses of NPP to precipitation variability were related to 

land cover types. Grassland and shrubland were most responsive to precipitation variability 

followed by croplands and forests. Increased precipitation increased NPP, and NPP responded 

more strongly to higher precipitation than lower precipitation. We also found that increased 

precipitation concentration decreased NPP. GSP and SDP accounted approximately 67% and 

21% of the variability in NPP. We concluded that growing season precipitation and its 

seasonal distribution were dominant factors controlling inter-annual variability in NPP in the 

arid region of northern China. Other factors, such as plant functional trait, antecedent soil 

moisture and human activities, might mediate NPP responses to precipitation variability 

through interaction with water availability. Our studies have implications for assessing and 

predicting vegetation responses to future climate change. 

Keywords：Net primary productivity; Climate change; Precipitation quantity; Seasonal 

distribution of precipitation; Arid region; northern China 

1. Introduction 

The accelerating water cycle in consequence of global warming is forecasted to bring 

about dramatic changes in precipitation regimes over most of the mid-latitude land areas by 

the end of this century, although there may be regional exceptions (Easterling et al., 2000). 

The predicted changes in precipitation regimes are characterized by larger precipitation events 

with longer dry intervals (Knapp et al., 2008). There is mounting evidence that more extreme 

intra-annual precipitation regimes, such as alterations in the seasonal distribution of 

precipitation and increasing extreme precipitation events in the 99
th
 percentile of intensity 

within and across seasons (Kunkel et al., 1999), may exert a more profound impact on the 

temporal variability of soil moisture at different soil depths than changes in annual average 

precipitation (Schwinning and Sala, 2004). This may have ecological and evolutionary 

implications for water use strategies of plants (Weltzin et al., 2003). Water is an important 

driver of biological processes (i.e., species reordering, community assembly and 
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biogeochemical cycling) in arid regions (Noy-Meir, 1973), where episodic precipitation 

inputs are the main water source, and water availability dominates the dynamics of microbes, 

plants and entire ecosystems (Reyer et al., 2013). Net primary productivity (NPP), the net 

gain in biomass by vegetation through photosynthesis, is an indicator of ecosystem function 

and plays a crucial role in regulating ecosystem carbon balance (Pettorelli et al., 2012). 

Indeed, understanding how altered precipitation regimes influence terrestrial ecosystem 

productivity may broaden our knowledge of terrestrial carbon cycle in response to potential 

climate perturbations (Schimel et al., 2001). 

Historical studies have substantiated that mean annual precipitation is a robust predictor 

of NPP over large spatial and temporal scales (Knapp and Smith, 2001), and the inter-annual 

variability in NPP is related to fluctuations in precipitation (Fang et al., 2001). In recent years, 

an increasing interest in the effects of more extreme intra-annual precipitation patterns on 

plant productivity has spurred on extensive research through environmentally controlled field 

experiments and ecological modelling (Smith, 2011). Whether altered precipitation regimes, 

including changes in magnitude, frequency and timing, lead to increased or decreased NPP in 

arid and semiarid regions depends on the impact of precipitation upon plant available water 

(Zeppel et al., 2014). High precipitation intensity with long intervening periods between 

precipitation events suggests more concentrated precipitation distribution (Guo et al., 2008), 

which may recharge deeper soil layers further effectively but deplete upper soil layers more 

severely than ambient precipitation patterns (Knapp et al., 2008). The two-layer soil water-

partitioning hypothesis predicts that such redistribution of soil moisture is expected to favour 

the growth of deep-rooted woody plants but to depress the growth of shallow-rooted 

herbaceous plants (Walter, 1971). Most field data derived from experimental precipitation 

manipulations suggest that increased precipitation concentration decreases NPP in semiarid 

regions (Fay et al., 2008; Hoover et al., 2014), whereas increased precipitation concentration 

increases NPP in arid regions (Baez et al., 2013; Muldavin et al., 2008). In addition to 

variability in precipitation magnitude and frequency, the timing of precipitation variability 

may differentially affect NPP at different stages throughout the year, depending on whether 

soil moisture controls plant growth over that period (Craine et al., 2012). For example, more 

precipitation in spring and summer may have stronger positive effects on plant growth than 

that in autumn and winter (Bates et al., 2006). 

Despite the growing recognition of the vital importance of precipitation variability to the 

dynamics of terrestrial vegetation ecosystems, much of our basic understanding about 

ecological responses to altered precipitation regimes is gained from field manipulative 

experiments (Knapp et al., 2008; Smith, 2011). This results in enormous difficulties in 

establishing the relationship between NPP and precipitation anomalies at a broad scale due to 

small sample size locally and large spatial variations of NPP (Fang et al., 2001). Moreover, 
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recent researches into the effect of the variability and extremes in precipitation on plant 

growth are undertaken mainly in semiarid and semihumid regions, where mean annual 

precipitation varies from 250 mm to 800 mm (Heisler-White et al., 2008). However, how 

vegetation in arid regions with total precipitation less than 250 mm respond to altered 

precipitation regimes remains largely unknown (Robertson et al., 2009). As the precipitation 

variability and precipitation amount are correlated, it is difficult to evaluate the effect of 

precipitation variability on plant productivity (Knapp and Smith, 2001). 

Most previous studies analysed NPP responses to altered precipitation regimes at local 

scales (Heisler-White et al., 2008; Hoover et al., 2014; Muldavin et al., 2008), few studies 

focused on the relationships between NPP and intra-annual variations in precipitation at 

regional scales (Fang et al., 2001). Moreover, the way by which altered precipitation regimes 

affected NPP variability was not adequately explored as different vegetation types might have 

diverse responses to variability in precipitation (Vicente-Serrano et al., 2013). In this study, 

we focused on the spatiotemporal variations in annual NPP for different land cover types and 

assessed the impacts of growing season precipitation (GSP) and seasonal distribution of 

precipitation (SDP) on NPP in the arid region of northern China. The study area was defined 

as the region receiving mean annual precipitation less than 250 mm over the period of 1961-

2010. SDP was defined as a measure of the evenness of distribution of monthly precipitation 

within the growing season (Guo et al., 2012). We assumed that the effect of GSP and SDP on 

ecosystem function such as NPP might vary for different land cover types. Other ecological 

factors might mediate NPP responses to precipitation variability and explain regional 

differences in the relationship between NPP and precipitation anomalies (Ogle and Reynolds, 

2004). Our primary goal was to analyse the inter-annual variations in annual NPP at regional 

scales and determine the relative importance of GSP and SDP to variability in NPP for 

different land cover types. This study may be helpful on agriculture water management and 

ecological protection in arid regions under likely future scenarios of more extreme 

precipitation events (Valipour, 2015a, 2014). 

2. Materials and methods 

2.1 Study area 

The arid region of northern China (36°26′–48°54′ N, 73°56′–117°43′ E) is located in the 

north of the Qinghai-Tibet Plateau with a total area of approximately 1.76×10
6
 km

2
 (Fig. 1). It 

comprises the Junggar Basin, Tarim Basin, Turpan Depression, Hexi Corridor, Alxa Plateau, 

Ulanqab Plateau, Xilingol Plateau and Hulun Buir Plateau. This region has a typical 

temperate continental climate with a wide annual range of temperature and precipitation 

(Yang et al., 2010). According to the long-term climate records over the period of 1961-2010, 

mean annual temperature is 8.7 °C, with the lowest temperature of -10.8 °C in January and 
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the highest of 28.8 °C in July. Mean annual precipitation is 107.5 mm, 86.3 % of which 

occurs from April to October, and average annual potential evapotranspiration is 

approximately 1097.7 mm (Mao et al., 2014). The major land cover types include forests, 

shrublands, grasslands and croplands, which account for 0.06 %, 11.1%, 15.1 % and 1.9 % of 

the total study area, respectively (Fig. 1). Woody plant communities comprise mainly Populus 

euphratica, Calligonum arborescens, Tamarix chinensis, Haloxylon ammodendron and 

Reaumuria soongorica. Herbaceous plant communities are dominated largely by Stipa 

klemenzii, Agropyron desertorum, Cleistogenes songorica, Artemisia frigida and Potentilla 

chinensis (Ma et al., 2008). Maize and wheat are the most widely grown grain crops 

throughout the study area. The soil types shift from calcic brown and sierozem soils to desert 

soils from the east to the west, with decreases in soil moisture and organic content (Guo et al., 

2012). 

Figure 1 here 

2.2 Datasets 

The Normalized Difference Vegetation Index (NDVI) dataset derived from measurements 

taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor was utilized 

to estimate NPP at a regional scale (Mao et al., 2014; Zhang et al., 2014). The 16-day 

composition MODIS NDVI product (MOD13A2) with a spatial resolution of 1 km from 2000 

to 2013 was obtained from the Land Processes Distributed Active Archive Centre 

(https://lpdaac.usgs.gov). The MODIS NDVI dataset was corrected for calibration, view 

geometry and atmospheric correction (Fensholt et al., 2009). To have high-quality NDVI time 

series, a Savitzky-Golay smoothing filter was employed to reduce the residual noise caused 

by haze and clouds (Chen et al., 2004). Monthly MODIS NDVI dataset was created with the 

maximum value composite (MVC) method (Taddei, 1997). 

In this study, monthly meteorological data including temperature, precipitation and solar 

radiation were collected from 72 permanent meteorological stations from 2000 to 2013 (Fig. 

1). These data were available from the China Meteorological Data Sharing Service System 

(http://cdc.cma.gov.cn). The meteorological data except for precipitation were processed into 

raster layers at 1 km spatial resolution using bivariate thin plate smoothing splines, which 

incorporated varying degrees of dependence on topography, including both aspect and 

elevation (Hancock and Hutchinson, 2006). As the precipitation data were derived from a few 

gauges, it was difficult to obtain reliable precipitation patterns by using spatial interpolation 

methods for ground-based precipitation observations (Sun et al., 2015). Thus, we used 

monthly gridded Tropical Rainfall Measurement Mission (TRMM) product (TRMM 3B43) at 

0.25° spatial resolution from 2000 to 2013, which was provided by the National Aeronautics 

and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) 
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(http://trmm.gsfc.nasa.gov). The TRMM precipitation data were validated against gauge-

based precipitation measurements (Fig. 2) and were resampled to grid cells with 1×1 km 

using a bilinear interpolation technique. 

The aboveground biomass data, including alive and standing dead biomass produced in 

the current year, were collected from 85 field sample sites (60 grassland sites and 25 

shrubland sites, Fig. 1). From 2001 to 2005, we measured the aboveground biomass of 

grasslands and shrublands in late July or August, when grassland and shrubland reached their 

peak aboveground biomass (Ma et al., 2008). The aboveground biomass data were used to 

confirm simulated NPP (Fig. 3). At each grassland site (10×10 m), the aboveground biomass 

in five quadrates (1×1 m) was measured. All biomass samples were oven-dried at 65 °C for 

48 h to constant mass and were weighed to the nearest 0.1 g. More detailed procedures of the 

field investigation were introduced by Yang et al. (2010). At each shrubland sites (10×10 m), 

we categorized shrub plants into three groups in the light of their sizes (large, medium and 

small) and selected an exemplary plant in each group with its current-year leaves and twigs 

being harvested, oven-dried and weighed. The total weights of the three shrub groups were 

calculated by multiplying the weight of the representative plants by their quantities in each 

group (Zhao et al., 2014). Statistical analysis suggested that there was no significant 

difference between each biomass sample within a site. The aboveground biomass for each site 

was represented by averaging the weight of all biomass samples. To validate the results of 

simulated grassland and shrubland NPP, we assumed that aboveground biomass represented 

aboveground NPP and obtained an estimated ratio of aboveground to belowground NPP (Ma 

et al., 2008). Because of the difficulties in quantifying forest and cropland NPP, we used the 

MODIS NPP product (MOD17A3) to validate the results of simulated forest and cropland 

NPP. The annual composition MOD17A3 product with a spatial resolution of 1 km from 2000 

to 2010 was derived from the Land Processes Distributed Active Archive Centre 

(https://lpdaac.usgs.gov). This product produced gross primary productivity (GPP) of 

vegetation every day and summed to NPP at the end of the year. A more detailed overview of 

the MODIS NPP algorithm was introduced by Zhao et al. (2005). 

Other ancillary data included 1:250,000 scale administrative district map, 1:1,000,000 

scale vegetation and soil maps, and digital elevation model (DEM). All the above data were 

resampled to match MODIS NDVI data at 1 km spatial resolution using a majority function in 

the Resample Tool of ArcGIS. 

2.3 Methods 

Based on MODIS NDVI data, temperature, precipitation and solar radiation data, in 

conjunction with vegetation type and soil texture information, the CASA (Carnegie–Ames–

Stanford Approach) model was developed to simulate monthly NPP (Potter et al., 1999). The 
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annual NPP dataset was obtained by calculating accumulated monthly NPP in a year (Zhao et 

al., 2005). In the CASA model, NPP is determined with absorbed photosynthetically active 

radiation (APAR), multiplied by light utilization efficiency (ε). It is noteworthy that the effect 

of maintenance respiration (MR) is estimated by time-varying stress scalar terms for 

temperature and moisture behind the CASA algorithm logic (Potter et al., 1999). 

NPP GPP MR APAR PAR fAPAR T W

          (1) 

Where PAR is the total incident photosynthetically active radiation (MJ/m
2
) and accounts for 

50% of total solar radiation. fAPAR is the fraction of PAR absorbed by photosynthetic tissues 

in a canopy. ε* is the maximum light utilization efficiency set as different constant values for 

different land cover types. In this study, ε* of forests, shrublands, grasslands and croplands 

was set to 1.004, 0.768, 0.608 and 0.604 g C/MJ, respectively (Zhu et al., 2006). Tε and Wε 

are time-varying stress scalar terms for temperature and soil water balance. 

fAPAR is estimated from a linear function of NDVI following Myneni and Williams 

(1994). 

min max min
min

max min

(NDVI NDVI )(fAPAR fAPAR )
fAPAR = fAPAR

(NDVI NDVI )

 



(2) 

Where NDVImin and NDVImax correspond to the 5th and 95th percentile of NDVI in each land 

cover type. fAPARmin and fAPARmax are set to 0.001 and 0.95. 

Tε is calculated concerning derivation of the optimal temperature (Topt) for plant 

production. 

     
2

opt opt

opt opt

1.184 1
T (0.8 0.02 0.0005 )

1 exp 0.2 -10-T 1 exp 0.3 -10+T
T T

T -T


  
    
   
  

(3) 

Where Topt is the monthly mean temperature (T) in the month of maximum NDVI. 

Wε is the monthly water deficit, which is simulated by a comparison of monthly actual 

evapotranspiration (ET) to monthly potential evapotranspiration (PET) from the method of 

Rahimi et al. (2015) and Yu et al. (2011). 

ET
W 0.5 0.5

PET
    (4) 

2 2

2 2

P Rn (P Rn P Rn)
ET

(P Rn) (P R n )

    


  
(5) 

0
0

E
Rn E P (0.369 0.589 )

P
     (6) 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

8 

0

T
E 16 (10 )

I

   (7) 

3 2 6(0.675 I 77.1 I 17920 I 492390) 10         (8) 

1.514
12

i 1

T
I ( )

5
 (9) 

0ET E
PET

2


 (10) 

Where P is the monthly precipitation (mm). Rn is the net solar radiation (MJ/m
2
). I is the total 

heat index in a year. Recent studies suggested that the used method for estimating potential 

evapotranspiration in this study was applicable and satisfactory (Valipour, 2015b, 2015c). 

Based on the NPP simulation, further investigation was conducted to detect long-term 

annual NPP changing trend for each pixel by Eq. (11). 

i i

1 1 1

2 2

1 1

( NPP ) NPP

Slope

( )

n n n

i i i

n n

i i

n i i

n i i

  

 

   



 

  

 
(11) 

Where n is the sequential year. NPPi is the annual NPP in the year i. A positive or negative 

slope value suggests a linear increasing or decreasing trend in NPP within the time (Chen et 

al., 2014). The F-test was applied to determine the significance level (p) of the trends in NPP. 

Based on the results of the significance test and the trend investigation, the trends were 

classified according to four ranks: significant increase (Slope ≥  0 and p ≤  0.05), 

insignificant increase (Slope ≥ 0 and p ＞ 0.05), significant decrease (Slope ＜ 0 and p ≤ 

0.05) and insignificant decrease (Slope ＜ 0 and p ＞ 0.05). The total percentage change of 

annual NPP (TPC) as measured as the ratio of slope to the initial values following Ma and 

Frank (2006). 

i

1

( 1) Slope
TPC

(1/ ) NPP
n

i

n

n


 



(12) 

In this study, GSP was defined as accumulated precipitation for the growing season (April 

to August). SDP was quantified by calculating the coefficient of variance (CV) for monthly 

precipitation from April to August (Guo et al., 2012). 
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8

i mean

i 4

mean

1
(P -P )

5
SDP

P




(13) 

8

i

4

1
P P

5 i

  (14) 

Where Pi is the accumulated precipitation of month i. Pmean is the mean precipitation of the 5 

months. A high SDP suggests precipitation is highly concentrated in the growing season. On 

the contrary, a low SDP suggests precipitation is evenly distributed in the growing season. 

To establish the relationships between NPP and GSP, and between NPP and SDP, the 

partial correlation analysis was used to reflect whether SDP affects NPP variability 

independent of GSP (Mao et al., 2014). The stepwise regression model was adopted to 

quantify the relative contribution of GSP and SDP to the temporal variability in NPP (Graham, 

2003). 

1

2 2

1 1

( )( )

( ) ( )



 

 



 



 

n

i mean i mean

i
xy

n n

i mean i mean

i i

x x y y

r

x x y y

(15) 

Where rxy is the Pearson correlation coefficient. xi and yi represent precipitation variables 

(GSP or SDP) and annual NPP in the year i. xmean and ymean are the multi-year mean values for 

x and y. 

*

.
2 2(1 )(1 )




 

xy xz yz

xy z

xz yz

r r r
r

r r
(16) 

Where r*xy.z is the partial correlation coefficient, showing the relationship between variable x 

and variable y after excluding the effect of variable z. y is NPP. x and z are two different 

precipitation variables (GSP or SDP). The T-test was applied to determine the significance 

level of the correlations of NPP with GSP and SDP. Based on the results of the significance 

test and the partial correlation analysis, the correlations were classified according to four 

ranks: significant positive correlation (r
*
 ≥ 0 and p ≤ 0.05), insignificant positive correlation 

(r
*
 ≥  0 and p ＞  0.05), significant negative correlation (r

*
 ＜  0 and p ≤  0.05) and 

insignificant negative correlation (r
*
 ＜ 0 and p ＞ 0.05). 

3. Results 

3.1 Validations of precipitation and NPP 

Fig. 2 showed that the TRMM precipitation data were correlated significantly with the 

gauge data (p ＜ 0.001) at monthly time scales, with the highest correlation coefficient of 
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0.83 in November and the lowest of 0.69 in February and April. These results suggested that 

monthly TRMM data achieved reliable spatial distribution of precipitation. In addition, Fig. 3 

showed that the correlation coefficients between the observed NPP and the simulated NPP in 

grasslands and shrublands, respectively, were 0.87 and 0.83, and the CASA NPP had good 

agreement with the MODIS NPP in forests (r = 0.67) and croplands (r = 0.82). In this study, 

the CASA model was found to be appropriate for NPP estimation. 

Figure 2 here 

Figure 3 here 

3.2 Annual NPP change 

From 2000 to 2013, GSP increased at a rate of 10.6 mm/10 a. Moreover, increases in SDP 

values at a rate of 0.07/10 a were also observed, which suggested that the distribution of 

monthly precipitation tended to be more concentrated in the growing season (Fig. 4). 

The mean annual NPP was approximately 123.4 g C/m
2
, and the coefficient of variance 

(CV) for annual NPP in the vegetated areas was 6.8% from 2000 to 2013. Fig. 4 showed that 

annual NPP increased from 2000 to 2004 and changed into a steady phase with minor 

fluctuations during 2004-2011, and then increased rapidly between 2011 and 2013. Generally, 

annual NPP has increased at a rate of 1.1 g C·m
-2

·a
-1

, with total increases of 11.7% from 2000 

to 2013 (p = 0.038). 

Regarding annual NPP variability for different land cover types (Fig. 4), the largest mean 

annual NPP occurred in croplands (250.1 g C/m
2
) followed by forests (198.4 g C/m

2
), 

grasslands (120.7 g C/m
2
) and shrublands (95.9 g C/m

2
). The CV values of annual NPP were 

higher in grasslands (7.1%) and shrublands (6.9%) than that in forests (4.6%) and croplands 

(4.2%). Moreover, there were significant increasing trends in annual NPP for grasslands and 

shrublands, at rates of 1.3 g C·m
-2

·a
-1

 (13.6% total increases, p = 0.02) and 1.1 g C·m
-2

·a
-1

 

(14.9% total increases, p = 0.005), respectively. 

Figure 4 here 

Annual NPP trend patterns for 2000-2013 were spatially heterogeneous, but the NPP main 

trend was increasing (Fig. 5). Most of the vegetated areas (77.6%) showed an increasing trend 

in annual NPP, and this trend was statistically significant over 18.4% of the area, particularly 

in the southern Junggar Basin, western Tarim Basin, Hexi Corridor, eastern Tengger Desert, 

northern Otindag Sandy Land and western Hulun Buir Sandy Land. With regard to areas with 

significant increases in annual NPP, grassland and shrubland accounted for 53.3% and 40.2% 

of the areas, respectively (Table 1). However, a decreasing trend in certain regions should not 

be ignored. Areas with a decreasing trend in annual NPP accounted for only 2.5% the 

vegetated areas, particularly in the low reaches of Tarim River, and Ili Basin. Shrubland and 
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grassland accounted for 44% and 32% the areas with significant decreases in annual NPP, 

respectively (Table 1). 

Table 1 here 

Figure 5 here 

3.3 The effects of GSP and SDP on NPP variability 

In this study, the partial correlation coefficients (r
*
) of NPP with GSP and SDP were 

calculated (Table 2). Our results suggested that GSP was positively correlated with NPP in 

the total vegetated areas (r
*
 = 0.93, p ＜ 0.001), after statistically removing the confounding 

effect of SDP. SDP had a negative effect on NPP in the total vegetated areas (r
*
 = -0.79, p ＜ 

0.001), after statistically removing the confounding effect of GSP. NPP was closely related to 

GSP in most of the land cover types (except for forests), with the highest correlation 

coefficient of 0.92 (p ＜ 0.001) observed in grasslands followed by shrublands (r
*
 = 0.90, p 

＜ 0.001) and croplands (r
*
 = 0.69, p = 0.01). In addition to the effect of GSP, SDP exerted a 

significantly negative effect on NPP in grasslands (r
*
 = -0.79, p ＜ 0.001) and shrublands (r

*
 

= -0.67, p = 0.012), while no strong relationships between SDP and NPP were established in 

forests and croplands. 

Table 2 here 

Spatial distributions of the partial correlation coefficients of NPP with GSP and SDP were 

presented in Fig. 6. From 2000 to 2013, most of the vegetated areas (94.1%) represented a 

positive correlation between NPP and GSP (Fig. 6a), and 61.7% of the vegetated areas 

exhibited a statistically significant positive correlation, particularly in the Hexi Corridor, 

northeastern and southeastern Junggar Basin, eastern Alxa Plateau, Ulanqab Plateau, central 

Xilingol Plateau and eastern Hulun Buir Plateau. NPP in the lower reaches of Tarim River, 

and southern Tarim Basin was negatively correlated with GSP, accounting for 5.9% of the 

vegetated areas (0.3% with a significant correlation). After removing the effect of GSP on 

plant productivity (Fig. 6b), 77.3% of the vegetated areas showed a negative correlation 

between NPP and SDP, and 21.5% of the vegetated areas had a statistically significant 

negative correlation, particularly in the Junggar Basin, Hexi Corridor, eastern Alxa Plateau, 

Ulanqab Plateau and Xilingol Plateau. NPP was positively correlated with SDP in the lower 

reaches of Tarim River, northern Junggar Basin, eastern Otindag Sandy Land and western 

Hulun Buir Sandy Land, accounting for 22.7% of the vegetated areas (1.6% with a significant 

correlation). 

Figure 6 here 

The stepwise regression model was employed to quantify the relative contribution of GSP 

and SDP to NPP variability for different land cover types (Table 2). Our results suggested that 
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GSP was the main driving factor of NPP variability for grasslands, shrublands, croplands and 

the total vegetated areas, with a contribution of 63.8%, 65.4%, 37.8% and 66.7%, respectively. 

NPP responded to SDP change rapidly without any change to GSP. SDP partly explained 

22.8%, 15.5% and 21% of the variability in NPP for grasslands, shrublands and the total 

vegetated areas, respectively. However, GSP and SDP had no dramatic impacts on forest NPP. 

4. Discussion 

4.1 The response of NPP to GSP 

We found that annual NPP in the arid region of northern China increased significantly 

from 2000 to 2013 (Fig. 5). This result had consistency with previous studies. For instance, 

An et al. (2014) found that northern China had general increases in greenness over the period 

of 1982–2011 using AVHRR GIMMS and MODIS NDVI data. Mao et al. (2014) suggested 

that there were slight increases in annual aboveground grassland NPP in northern China 

between 2000 and 2011. Zhang et al. (2014) demonstrated that the northern China’s grassland 

had a net carbon uptake of 158 ± 25 g C/m
2 
over the growing season from 2000 to 2010 with 

the mean regional net ecosystem production estimate of 126 Tg C. 

Precipitation was regarded as the most crucial factor that drove NPP variability in arid 

regions (Knapp et al., 2008; Potter et al., 1999; Zeppel et al., 2014). It was widely established 

that NPP increased with increasing mean annual precipitation in arid and semiarid regions 

(Knapp and Smith, 2001; Ma et al., 2008; Muldavin et al., 2008). Based on a meta-analysis of 

experimental manipulation, NPP increased with increasing precipitation and vice versa (Wu 

et al., 2011). In this study, significant positive correlations between GSP and NPP were found 

in most of the vegetated areas (Fig. 6a). GSP explained much of the variability in NPP with a 

contribution of almost 67% (Table 2). Over the period of 2000-2013, GSP increased at a rate 

of 10.6 mm/10 a (Fig. 4). Precipitation had a direct influence on soil moisture (Weltzin et al., 

2003). Thus, a significant increasing trend in NPP might be attributed to the impact of soil 

water replenishment on root activity, plant water status and photosynthesis (Fay et al., 2008). 

We also found that a 30% increase in precipitation increased NPP by 20%; however, a 30% 

decrease in precipitation decreased NPP by 12%, which implied that NPP responded more 

strongly to higher precipitation than lower precipitation (Fig. 4). A possible reason for this 

unique phenomenon was that decreased precipitation caused serious soil water deficits, and 

photosynthesis was progressively constrained as stomatal closure affected not only the CO2 

diffusion into chloroplasts but also key photosynthetic pathways, like photophosphorylation 

and ribulose 1,5-biphosphate regeneration (Huxman et al., 2004). Severe water limitation 

could boost photosynthesis consumption to relieve water stress and to support individual 

development (Reyer et al., 2013). However, higher precipitation might lead to dramatic 

increases in NPP due to open water use strategies and compensatory effects among species as 
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plant community generally had higher biodiversity in wet seasons than in dry seasons (Guo et 

al., 2012). 

Responses of NPP to precipitation anomalies were likely to vary for different land cover 

types. We found that the greatest inter-annual variability in annual NPP occurred in 

grasslands, with forests the least variable (Table 1). No relationships between precipitation 

and forest NPP were found, and grassland NPP was more strongly correlated with 

precipitation variability than any other land cover type (Table 2). Most of the forests were 

able to withstand water deficits as they might have access to water contained in the deep soil 

layers (Ogle and Reynolds, 2004). Herbaceous plants in arid regions usually had high 

production potential, which was characterized by their immediate responses to precipitation 

pulses through germination, growing and producing large quantities of seeds (Holmgren et al., 

2006). 

The Palmer Drought Severity Index (PDSI) measured soil wetness (positive values) and 

dryness (negative values) based a soil water balance equation (Dai, 2013). The region with 

negative values of mean annual PDSI suggested a dry environment, whereas the region with 

positive values indicated a more humid environment. We found that NPP was more positively 

related with precipitation variability in very dry areas; however, NPP was less responsive to 

precipitation variability in more humid areas (Fig. 7). Plant species in extremely arid 

environments might evolve special physiological and morphological characteristics, which 

allowed them to rapidly adapt to variations in water availability (Vicente-Serrano et al., 2013). 

For example, Xu et al. (2006) found that two non-phreatophyte desert shrubs (Haloxylon 

ammodendron and Reaumuria soongorica) were able to maintain normal photosynthesis 

within a wide range of plant water status due to their effective morphological adjustment in 

both the root and shoot systems. The low NPP-Precipitation correlations in more humid areas 

suggested that even below average precipitation was sufficient to maintain photosynthetic 

activities as antecedent soil moisture might increase water availability and partially dampen 

the relationship between NPP and precipitation anomalies (Gessner et al., 2013). Roerink et al. 

(2003) also found that vegetation displayed the high sensitivity to precipitation changes in dry 

areas, almost no sensitivity in moderately humid areas. 

Figure 7 here 

4.2 The response of NPP to SDP 

Empirical studies demonstrated that there were lags decoupling NPP and precipitation 

inputs. For example, Li et al. (2013) found that increased precipitation during the previous 

autumn and winter enhanced vegetation growth in the growing season. As evapotranspiration 

was limited in autumn and winter over arid and semiarid regions, precipitation could 

accumulate and infiltrate into deep soil horizons, making water available to plant growth 
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during the spring-summer growing season (Weltzin et al., 2003). In this study, NPP was 

closely related to GSP; however, we failed to detect a relationship between previous-year 

precipitation and current-year production (Fig. 4). Precipitation decreases would not be 

detrimental to NPP unless intense soil water deficits occurred (Zeppel et al., 2014). 

Higher precipitation intensity was predicted to cause deeper penetration of soil water into 

the profile and less proportional loses to evaporation; however, more extended dry intervals 

between events resulted in longer periods of soil moisture depletion in the upper layers 

(Knapp et al., 2008). Grasses (or other herbaceous plants) were relatively shallow-rooted and 

extensively utilized superficial water (Knapp and Smith, 2001). In this study, SDP was 

negatively correlated with grassland NPP (Table 2). Our study supported the two-layer soil 

water-partitioning hypothesis, which suggested that increased precipitation concentration 

would decrease soil moisture in the surface layers, and hence grassland NPP. On the contrary, 

the survival of deep-rooted plants, such as shrubs, depended mainly on soil moisture in the 

deeper layers. Thus, increases in the number of larger precipitation events (＞5 mm) would 

favour shrub establishment and growth (Schwinning and Sala, 2004). Nevertheless, we found 

that SDP was negatively correlated with shrubland NPP (Table 2), which suggested that 

increased precipitation concentration might depress the growth of the shrublands. The 

persistence of the water deficit could play a key role in determining the response of shrubland 

NPP to drought (Vicente-Serrano et al., 2013). Recent studies reported that deep-rooted plants 

were not always superior to shallow-rooted plants in their ability to tolerate drought stress due 

to the diversity of rooting habits among species (Xu et al., 2006; West et al., 2012). Moreover, 

antecedent soil moisture was a critical factor as it might diminish or amplify the effect of 

precipitation pulses on plant production. For instance, when deep horizons were relatively dry, 

shrubs exploited surface soil water gained from recent rains (Schwinning et al., 2002). This 

paper revealed a negative correlation between NPP and precipitation anomalies in the low 

reaches of Tarim River (Fig. 5). Human activities, such as overgrazing and overexploitation 

of water resources, might cause the degradation of natural vegetation and act as dominant 

factors in desertification development regardless of increased precipitation (Zhou et al., 2015). 

Furthermore, no relationships between SDP and cropland NPP were found (Table 2). Human 

activities could mediate cropland NPP responses to precipitation changes through irrigation 

and fertilizer utilization (Valipour, 2015a). 

5. Conclusions 

Given the importance of NPP as an indicator of ecosystem function, as well as its role in 

global carbon cycle, developing the relationship between NPP and altered precipitation 

regimes in arid regions may improve our knowledge of vegetation vulnerability to climate 

change. Our results suggested that NPP has significantly increased by 11.7% in the arid 
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region of northern China since 2000. Responses of NPP to growing season precipitation and 

its seasonal distribution varied for different land cover types. Grassland and shrubland 

displayed a higher temporal variability in NPP and were more responsive to variability in 

precipitation than forests and croplands. NPP increased with increasing precipitation, whereas 

increased precipitation concentration decreased NPP. Growing season precipitation and 

seasonal distribution of precipitation were major drivers of NPP variability in the arid region 

of northern China, which accounted approximately 67% and 21% of the variability in NPP. 

Meanwhile, how NPP responded to alterations in growing season precipitation and its 

seasonal distribution might be partly dependent on the plant functional trait, antecedent soil 

moisture and anthropogenic activities. These factors could illustrate regional differences in 

the relationship between NPP and altered precipitation regimes. 
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Table caption 

Table 1 

The proportions of areas with different NPP trends for different land cover types from 2000 to 

2013. 

 

Table 2 

The partial correlation coefficients of annual NPP with growing season precipitation (GSP) 

and seasonal distribution of precipitation (SDP). The contributions of GSP and SDP to NPP 

variability are assessed for different land cover types by using the stepwise regression model. 

 

Table 1 

Variation types  
Forest 

 
Shrubland 

 
Grassland 

 
Cropland 

A B A B A B A B 

Significant increase 

 

10.5 0 

 

18.7 7.4 

 

18.2 9.8 

 

18.6 1.2 

Insignificant increase 42.2 0.1 61.2 24.1 60.9 32.7 33.5 2.2 

Significant decrease 7.2 0 2.7 1.1 1.5 0.8 8.6 0.6 

Insignificant decrease 40.0 0.1 17.4 6.9 19.4 10.4 39.3 2.6 

Sum 100 0.2 100 39.5 100 53.7 100 6.6 

A is the percentage in this land cover type. 

B is the percentage in the total vegetated areas. 

 

Table 2 

Land cover type 
GSP 

 

SDP 

r* SS(%) p r* SS(%) p 

Forest 0.45 — 0.126 -0.17 — 0.576 

Shrubland 0.90 65.4 ＜0.001 -0.67 15.5 0.012 

Grassland 0.92 63.8 ＜0.001 -0.79 22.8 ＜0.001 

Cropland 0.69 37.8 0.01 -0.41 — 0.164 

Total vegetated areas 0.93 66.7 ＜0.001 -0.79 21.0 ＜0.001 

r* is the partial correlation coefficient. 

SS denotes model explanation. 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

20 

Figure caption 

Fig. 1 Location of the study area and spatial distributions of meteorological stations, sample 

sites and land cover types in the arid region of northern China. The insert graph (Panel a) 

shows the area percentage of each land cover type to the total study area. 

 

Fig. 2 Scatter plots of the areal average precipitation from TRMM and precipitation gauges 

data at monthly time scales. 

 

Fig. 3 Comparisons of the CASA and MODIS NPP estimates in forests (a) and croplands (b), 

and the relationships between the measured NPP and the simulated NPP in grasslands (c) and 

shrublands (d). 

 

Fig. 4 Inter-annual variations in NPP, growing season precipitation (GSP) and seasonal 

distribution of precipitation (SDP) for different land cover types from 2000 to 2013. The dash 

line shows a significant linear trend in annual NPP at a 95% confidence level. 

 

Fig. 5 Trends in annual NPP with a statistical significance test at the 5% level from 2000 to 

2013. The inset graphs represent the area frequency distribution in each class of NPP change 

rates. 

 

Fig. 6 Spatial distributions of the partial correlation levels of annual NPP with growing 

season precipitation (GSP) and seasonal distribution of precipitation (SDP). The inset graphs 

in each panel of the figure (Panel a & Panel b) represent the area percentage of each 

correlation level at 5% significance to the total vegetated areas. 

 

Fig. 7 Relationships between the NPP-Precipitation correlation coefficient and the annual 

Palmer Drought Severity Index (PDSI). The boxes show the 25
th
, 50

th
 and 75

th
 percentiles, 

and the whiskers show the 5
th
 and 95

th
 percentiles. 
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Figure 7 

Highlights 

 How altered precipitation regimes influence terrestrial ecosystem 
function in arid regions is uncertain. 

 We estimated annual net primary productivity of different land 
cover types through the CASA (Carnegie–Ames–Stanford Approach) 
model. 

 The effects of growing season precipitation and its seasonal 
distribution on NPP variability were quantified. 

 The paper has implications for assessing vegetation vulnerability to 
future scenarios of more extreme intra-annual precipitation 
patterns. 


