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ABSTRACT

Desertification is a serious environmental problem in north China that should be urgently addressed and prevented. Identifying
the causes of vegetation trends that are closely related to desertification is prerequisite for a better control of desertification
processes. In this study, the Xiliao River basin, a typical desertified watershed in northeast China, was selected as a case study.
To partition the vegetation trends into climate-induced and human-induced trends, a linear regression model, piecewise
regression model and a binary nonlinear regression analysis were employed, based on the long-term remote measures of the
Normalized Difference Vegetation Index (NDVI) and climate data. The results showed that the spatial pattern of the vegetation
trends in the basin was highly heterogonous, although the climatic factors varied similarly. In the north, where natural vegetation
dominates, the vegetation exhibited significant browning (�0.0015 year�1), and a significant changing point was observed in
2000. In the south, where cropland dominates, the vegetation exhibited significant greening (0.002 year�1). Approximately
82.7% of the area with a decreasing NDVI was attributed to climate variability. The main reason for the vegetation degradation
was because of a multiyear reduction in precipitation from 1999 to 2011 rather than from an increase in the grazing size.
Approximately 67.0% of the area with an increasing NDVI could be attributed to irrigation, which overexploited a large amount
of water resources, even though significantly increasing air temperatures can promote vegetation greenness. Our findings have
important management implications for grazing and agriculture in the context of controlling desertification and sustaining
environment. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION

Desertification is characterized as a long-term decline in the
functions and productivity of an ecosystem, which are
mainly related to vegetation growth. It has serious
implications for eco-safety, food security, socio-economic
stability and sustainable development (Reynolds et al.,
2007). Vegetation growth is determined by both climate
variability and human activities. Among these factors, air
temperature and precipitation are the key climatic factors
that directly affect vegetation through photosynthesis and
soil moisture stress, respectively (Goetz et al., 2005; Piao
et al., 2006). As shown by previous studies, increasing air
temperature has already promoted vegetation growth, as
indicated by the vegetation greening throughout much of
orrespondence to: Huimin Lei, Department of Hydraulic Engineering,
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the Northern Hemisphere (Zhou et al., 2001; Jia et al.,
2009), and drought because of the reduction in precipita-
tion caused vegetation browning in global terrestrial areas
during 2000–2009 (Zhao and Running, 2010). Human
activities, such as overgrazing, mowing and urbanization,
are considered to have negative effects on vegetation
growth (Runnström, 2000; Sheng et al., 2000), while
afforestation has positive effects on vegetation dynamics
(Tilman, 1999). The effects of the conversion of natural
land to cropland are relatively uncertain because they
depend on the relationship between cropland management
(e.g. fertilization and irrigation) and the vegetation growth
status in the natural land. Although both climate and
human activities have huge impacts on vegetation growth,
previous studies about the large-scale changes in vegetation
primarily focused on the effects of climatic factors and
usually failed to consider the effects of human activities,
such as cropland management and grazing (e.g. Piao et al.,
2015; Wu et al., 2015). Thus, considering the complex
impacts of climate and human activities on vegetation
growth, a prerequisite for obtaining a better understanding
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2 S. WANG ET AL.
of the desertification processes is to attribute the trends in
vegetation to the effects of climate and human activities.
The Xiliao River basin is a desertified basin located in

northeast China (also in the Inner Mongolian Steppe), and
includes a famous desertified region known as the Horqin
Sandy land (Figure 1). It is an agro-pastoral transition zone,
and there is an intense conflict between human beings and
nature for its water and land resources. Over the past three
decades, a significant decreasing trend in vegetation was
observed around this basin, even though overall greening
trends have been detected in most regions of China (Peng
et al., 2011; Piao et al., 2015). Thus, a comprehensive
understanding of the characteristics of vegetation degrada-
Figure 1. (a) Location of the Xiliao River basin and (b) geographical inform
generated by the Cold and Arid Regions Environmental and Engineering
desertification area are based on the sand particle percentage (between 79% a

(between 0.001 and 2.33). The two red triangles are the pi

Copyright © 2016 John Wiley & Sons, Ltd.
tion and its driving factors is essential for desertification
control in this region.
In general, overgrazing is considered to be one of the

important causes of desertification in semi-arid and arid
zones, such as the Mongolian Steppe and Inner Mongolian
Steppe, while the primary contributor (i.e. climate, over-
grazing or both) to the degradation of the steppe is still in
debate. For example, Liu et al. (2013) concluded that
approximately 60% of the decrease in vegetation can be
attributed to the climate trends in the Mongolian Steppe
during 1998–2008; however, Hilker et al. (2014) reported
that approximately 80% of the decrease in the Normalized
Difference Vegetation Index (NDVI) could be attributed to
ation for this basin. The upper left desertification map in Figure 1(a)) was
Research Institute, Chinese Academy of Sciences. The criteria for the
nd 99%), organic content (between 0.065% and 0.975%) and its roughness
xels that were selected to evaluate the regression model.

Ecohydrol. (2016)



3REASON FOR DESERTIFICATION
an increase in the number of livestock in the same region
during 2002–2012. Moreover, the role of cropland in the
changes in vegetation greenness is not clear. For example,
Guo et al. (2014) indicated that an increase in the NDVI
benefitted from cropland management in Inner Mongolia,
while Mu et al. (2013) suggested that the large-scale
conversion of grassland to cropland contributed to a
decrease in the net primary productivity, which is closely
related to the NDVI. The obvious differences in the results
from these studies can be attributed to the different study
periods, datasets or methods, indicating that it is still
necessary to explore whether the overall decreasing
vegetation trend in the Xiliao River basin was climate
induced. However, to our knowledge, there has been no
quantitative analysis aimed at attributing the vegetation
degradation, although some studies have already qualita-
tively explored the responses of vegetation dynamics to
climate in large regions including this basin (Piao et al.,
2005; Piao et al., 2006; Bao et al., 2014; Guo et al., 2014).

The objectives of this study are to investigate the
satellite-observed vegetation trends in the Xiliao River
basin over the past three decades and quantitatively identify
the attribution of the vegetation trends (climate dominated
or human dominated). In this study, a simple empirical
model was employed to quantitatively partition the
vegetation trends in a watershed that facilitates investiga-
tions into the variations in water consumption in a region,
which is different from previous studies that show separate
trends in the climatic factors and NDVI in the temperate
steppe (Piao et al., 2006; Mu et al., 2013). First, to identify
Figure 2. Average annual (a) NDVI, (b) precipitation and (c) temperature ove
and (f) temperature. The snow data were separated from the rain

Copyright © 2016 John Wiley & Sons, Ltd.
the general changes in precipitation, temperature and the
NDVI during the average growing period (from April to
October) over the past three decades, we used linear and
piecewise regression models to test the trend and change
point in the time series, respectively (Toms and
Lesperance, 2003; Piao et al., 2005). Then, we employed
a binary nonlinear regression model to attribute the
vegetation trends. Finally, we discussed the possible
connections between human activities and the vegetation
trends.
STUDY AREA

The Xiliao River basin lies within 41.2–45.4°N and 116.6–
124.5°E, and has a drainage area of approximately
0.14million km2. It consists of a large amount of desertified
sandy land and is identified as a desertification area (the
upper left map in Figure 1(a)). The major stream is
primarily located in the south plain terrain, where several
large reservoirs were established (Figure 1(b)). The basin
belongs to the continental monsoon climate zone and has a
semi-arid climate. The annual cumulative precipitation and
mean temperature from 1982 to 2011 were 388mm and 6 °
C, respectively. Figure 2 shows the spatial distribution of
the average annual NDVI, precipitation and temperature
over the basin, as well as the seasonal cycle of the basin-
average NDVI, precipitation and temperature. The average
annual NDVI in more than 62% of the basin is less than
0.30, which is low compared with other well-growth
r the basin. Seasonal cycle of the basin-average (d) NDVI, (e) precipitation
fall data using air temperatures of 3–3.5 °C (Han et al., 2010).
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4 S. WANG ET AL.
vegetation (the average NDVI of the growing season is
approximately 0.62 (Liu et al., 2015)), and is similar with
other desertification areas, such as the Mongolian Steppes,
where the average annual NDVI in the barren and
grasslands is generally between 0.1 and 0.4 (Liu et al.,
2013). The NDVI reached its peak in the first half of
August, and the precipitation and air temperature reached
their peaks in July. The snow events occurred during the
non-growing period (November to March) for the
vegetation, and the amount of snow was quite small.
The basin is a typical farming-pastoral zone in north
China. Farming and stockbreeding are the two most
important sectors in agriculture. The total number of
livestock (21 020 000 in 2011) has nearly doubled, and
the crop yield (10.4million tons in 2011) has increased
nearly threefold over the past two decades. The primary
livestock are cattle and sheep/goats (the ratio of cattle to
sheep/goats is 4:11). According to the land use map in
2010 (Figure 1(a)), the main land use types were
grassland (37%), cropland (31%), shrubland (19%) and
forestland (13%). Cropland is mainly distributed in the
plain area and valley of the basin (Figure 1(a–b)), and the
distribution of livestock is relatively homogeneous. The
diverse land use types in this basin provide us a good
opportunity to comparatively analyse the impacts of
climate change, grazing and cropland management on
vegetation trends in the same framework compared to the
relatively homogenous landscape used in previous studies
(Liu et al., 2013).
MATERIALS AND METHODS

Data acquisition and processing

The NDVI is a measure of the chlorophyll abundance in
the leaves (Myneni et al., 1995). It is an indicator of
vegetation coverage and greenness, and has already been
widely used to analyse trends in vegetation (Kawabata
et al., 2001; Piao et al., 2011). The average NDVI
during a period represents the average vegetation growth
state, which is a consequence of the effects of climatic
and anthropogenic factors during and/or before this
period. In this study, the third-generation NDVI
(NDVI3g) data were used, and they are the newest
dataset derived from the Advanced Very High Resolu-
tion Radiometer (AVHRR) produced by the Global
Inventory Monitoring and Modelling Studies (GIMMS)
(Pinzon and Tucker, 2014). The dataset was summarized
fortnightly at a spatial resolution of approximately 8 km
for the period from 1982 to 2012, which had already
been pre-processed to compensate for sensor degrada-
tion, data calibration, the effects of cloud cover and to
remove the effects of stratospheric aerosols (Neigh et al.,
2008; Zeng et al., 2013). To evaluate the changes in the
Copyright © 2016 John Wiley & Sons, Ltd.
NDVI appropriately, we used the Harmonic Analysis of
NDVI Time-series (HANTS) to screen for and remove
the outliers (Jong et al., 2011; Roerink et al., 2000).
Then, the yearly maximum NDVI (NDVImax) in the
smoothed half-monthly time series was selected to
evaluate the interannual variability in vegetation. The
reasons for using the NDVImax are: (1) the NDVImax

values are highly correlated with the average NDVI
(NDVIavg) during the growing season (April to October)
(the R2 value between NDVImax and NDVIavg from
1982–2011 is larger than 0.6 in nearly 80% of the basin;
the R2 value between the multi-year average NDVImax

and NDVIavg in the entire basin is 0.52); and (2) in order
to consider the delayed effects of meteorological factors
on vegetation growth (this will be introduced later), the
average period of the NDVI should be shorter than the
delayed time, if possible. NDVImax is an instantaneous
value, and thus it is appropriate for studying the delayed
effects.
Air temperature and precipitation are two key climatic

factors that are commonly used as explanatory variables
of vegetation growth (Piao et al., 2011). The daily
precipitation data from 1982 to 2011 were obtained from
a grid product with a spatial resolution of 0.25° and was
provided by the National Meteorological Information
Center (Shen et al., 2010). The surface air temperature at
a 2-m height was recorded from 21 stations around the
basin (Figure 1(a)) and was provided by the China
Meteorological Science Data Sharing Service System
(http://cdc.cma.gov.cn/). As a supplement to the gridded
precipitation, station-based precipitation data with a
lower spatial resolution but longer time span (during
1960–2010) than the gridded precipitation were obtained
from the same meteorological stations that recorded the
air temperature. The station-based temperature and
precipitation data were interpolated onto the NDVI grid
using the Inverse Distance Weighting (IDW) interpola-
tion method (Tomczak, 1998), with the aid of a digital
elevation model (USGS/NASA Shuttle Radar Topogra-
phy Mission (SRTM) system), which has a horizontal
resolution of 90m.
The streamflow data of the outlet of the basin were

provided by the Hydrological Bureau of the Ministry of
Water Resources of China. In addition, the latest version of
Chinese high-resolution (100m) land use type of 2010 was
obtained from the Institute of Remote Sensing and Digital
Earth, Chinese Academy of Sciences (Zhang et al., 2014).
The land use type in 1985 was provided by the Institute of
Geographic Sciences of Natural Resources Research,
Chinese Academy of Sciences (Liu et al., 2003). The
census data of the annual grazing size (the number of
livestock) and crop yield of each county in the basin were
obtained from the Inner Mongolian, Jilin and Liaoning
Statistical Yearbooks.
Ecohydrol. (2016)
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5REASON FOR DESERTIFICATION
Detection of the trends and changing points

The trends in the time series were detected using the linear
regression model, which is expressed as follows:

yi ¼ αxi þ β þ ε (1)

where xi(i=1, 2 · · · n) is the independent variable (time in
this case) and yi(i=1, 2 · · · n) is the corresponding depen-
dent variable (values of precipitation, temperature, or
NDVI); α and β are the regression coefficients; and ε is the
estimation error of the linear regression. The regression
effects are considered significant at the significance level of
5% using the T-test.

The changing points (CP) in the time series of
meteorological factors and NDVI were detected using a
piecewise regression model (Toms and Lesperance, 2003;
Sun et al., 2011):

yi ¼ α1xi þ β1 þ ε i≤k
α1xi þ β1 þ α2 xi � xkð Þ þ β2 þ ε i > k

�

(2)

where k is the timing of CP; α1 and β1 are the regression
coefficient and intercept before CP, respectively; and (α1
+α2) and (β1 + β2�α2xk) are the regression coefficient and
intercept after CP, respectively. The regression coefficients
and intercepts were estimated using the least squares
method.

Attributing the trends in vegetation

The linear regression model is usually applied to the annual
(or seasonal average) NDVI and annual (or seasonal
Figure 3. Curve fit between (a) precipitation and NDVImax and (b) temperat
selected under similar precipitation conditions, when the annual precipitation
the precipitation and NDVImax data were selected under similar temperature c

C.

Copyright © 2016 John Wiley & Sons, Ltd.
average) meteorological factors (Wang et al., 2013; An
et al., 2014) to identify the reasons for the vegetation trends
and can be single or multiple (Peng et al., 2011; Liu et al.,
2013). This type of model successfully demonstrates the
responses of the temporal changes in the NDVI to climate
changes; however, it ignores the nonlinear responses of the
vegetation to climate variability (Wang et al., 2003; Liu
et al., 2015) and fails to consider the delayed effects of
climatic factors on the NDVI (Piao et al., 2006; Song and
Ma, 2011), which are shown to have great impacts on the
seasonal variation in the NDVI. We examined the
relationships between the NDVI and the climatic factors
(i.e. precipitation and temperature) in the forestland, which
has relatively little human interference (Figure 3), and
found that precipitation has a significant nonlinear
relationship with NDVImax, showing that precipitation is
no longer a limiting factor of NDVImax when it is larger
than a certain threshold. Air temperature has a negative
effect on NDVImax, which was consistent with the long-
term field study in Inner Mongolia (Bai et al., 2004; Guo
et al., 2006).
Therefore, by incorporating the nonlinear relationship

between NDVImax and precipitation and the linear
relationship between NDVImax and temperature, a binary
nonlinear regression model, which is modified from the
work of Liu et al. (2013) and considers the delayed effects,
was employed in this study to simulate NDVImax in the
natural status:

NDVImax ¼ α
1þ exp β Pi� γð Þ½ � þ δTjþ ϕ (3)
ure and NDVImax in forestland. The temperature and NDVImax data were
was between 355 and 400mm (this range contains the most data points);
onditions, when the annual mean temperature was between 13.9 and 15.2 °

Ecohydrol. (2016)



6 S. WANG ET AL.
where α, β, γ, δ and ϕ are regression coefficients. P and T
are the cumulative precipitation and average temperature,
respectively; i and j are varying periods before the time
when the maximum NDVI appears, for which the specified
periods for precipitation and temperature can be different.
For a better understanding of the model, we present an

example here. By assuming that the NDVImax appears in
August, the periods i and j can be selected from the matrix
composed of the combination of the periods listed in
Table I. The leading month and length of months are the
first month and the number of months, respectively. The
time range in the table is the period when the meteorolog-
ical factors may have an effect on NDVImax (the number
‘1’ is for January and ‘8’ is for August). For example, the
leading month of ‘1’ and a length of months of 1 will result
in January (1), while the leading month of ‘2’ and the
length of months of 3 will result in the period from
February to April (2–4). As a result, there are 36 values in
total, the different specified periods for precipitation and
temperature leading to 1296 combinations. The combina-
tion that results in the highest value for the coefficient of
determination (R2) of the multiple nonlinear regressions is
accepted. Because the plant types are annual grass, shrub,
crop and broadleaf deciduous tree, we assumed that the
climate conditions in the previous year had no impacts on
the vegetation growth in the current year. By applying the
model, we found that the months that exhibit the most
effects because of the climatic factors are May, June and
July in this basin.
Using Equation 3, the estimated NDVImax was identified

as the ‘climate-induced NDVImax’ (Liu et al., 2013). The
difference between the observed and estimated NDVImax is
assumed to result from the effects of anthropogenic factors.
The degree to which the estimated NDVImax variations
could explain the observed NDVImax variations can be
considered as the impact of climate change on the
vegetation variations. Therefore, the ratio (denoted as K)
of the trend in the estimated NDVImax to the trend in the
observed NDVImax can serve as the degree to which the
observed NDVImax is affected by climate variability. When
Table I. Period matrix for the binary nonlinear regression model.

Length of months 1 2 3 4 5 6 7 8
Leading month

1 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8
2 2 2-3 2-4 2-5 2-6 2-7 2-8
3 3 3-4 3-5 3-6 3-7 3-8
4 4 4-5 4-6 4-7 4-8
5 5 5-6 5-7 5-8
6 6 6-7 6-8
7 7 7-8
8 8

Copyright © 2016 John Wiley & Sons, Ltd.
K is larger than 0.5, we determined that the vegetation
trend was dominated by climate variability; otherwise, it
was dominated by anthropogenic factors.
RESULTS AND DISCUSSION

Evaluation of the regression model

Ideally, a rigorous evaluation of this model is impossible
because of the influences of human activities on the NDVI
and the different parameters in Equation 3 for different
pixels. Therefore, we assumed that forestland has relatively
little human interference, and that the neighbouring pixels
have similar parameters in Equation 3. First, we compared
our model and the model proposed by Liu et al. (2013)
using two randomly selected pixels in the forest (the
surrounding eight pixels are also forest) (the selected pixels
were marked in Figure 1(a)) to show how our model was
improved by incorporating the nonlinear relationship
between the NDVImax and precipitation. Figure 4 shows
the time series of the NDVImax in the two pixels. The
interannual variability of NDVImax can well be explained
using Equation 3. For these two pixels, the nonlinear model
is better (i.e. higher R2 and lower RMSE) than the linear
model used in Liu et al. (2013). In particular, the nonlinear
model predicted the NDVImax much better in extremely dry
years, such as 2000 and 2009.
To further evaluate the regression model, we selected a

group of adjacent forestland pixels and divided them into
two sub-groups for a ‘quasi-cross-validation’. We
employed precipitation and temperature, as well as the
NDVImax data from one group to calibrate parameters in
Equation 3 and those from another group to validate the
model. The statistical indexes in both the calibration and
validation periods (R2 = 0.68, P<0.05 and R2 = 0.58,
P< 0.05, respectively) indicated that the model was
competent for simulating the vegetation changes in
response to the climatic factors (Rohlf and Sokal, 1969).
However, we should acknowledge that this method has

potential uncertainties because of the choices of climatic
variables, data quality and model assumptions. Potential
errors may be introduced when the differences between the
estimated NDVImax and observed NDVImax are used to
infer the relative contribution of the anthropogenic factors.
In addition to the regression method used in our study,
process-based ecosystem models (Sitch et al., 2008; Piao
et al., 2013) can also be used to attribute the trends of
vegetation. However, process-based ecosystem models
have two main sources of uncertainties. First, large
uncertainties may arise from the complex model structure
and large number of parameters (Piao et al., 2013). Second,
these models cannot usually simulate the effects of human
activities, such as agricultural management and grazing
(Piao et al., 2015), which results in large uncertainties in
Ecohydrol. (2016)



Figure 4. Interannual variations in the simulated and satellite observed NDVImax of two pixels (marked in Figure 1) within the forestland.
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the model-estimated trends of the leaf area index. Our
recent study also demonstrated that there were large
uncertainties when simulating the leaf area index in a
typical process-based ecosystem model (Lei et al., 2014).
Therefore, there is still no precise method that can
accurately simulate the variations in vegetation growth;
additional mechanisms of vegetation growth should be
investigated in ecohydrological studies.

Spatial patterns of the trends in NDVImax, precipitation and
temperature

The growing season is comprised of the entire time of
active vegetation, including the green-up, maturity and
senescence periods (Guan et al., 2014). Hence, we focused
on the climate changes during the growing season, which
generally occurs from April to October in this region. We
calculated the cumulative precipitation and average
temperature from April to October in each year from
1982 to 2011 (Figure 5).

Figure 5(a) and (d) display the spatial patterns of the
complete and significant trends of NDVImax in the basin
over the past three decades, respectively. The spatial
pattern of the trends in NDVImax shows a significant
difference between the north and the south. Approximately
41.5% of the entire basin showed negative trends in
vegetation, mainly in the north (10% of the basin
experienced a significant decrease in the vegetation rate
of �0.0024year�1). Meanwhile, 58.5% of the watershed
experienced positive trends, primarily in the south (29% of
the basin experienced a significant increase in the
Copyright © 2016 John Wiley & Sons, Ltd.
vegetation rate of 0.0031 year�1). Figure 5(b) and (e)
illustrate the spatial distribution of the negative and
significant trends in precipitation throughout the basin,
indicating drying of the entire watershed, particularly in the
north. Figure 5(c) and (f) show significant positive trends in
temperature throughout the basin, which indicates that the
entire watershed was warming. The positive trends in the
southern temperature were even more significant than those
in the northern temperature.

Temporal variations in NDVImax, precipitation and
temperature

Figure 6 illustrates the temporal variations in the NDVImax,
precipitation and temperature averaged over the entire
basin. The results show that NDVImax exhibited an
insignificant increasing trend over the entire study period
(Slope= 0.0006 year�1, R2=0.05, P> 0.05) and an insig-
nificant drop in 2000. However, NDVImax exhibited a
s i g n ifi c a n t i n c r e a s i n g t r e n d b e f o r e 2 0 0 0
(Slope = 0.0035 year�1, R2 = 0.64, P< 0.05), which is
consistent with the findings of Piao et al. (2005), who
revealed an overall reversion of desertification in arid and
semiarid regions in China from 1982 to 1999. The
precipitation exhibited a significant decreasing trend
(Slope=�3.7mmyear�1, R2=0.18, P<0.05), as well as
a significant drop in 1999. The statistical results show that
the mean annual precipitation before 1999 was higher than
the mean annual value from 1982 to 2011, and the mean
annual precipitation after 1999 was 14.5% lower than the
mean annual value from 1982 to 2011. Therefore, the long-
Ecohydrol. (2016)



Figure 5. (a–c) Spatial distributions of the trends in the NDVImax, cumulative precipitation and mean temperature from April to October and (d–f)
significant trends in the NDVImax, cumulative precipitation and mean temperature at a significance level of 0.05. The black coiled line in Figure 5(a) is
the boundary of the northern part with decreasing NDVImax and, accordingly, the southern part with increasing NDVImax comprises the rest of the basin.
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term decreasing trend in precipitation was not because of a
gradual change, but instead to a multiyear reduction in
precipitation from 1999 to 2011. This phenomenon
suggested that the degradation in vegetation may be
because of short-term drought, but not a long-term climate
change, as reported by Li et al. (2014), who showed that
the Horqin sand was not a desertification region in the mid-
Holocene (approximately 6000years ago) because more
moisture was present during that time than at the present
day. In particular, we observed that the precipitation
decreased considerably in 1999, but the NDVImax reached
its highest value in the same year (Figure 6(a–b)). We
found that the significant decrease in precipitation in 1999
was mainly because of the significant decrease in
precipitation in August, when the monthly precipitation
was the third highest in that year. Meanwhile, in most
regions, the NDVI reached its maximum in August. Recall
that the most effective months for vegetation growth are
May, June and July; we speculate that the decrease in
precipitation in August had no direct effect on the
NDVImax in this year. The air temperature exhibited a
significant increasing trend (Slope = 0.038 °C year�1,
R2=0.34, P<0.05) and a significant change point in
1998. The gradual trends in temperature in the two sub-
periods were not significant. After 1998, an insignificant
decreasing trend is revealed, which indicates that the
Copyright © 2016 John Wiley & Sons, Ltd.
climate warming may have slowed down in recent years.
Similarly, other researchers also reported that climate
warming slowed down in the mid-1990s in other areas of
China (Liu and Lei, 2015).
Based on the spatial pattern of trends in NDVImax (

Figure 5(a)), we divided the basin into a northern part with
decreasing NDVImax and a southern part with increasing
NDVImax to remove the offset effect in the areal average.
The northern and southern areas accounted for 41.5% and
58.5% of the total area, respectively. According to the land
use map of 2010, the northern part is dominated by natural
vegetation, with grasslands and forestlands occupying
more than 68% and cropland only accounting for 9%. In
the southern part, the dominant land use types are
croplands and grasslands, which occupy 47% and 30%,
respectively.
Figure 7 illustrates that the NDVImax in the northern part

e x h i b i t e d a s i g n i fi c a n t d e c r e a s i n g t r e n d
(Slope=�0.0015 year�1, R2=0.20, P< 0.05) and a signif-
icant change point in 2000, with an insignificant increasing
trend prior to 2000 (Slope = 0.0007 year�1, R2= 0.04,
P>0.05) and an insignificant decreasing trend after 2000
(Slope =�0.0009 year�1, R2 = 0.01, P> 0.05). In the
southern part, the NDVImax exhibited a significant
increasing trend (Slope = 0.002 year�1, R2 = 0.37,
P<0.05), and an insignificant change-point with signifi-
Ecohydrol. (2016)



Figure 6. Interannual variations in the basin-averaged (a) NDVImax, (b) cumulative precipitation and (c) mean temperature during April–October.
Changing points (CP) of the trends estimated by least-squares linear regression are shown. The black lines indicate the linear fits during the period from
1982 to 2011, the blue lines indicate the linear fits before the CP of the corresponding trend and the red lines indicate the linear fits after the CP of the

corresponding trend.
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cant increasing trends occurred prior to 2000
(Slope = 0.005 year�1, R2 = 0.81, P<0.05) and after
2000 (Slope = 0.004 year�1, R2 = 0.36, P< 0.05). The
trends in NDVImax in the southern part from 1982 to
2000 are seven times larger than those in the northern
part. The precipitation decreased in both the northern
and southern parts (R2 = 0.22, P< 0.05; R2 = 0.14,
P< 0.05, respectively), but the decreasing trend in the
northern part was larger than that in the south.
Moreover, there was a significant decrease in precip-
itation in both regions in 1999. The temperature in both
the northern and southern parts exhibited significant
increasing trends (R2 = 0.30, P<0.05 and R2 = 0.34,
P< 0.05, respectively) and a significant increase in
1998. The temperature trends in both parts did not
show significant changes before or after 1998. In
summary, precipitation and temperature have similar
temporal patterns in both parts, while there was a large
difference in NDVImax between the north and south,
which implies that other mechanisms may determine
the vegetation trends.
Copyright © 2016 John Wiley & Sons, Ltd.
Attribution and possible reasons for the vegetation trends

Based on the results of K, the ratio of the trend in
vegetation estimated using Equation 3 to the observed
trend in vegetation and the spatial distribution of the
dominant factors of the vegetation changes in the entire
basin are shown in Figure 8. Interestingly, there were
distinguishing differences in the causes of the vegetation
trends between the north and south, although the climatic
factors varied similarly in the two parts. The area in which
the change in NDVImax is dominated by the climatic factors
occupies 53.6% of the entire basin, while the remainder can
be considered to be dominated by non-climatic factors. In
the northern part, approximately 82.7% of the NDVImax

reductions can be attributed to climate variability, whereas
67.0% of the NDVImax increases in the southern part can be
explained by anthropogenic activities (Figure 8).
According to Figure 9, we also found that the NDVImax

variability was well interpreted by the precipitation
variability in the non-cropland, which was mainly
distributed in the north, while NDVImax was not relevant
Ecohydrol. (2016)



Figure 7. The data are the same as Figure 6, but (a–c) are in the northern part (the corresponding boundary is plotted in Figure 5(a)) and (d–f) are in
southern part.

Figure 8. Distribution of the dominant factors controlling the vegetation trends in the Xiliao River Basin.
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to the precipitation in the cropland, which was mainly
distributed in the south. The multiyear reductions in
precipitation after 1999 may have made a significant
contribution to the decrease in NDVImax in the northern
part, which was supported by a study using a physiological
Copyright © 2016 John Wiley & Sons, Ltd.
ecosystem model (Yuan et al., 2014). On the other hand,
although the warming was more significant in the south
than in the north, the promoting effect of increasing
temperature was weaker than the effect of cropland
management.
Ecohydrol. (2016)



Figure 9. Relationships between NDVImax and precipitation in (a) non-cropland and (b) cropland.
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To further explore the effects of human activities on the
changes in vegetation, we calculated the significant trends
(p<0.05) in the NDVI residuals by subtracting the
estimated NDVImax from the observed NDVImax. Positive
Figure 10. Spatial distributions of (a) the trends in the NDVImax residuals, (

Copyright © 2016 John Wiley & Sons, Ltd.
(negative) trends in the NDVI residuals indicate that human
activities promote (hinder) vegetation growth. Using
positive trends as an example, positive trends in both the
NDVI and NDVI residuals imply a more intense influence
b) the relative changes in cropland area and (c) the trends in grazing size.

Ecohydrol. (2016)
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of positive human activities, while positive trends in the
NDVI and negative trends in the NDVI residuals indicates
less disturbances by negative human activities.
Figure 10(a) showed that the distribution of the

significant trend in the NDVI residuals is mainly positive
and generally consistent with the distribution of cropland,
which implies that vegetation greening in the southern part
may be mainly because of the intensifying cropland
management. In general, the water-related cropland
management to promote crop growth includes increasing
the amount of irrigation and/or an expanding the area being
irrigated. To distinguish these two types of cropland
management, we calculated the changes in the cropland
area in each grid between 1985 and 2010 (Figure 10(b)).
The results demonstrate the cropland area increased by a
total of 16%, which is consistent with the conclusions from
previous studies, which also reported that the Horqin
Sandy land had doubled the cropland area over the past
three decades (Bagan et al., 2010). However, the spatial
pattern of changes in the cropland area was not generally
consistent with the trends in the NDVI residuals. We
further analysed the interannual variations in the annual
discharge of the outlet of the basin (see Figure 1(b)),
showing that the main stream dried up in the 1970s and
2000s (Figure 11). Although the interannual variability of
precipitation was high, the dry-up demonstrated, at a
minimum, that a large amount of water use began in the
1960s. This large water withdrawal was because of the
Figure 11. Long-term variations in (a) the basin-averaged annual precipitati
reservoirs were established and their respective storage capacities are show

Copyright © 2016 John Wiley & Sons, Ltd.
establishment of several reservoirs (the total storage
capacity of these reservoirs was 3.32× 109m3 (Wang and
Li, 2007)) in 1958 in three major streams (Figure 1(b)). Of
these, the Hongshan reservoir, lying at the basin outlet, is
the largest reservoir in northeast China, with a storage
capacity of 2.56 ×109m3, and controls the majority of
cropland irrigation in the Xiliao River basin. During our
study period (1982–2011), the annual runoff decreased
significantly from 4.0mm in 1980s to 0.3mm in 2000s,
implying that much more water was used for irrigation. The
statistics also showed that both an increasing amount of
irrigation and an expansion of the irrigated area were
observed in the two largest cities (Tongliao and Chifeng) in
the basin (Wang and Li, 2007). A modelling study in the
upper reach of the Xiliao River basin also identified that
human activities (a significant increase in the irrigated area)
were the main driving factors for the streamflow reduction,
with contributions of approximately 90% (Yong et al.,
2013). Therefore, the significant vegetation greening in
cropland may be because of both an increasing amount of
irrigation and/or an expansion of the irrigated area. The
phenomenon of vegetation greening in cropland was also
indirectly demonstrated by the significant increase in crop
yield over the entire basin (2.7 × 105 ton year�1, p<0.01,
during 1992–2011). Our findings were different from the
reports of many other researchers, who showed that
vegetation greening is primarily determined by climate
warming (Bogaert et al., 2002; Jia et al., 2009; Dai et al.,
on and (b) annual streamflow of the basin outlet. The times at which the
n. The positions of the outlets and reservoirs are drawn in Figure 1(b).
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2014) and was consistent with a study showing that the
pronounced increase in the NDVI of cropland almost
certainly stemmed from changes in the primary crop type
and the advances in agricultural management in Inner
Mongolia (Guo et al., 2014).

The dominant roles of climatic factors in vegetation
degradation in the northern part can also be indirectly
supported by the mismatch between the distributions of
the trends in the NDVI and grazing size (Figure 10(c)).
Theoretically, the magnitude of the decreasing trend in
vegetation should be generally consistent with that of the
increasing trend in grazing size, if the effects of grazing
on vegetation are large. In fact, although grazing size
increased throughout the basin (5.8 × 105 year�1,
p<0.01, during 1992–2011), its spatial pattern cannot
explain the spatial distribution of NDVI browning. This
finding was remarkably different from a previous study
showing that degradation in the Mongolian Steppe was
closely related to the spatial variations in goat density
(Liu et al., 2013).
CONCLUSIONS

The climate of the Xiliao River basin in northeast China
has been becoming warmer and dryer over the past three
decades. However, the vegetation trends in the north and
south of the basin were obviously different: vegetation is
mainly browning in the north, which is largely occupied by
natural vegetation, and is mainly greening in the south,
which is largely occupied by cropland. Using an empirical
model, we found that 82.7% of the vegetation degradation
in the north could be attributed to climate variability, rather
than the increasing grazing size. Specifically, the multiyear
reductions in precipitation from 1999 to 2011 were mainly
responsible for the vegetation degradation, despite the
rising air temperature. In the southern part, 67.0% of the
vegetation greening could be explained by cropland
management, rather than the significantly increasing
temperature.

In terms of desertification control, our findings reveal
that the natural ecosystem in the north is already quite
fragile, because of the changing environment, and thus
grazing size should be strictly limited in the future. The
greening in cropland appears to be beneficial for
desertification control. However, it is based on the large
amount of water withdrawals from rivers. This overexploi-
tation of water resources has already caused serious
environmental problems, such as river dry-up in relatively
dry years, and imposes challenges to the sustainable
development of ecosystems. Therefore, it will also be an
urgent task of controlling agricultural development for
protecting the environment in this semi-arid desertified
watershed.
Copyright © 2016 John Wiley & Sons, Ltd.
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