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Abstract In the southwestern United States (US), the Rio

Grande chub (Gila pandora) is state-listed as a fish species

of greatest conservation need and federally listed as sen-

sitive due to habitat alterations and competition with non-

native fishes. Characterizing genetic diversity, genetic

population structure, and effective number of breeders will

assist with conservation efforts by providing a baseline of

genetic metrics. Genetic relatedness within and among G.

pandora populations throughout New Mexico was char-

acterized using 11 microsatellite loci among 15 populations

in three drainage basins (Rio Grande, Pecos, Canadian).

Observed heterozygosity (HO) ranged from 0.71–0.87 and

was similar to expected heterozygosity (0.75–0.87). Rio

Ojo Caliente (Rio Grande) had the highest allelic richness

(AR = 15.09), while Upper Rio Bonito (Pecos) had the

lowest allelic richness (AR = 6.75). Genetic differentiation

existed among all populations with the lowest genetic

variation occurring within the Pecos drainage. STRUC-

TURE analysis revealed seven genetic clusters. Popula-

tions of G. pandora within the upper Rio Grande drainage

(Rio Ojo Caliente, Rio Vallecitos, Rio Pueblo de Taos) had

high levels of admixture with Q-values ranging from

0.30–0.50. In contrast, populations within the Pecos drai-

nage (Pecos River and Upper Rio Bonito) had low levels of

admixture (Q = 0.94 and 0.87, respectively). Estimates of

effective number of breeders (Nb) varied from 6.1 (Pecos:

Upper Rio Bonito) to 109.7 (Rio Grande: Rio Peñasco)

indicating that populations in the Pecos drainage are at risk

of extirpation. In the event that management actions are

deemed necessary to preserve or increase genetic diversity

of G. pandora, consideration must be given as to which

populations are selected for translocation.

Keywords Gila pandora � Southwestern United States �
Native Fish � Arid lands � Connectivity

Introduction

The decline and eventual extirpation or extinction of native

fishes can be attributed to degradation and fragmentation of

habitat, introduction of non-native species, and conflict and

competition for water. In the arid southwestern United

States (US), population declines and risk of extinction can

be exacerbated by drought and wildfire, which alter stream

temperature, fish species composition, erosion patterns,

water yield, and hydrologic processes (Bozek and Young

1994). Reduced flow, fragmented habitats, and the pres-

ence of non-native fishes have impeded re-colonization and

persistence of native fishes shifting the fish community

toward more thermally tolerant fish assemblages (Propst

et al. 2008). Habitat connectivity within and among stream

systems in the southwestern US is considered one of the

more important factors for dispersal and re-colonization of

extirpated fish populations (Fagan et al. 2002). As aquatic
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habitat becomes fragmented, chances for re-colonization

through dispersal processes become rare (Helfman et al.

2009). When populations become fragmented and isolated

due to a lack of movement (Lande 1987), the strength of

genetic drift increases due to a lack of gene flow.

Depending on the demography of the population, genetic

drift increases the rate at which genetic variation is lost and

increases the risk of extinction (Lande 1988). This risk is

offset by increasing or maintaining population connectivity

to facilitate gene flow, which is essential for the long-term

viability of a species (Segelbacher et al. 2010). Thus,

understanding changes between historic and contemporary

connectivity and gene flow is important for management

and conservation of species to minimize the risk of

extinction. As such, proactive planning and conservation

goals should include genetic information to target species

and community assemblages within ecological systems

prior to landscape level alterations.

Of conservation interest in the southwestern US

(southern Colorado and New Mexico) is a native fish

assemblage that includes Rio Grande cutthroat trout

(Oncorhynchus clarkii virginalis), Rio Grande sucker

(Catostomus plebeius), and Rio Grande chub (Gila pan-

dora) (Calamusso and Rinne 1996). Concerted manage-

ment effort among state and federal agencies precluded

listing of O. c. virginalis under the Endangered Species

Act (U.S. Fish and Wildlife Service 2014). Similar efforts

are underway with C. plebeius, in which a genetic anal-

ysis across the species range has identified factors that

limit its distribution (McPhee et al. 2008). However, less

is known about the distribution and genetic diversity

throughout populations of G. pandora. The species is

restricted to less than 25 % of its historical range (Rees

and Miller 2005). Threats to G. pandora include intro-

duction and range expansion of non-native fishes and

overall degradation of habitat resulting in low recruitment

(Calamusso 2005; Rees and Miller 2005). The distribution

of G. pandora includes the Rio Grande drainage basin of

southern Colorado, New Mexico, and Texas with the

majority of the historical range in New Mexico (Biota

Information System of New Mexico 2009). A single

population resides as far north as Hot Creek in Conejos

County (37�450), Colorado, and as far south as Little

Agua Creek in Jeff Davis County (30�450), Texas (Subl-

ette et al. 1990), neither of which were sampled in the

current study. The status of the Texas population is

uncertain, but presumed to be extant. Douglas and Dou-

glas (2003, 2006) examined mitochondrial DNA diversity

of G. pandora and reported between 1 and 12 haplotypes

throughout populations in the Rio Grande drainage of

southern Colorado and northern New Mexico. In New

Mexico, the distribution of G. pandora includes the

tributaries within three drainage basins (Rio Grande,

Pecos, Canadian). The species may have gained access to

the Pecos River drainage through headwater exchanges

during the Pleistocene (Smith and Miller 1986), but was

recently listed as non-indigenous to the Canadian drainage

basin (Fuller 2015). The State of New Mexico listed G.

pandora as a species of greatest conservation need (New

Mexico Department of Game and Fish 2006) and the US

Forest Service listed the species as sensitive in New

Mexico (U.S. Forest Service 2013).

At present, the genetic diversity and population struc-

ture of G. pandora are unknown in New Mexico. An

understanding of genetic diversity, population structure,

and effective population size within and among popula-

tions throughout New Mexico will be critical in the

management of the species to avoid risk of extinction.

Conservation goals should include identifying areas that

retain genetic diversity with the potential for long-term

viability (Neely et al. 2001); and, should the need arise,

these goals would prioritize which populations could

serve as source populations for translocation in New

Mexico. To aid in restoration and recovery efforts of G.

pandora, we examined genetic diversity, population

structure, and effective number of breeders throughout the

species range among three drainage basins in New

Mexico.

Materials and methods

Study areas and sample collection

A comprehensive genetic assessment for only New Mexico

populations of G. pandora was considered for this study. In

2010, 15 populations were non-randomly selected from the

Rio Grande, Pecos, and Canadian drainages (Fig. 1).

Populations (Table 1) were identified throughout New

Mexico from prior field studies (Calamusso 1992) and

agency records (personal communications with G. Gustina,

US Bureau of Land Management; R. Hansen and E. Frey,

New Mexico Department of Game and Fish). Using a

backpack electrofisher (Smith-Root LR-24), fish were

collected from slow moving runs, pools, and undercut

banks. Non-lethal tissue samples were collected on site by

clipping the anal fin and placing the tissue into a 2.0 ml

NalgeneTM cryogenic tube filled with 95 % ethanol for

preservation (McPhee and Turner 2004). Fish were

released at the capture location immediately after tissue

collection. Populations in the Rio Hondo and Rio Ruidoso

of the Pecos drainage are presumed extirpated (personal

observations of the authors), thus the genetic structure

within these watersheds could not be examined.
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DNA isolation and screening of microsatellite

markers

Total genomic DNA was extracted from fin clips using a

DNeasy Blood and Tissue Kit (Qiagen 2006). Eleven

microsatellite loci were screened (Table S1) from

microsatellites developed for four cyprinid species: bony-

tail (Gila elegans; Keeler-Foster et al. 2004), Sacramento

splittail (Pogonichthys macrolepidotus, Baerwald and May

2004), Sacramento pikeminnow (Ptychocheilus grandis,

Baerwald and May 2004), and tui chub (G. bicolor;

Baerwald and May 2004). The mix for the polymerase

chain reaction (PCR) consisted of 3.5 ll ddH2O, 19

GeneAmp�109 PCR Buffer, 2.5 mM MgCl2, 1.5 mM

dNTPs, 0.875 U AmpliTaq Gold� DNA polymerase, 0.5 ll
each of forward and reverse primers. All PCR primers were

purchased from Applied Biosystems (Foster City, CA).

Amplification protocol used a touchdown thermal profile

(annealing temperature decreased by 0.2 �C at each cycle)

on a GeneAmp PCR System 9700 thermal cycler. The

profile started with a 9 min initial denaturing step at 95 �C
(activation of AmpliTaq Gold� DNA polymerase), 33

cycles at 95 �C for 45 s, 56 �C for 1 min, and 72 �C for

1 min with a final extension of 30 min at 72 �C. PCR

Fig. 1 Sampling locations of

15 populations of G. pandora

within watersheds dark gray

shaded areas. Populations

numbers, drainage areas, and

watersheds are listed in Table 1
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products were processed using an ABI 3130xl genetic

analyzer and GeneScanTM 500 LIZ� size standard (Applied

Biosystems, Foster City, CA). GeneMapper 4.0 (Applied

Biosystems, Foster City, CA) was used to score and edit

genotypes.

Statistical analysis

Departures from Hardy–Weinberg (HW) expectations and

genotypic equilibrium were tested using GENEPOP’007

(Rousset 2008). Deviations from HW due to stuttering, null

alleles, and large allele dropout were tested using MICRO-

CHECKER 2.2.3 (Van Oosterhout et al. 2004). Allelic

richness (AR) and inbreeding coefficient (FIS) were calcu-

lated using FSTAT 2.9.3 (Goudet 2001). Allelic richness is

the mean number of alleles per locus adjusted for sample

size using rarefaction methods (Leberg 2002). Observed

(HO) and expected (HE) heterozygosity, allele frequencies,

and private alleles were estimated using GENALEX 6

(Peakall and Smouse 2006). Tests of both HW and geno-

typic disequilibrium were evaluated after sequential Bon-

ferroni correction (Holm 1979; Rice 1989).

Partitioning of genetic variation among samples was

assessed using a hierarchical analysis of molecular vari-

ance (AMOVA) in ARLEQUIN v3.5 (Excoffier et al. 1992,

2005) for three different levels (within populations, among

populations within a basin, and among basins) using Weir

and Cockerham (1984). Values for FST were compared

using Wright’s guidelines (Wright 1978) and FSC was used

to compare populations within a basin. A Bayesian clus-

tering approach implemented in STRUCTURE v2.3.3

identified genetic clusters of G. pandora and assigned

individuals to ancestry clusters (K) (Pritchard et al. 2000)

using the admixture model. A 200,000 burn-in period was

followed by 20 iterations of 500,000 Markov Chain Monte

Carlo replicates per K (1–17). The maximum number of

populations (K) was determined by using the largest DK
value (Evanno et al. 2005) as implemented in STRUC-

TURE HARVESTER (Earl and von Holdt 2012).

CLUMPAK (Kopelman et al. 2015) was used to create

optimal alignment plots of the STRUCTURE results.

A Discriminate Analysis of Principal Components

(DAPC) was performed to visualize genetic differentiation

and the relationship among population using the R package

(R DevelopmentCore Team 2015) adegenet (Jombart 2008;

Jombart and Ahmed 2011). This multivariate approach

does not require linkage or HW equilibrium assumptions

about an underlying genetic model (Jombart et al. 2008).

Populations for the analysis were determined by sampling

location. Cross-validation was performed to determine the

number of principal components to retain based on an

accumulated variance explained by the eigenvalues of the

Table 1 Gila pandora sample collection including drainage, watershed, population, land ownership

Drainage/watershed (Map number) population Land ownership Total number Collection date UTM (E) UTM (N)

Rio Grande

Elephant Butte Reservoir (1) Alamosa Creek State 30 2/14/2011 261152 3717396

Jemez River (2) Jemez River USFS-SFNF 30 6/10/2010 347507 3961478

(3) East Fork Jemez River USFS-SFNF 30 8/18/2010 356527 3965771

(4) Rio Guadalupe USFS-SFNF 30 8/25/2010 338560 3965077

(5) Rio Cebolla USFS-SFNF 30 8/18/2010 345507 3971767

(6) Rio de las Vacas USFS-SFNF 30 7/15/2010 338464 3977630

(7) Rito Peñas Negras USFS-SFNF 30 7/15/2010 339664 3982014

Rio Chama (8) El Rito USFS-CNF 30 5/31/2010 389424 4027618

(9) Rio Ojo Caliente BLM 30 9/20/2010 406630 4022484

(10) Rio Vallecitos USFS-CNF 30 9/19 2010 403895 4033935

Upper Rio Grande (11) Rio Pueblo de Taos BLM 30 9/13/2010 434728 4021645

Canadian

Cimarron River (12) Cieneguilla Creek State 30 5/23/2010 476304 4038428

Pecos

Pecos Headwaters (13) Pecos River State 30 9/25/2010 439327 3937179

Rio Hondo (14) Upper Rio Bonito BLM 30 10/11/2010 446819 3703745

Rio Peñasco (15) Rio Peñasco Private 25 4/9/2011 477332 3640086

Total number of individuals collected, date collected, and UTM coordinates (Zone 13 N)

USFS United States Forest Service, SFNF Santa Fe National Forest, CNF Carson National Forest, BLM Bureau of Land Management, State State

of New Mexico owned public land, Private privately owned land
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principal component analysis. A discriminant analysis of

the retained principal components was then performed on

the loadings to visualize between-group variance and

within-group variance. In addition, the optimal number of

genetic clusters that best described the data was explored

using the function find.clusters. The function runs the

K-means sequentially with increasing values of K and

compares models using Bayesian Information Criterion and

plots these against increasing values of K (see Fig. S1).

Estimation of effective numbers of breeders (Nb) uti-

lized the single sample linkage-disequilibrium method

proposed by Hill (1981). The modified method corrects for

bias due to sample size (see England et al. 2006) and is

implemented in the program NeESTIMATOR v2 (Do et al.

2014). Alleles with frequencies less than 0.02

(Pcrit = 0.02) were removed when estimating Nb (Waples

and Do 2008; Do et al. 2014).

Results

Eleven loci were used to genotype 445 individuals of G.

pandora (Table S1). Analysis of HW demonstrated that

four loci were statistically significant (Gel222, CypG26,

CypG5, Gel257) indicating departure from HW due to the

presence of null alleles; however, these four loci were not

removed since HW departures were randomly distributed

among populations indicating departures were at the pop-

ulation level and not at the locus level. A test for linkage

disequilibrium revealed two loci (Gel323 and Gel257)

deviated from random association. Results did not change

after reanalyzing the data without Gel323 and Gel257;

therefore, these loci were retained and 11 loci were used

for final analyses.

For 11 loci, total number of alleles (NA) per locus

(Table S2) ranged from 2 to 27 across populations with an

average number of alleles from as low as 7 in the Pecos

drainage (Upper Rio Bonito) to as high as 16 in the Rio

Grande drainage (Rio Ojo Caliente). Allelic richness was

lower than the total number of alleles due to an adjustment

for sample size from 30 to 25 individuals across all pop-

ulations. Allelic richness was lowest in the Upper Rio

Bonito (AR = 6.75) within the Pecos drainage while the

Rio Ojo Caliente within the Rio Grande drainage exhibited

the highest allelic richness (AR = 15.09). Observed

heterozygosity varied from 0.708 (Upper Rio Bonito) to

0.872 (Rio Ojo Caliente) while HE varied from 0.747

(Upper Rio Bonito) to 0.857 (Rio Pueblo de Taos). The

inbreeding coefficient within populations (FIS) across all

loci ranged from -0.033 (East Fork Jemez River) to 0.070

(Upper Rio Bonito) (Table S2).

The AMOVA revealed moderate genetic differentiation

among all 15 populations of G. pandora (FST = 0.080,

P\ 0.001; Table 2). Genetic differences among drainage

basins were low with an FCT = 0.021 (P\ 0.001;

Table 2). However, the main source of variation was from

individuals within populations (91.9 %) and not among

populations within a basin (5.9 %) or among basins

(2.1 %). Population pairwise FST values varied from little

genetic differentiation among populations within the Rio

Grande drainage (Rio Guadalupe: Rio de las Vacas: Rito

Peñas Negras) to high genetic differentiation between two

populations in the Rio Grande drainage and Pecos drainage

(Upper Rio Cebolla: Upper Rio Bonito, FST = 0.171,

P\ 0.001; Table 2). Overall, the Pecos River had the

highest pairwise FST values. The STRUCTURE analysis

and optimal K suggested seven genetic clusters (Fig. 2).

The Upper Rio Bonito displayed the least amount of

admixture compared to all other populations within the

Pecos drainage. Populations of G. pandora within the

upper Rio Grande drainage (Rio Ojo Caliente, Rio Val-

lecitos, Rio Pueblo de Taos) had high levels of admixture

with Q-values ranging from 0.30 to 0.50. In contrast,

populations within the Pecos drainage (Pecos River and

Upper Rio Bonito) had low levels of admixture (Q = 0.94

and 0.87, respectively; Fig. 2).

A total of 150 principal components and 14 discriminant

analysis axes were retained In the DAPC analysis. The

proportion of conserved variance was 96 %. Similar to the

STRUCTURE results, the plot of Bayesian Information

Criterion against K suggested 7–10 clusters would be most

descriptive of the G. pandora data (Fig. S1). The majority

of the clusters overlapped, including Alamosa Creek and El

Rito, which indicates a genetic link between the northern

and southern tributaries in the Rio Grande (Fig. 3a). Upper

Rio Bonito did not overlap with other clusters. Likewise

Upper Rio Cebolla was a distinct cluster, however, its

elliptical space trended towards other clusters represented

by sample locations within the Jemez River (Fig. 3a).

When four clusters from the southern drainage basins

(Alamosa Creek, Upper Rio Bonito, Rio Peñasco, Pecos

River) were removed from the DAPC analysis, the final

groupings are consistent with the STRUCTURE analysis

(Fig. 3b).

Effective number of breeders (Nb) were lowest for G.

pandora in Upper Rio Bonito (Nb = 6.1) and highest in

Rio Peñasco (Nb = 109.7), both within the Pecos drainage

(Table 3). Within the Rio Grande drainage, estimates of Nb

ranged from 19.1 (Rio Vallecitos) to 89.1 (Rio Pueblo de

Taos). The upper bounds for confidence intervals were

infinite in six of the 15 populations while all the lower

bound estimates were positive.
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Discussion

Our analysis revealed seven genetic clusters of G. pandora

throughout the 15 sampling localities in New Mexico.

Three of these genetic clusters represent unique isolated

populations of G. pandora in southern New Mexico

(Alamosa Creek, Rio Bonito, Rio Peñasco). This genetic

differentiation is most likely attributed to the combined

effects of isolation during the last glacial period (Schmidly

1977) and recent fragmentation preventing gene flow

(Turner et al. 2015). Gila pandora is a member of an

assemblage of Rio Grande fishes (O. c. virginalis ? C.

plebeius ? G. pandora) that likely established residence in

the southern portion of the Rio Grande in the late Pleis-

tocene during the last glacial period (Wisconsin) when the

region was cooler and mesic (Schmidly 1977). An evalu-

ation of distribution patterns of co-occurring species can

assist with understanding genetic data (De Luca et al.

Table 2 Pairwise FST values

for 15 New Mexico populations

of G. pandora

Rio Grande

1 2 3 4 5 6 7 8

1 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.080 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.082 0.027 * 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.076 0.026 0.040 * 0.0000 0.0991 0.7748 0.0000

5 0.104 0.063 0.073 0.068 * 0.0000 0.0000 0.0000

6 0.075 0.036 0.038 0.004 0.064 * 0.03604 0.0000

7 0.080 0.025 0.037 -0.002 0.065 0.007 * 0.0000

8 0.095 0.070 0.063 0.068 0.088 0.059 0.068 *

9 0.069 0.031 0.026 0.031 0.053 0.019 0.034 0.040

10 0.071 0.050 0.037 0.045 0.078 0.031 0.051 0.057

11 0.077 0.035 0.043 0.039 0.050 0.029 0.037 0.060

13 0.074 0.053 0.057 0.046 0.073 0.036 0.040 0.065

14 0.146 0.138 0.152 0.147 0.171 0.141 0.143 0.164

15 0.131 0.083 0.097 0.098 0.108 0.090 0.094 0.095

12 0.081 0.055 0.052 0.052 0.081 0.046 0.055 0.055

Rio Grande Pecos Canadian

9 10 11 13 14 15 12

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.013 * 0.0000 0.0000 0.0000 0.0000 0.0000

11 0.029 0.041 * 0.0000 0.0000 0.0000 0.0000

13 0.032 0.051 0.050 * 0.0000 0.0000 0.0000

14 0.127 0.156 0.145 0.099 * 0.0000 0.0000

15 0.058 0.100 0.077 0.070 0.165 * 0.0000

12 0.038 0.050 0.047 0.058 0.164 0.101 *

Bolded FST values represent non-significant comparisons after Bonferroni corrections (a\ 0.0004). Rio

Grande Drainage: Alamosa Creek (1); East Fork Jemez River (2); Jemez River (3); Rio Guadalupe (4); Rio

Cebolla (5); Rio de las Vacas (6); Rito Peñas Negras (7); El Rito (8); Rio Ojo Caliente (9); Rio Vallecitos

(10); Rio Pueblo de Taos (11). Canadian Drainage: Cieneguilla Creek (12). Pecos River Drainage: Pecos

River (13); Upper Rio Bonito (14); Rio Peñasco (15). Numbers above diagonal are P values, and numbers

below the diagonal are FST values
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2014); likewise, just as multiple independent genetic

markers can reinforce observed patterns, comparison of

genetic information among co-occurring species can

strengthen genetic patterns (Avise et al. 1987). To this end,

G. pandora is presumed to be native to Alamosa Creek

because native populations of C. plebeius and O. c. vir-

ginalis (Rio Grande native fish assemblage) co-occur

throughout these southern tributaries in the Rio Grande

drainage. Similarly, McPhee et al. (2008) found that C.

plebeius in Palomas Creek (an adjacent southwestern

tributary to the lower Rio Grande) was genetically similar

to C. plebeius populations throughout the northern Rio

Grande drainage. In addition, O. c. virginalis was docu-

mented in a small tributary to the Rio Grande (Las Animas

Creek) and represents the most southern distribution of the

subspecies and that of all cutthroat trout (Behnke 1992).

Thus, these documented historical distributions and genetic

relatedness of the Rio Grande fish assemblage indicates a

Rio Grande Pecos Canadian
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Fig. 2 CLUMPAK plot of STRUCTURE assignment results (K = 7)

Fig. 3 Discriminate analysis of

principal components (DAPC)

scatterplots of G. pandora

microsatellite data showing the

first two principal components

of the DAPC. Sampling locality

was used as a prior. Dots

represent individual fish and

ellipses represent different

sampling localities. a Plot of all

15 sample locations. b Plot of

the eleven northern sample

locations with southern sample

locations 1, 14, and 15 removed,

and sample location 13 from the

Pecos drainage removed. The

number of each sample locality

is referenced in Fig. 1
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historical connection between the southern and northern G.

pandora populations.

Gila pandora is presumably native to the southern Pecos

tributaries. Sublette (1975) described G. pandora in the Rio

Ruidoso, Rio Felix, and Rio Peñasco (see map in Minckley

1980). The species presumably established populations

throughout southern New Mexico during the Wisconsin. As

the region became warmer and drier, G. pandora was rel-

egated to the cooler tributaries of the Rio Hondo, Rio

Bonito, and Rio Peñasco within the Pecos drainage.

Although data are not available from McPhee et al. (2008)

for cross species comparison, Sublette (1975) documented

C. plebeius in the Rio Bonito and Behnke (1992) docu-

mented a resident population of O. c. virginalis in the Rio

Bonito. Gila pandora in the Rio Bonito represents a unique

population with low genetic diversity, a single private

allele, a critically low estimate of effective number of

breeders, and few low-frequency alleles. The reduced

genetic diversity of the population in the Rio Bonito is

likely due to drought and multiple water diversions that

began in the early twentieth century. A major water

diversion was created with the installation of a dam to form

Bonito Lake in 1931 that was used by the Southern Pacific

Railroad for steam engines (URH-WRAS 2004). Presum-

ably, this diversion prevented movement of G. pandora

among the tributaries and thereby increasing loss of genetic

diversity through genetic drift (Haag et al. 2010).

Unlike the southern-most populations of G. pandora,

population structure throughout the northern Rio Grande

drainage (Jemez River, Rio Chama, Upper Rio Grande)

revealed gene flow. Within the Jemez River watershed,

populations from Rio Guadalupe, Rio de las Vacas, and

Rito Peñas Negras exhibited very low FST values indicating

connectivity and gene flow. Gila pandora from the Rio

Cebolla, which flows into the Rio Guadalupe just below the

confluence of the Rio de las Vacas and Rio Guadalupe,

were genetically similar to both the Jemez River and East

Fork Jemez River but not the Rio Guadalupe. We surmise

that G. pandora reached the Rio Cebolla via stream capture

or physical translocation from the Jemez River. The sce-

nario of stream capture is plausible given that the upper

portion of Rio Cebolla (ca. 2582 m elevation) runs parallel

to San Antonio Creek (ca. 2552 m elevation) which is a

tributary to the Jemez River. San Antonio Creek was once

a lake (40 km2) until the late Pleistocene. The Rio Cebolla

population may have originated from San Antonio lake

which had lacustrine deposits as high as 2650 m elevation

and post-lake stream terrace at least 2700 m in elevation

(Reneau et al. 2007). Thus, the low allelic diversity of the

Rio Cebolla population could be linked to a founder event

from stream capture between San Antonio Creek and the

Rio Cebolla. If the Rio Cebolla population originated from

stream capture, a biological or environmental barrier to fish

movement into the Rio Guadalupe would have prevented

gene flow between the two populations (gene flow between

these two populations was not evident). Low allelic

diversity of the Rio Cebolla population may be exacerbated

by contemporary habitat loss because the stream currently

contains little pool habitat and overall poor water quality

(Simino and Bassett 2003).

Gila pandora populations within the Rio Chama and

upper Rio Grande watersheds exhibited the overall greatest

genetic diversity. With the exception of El Rito, tributaries

within these watersheds were not dominated by a single

genetic cluster. Rio Ojo Caliente, Rio Vallecitos, and Rio

Pueblo de Taos contained ancestry from multiple genetic

clusters indicating minimal drift and lineage sorting. With

the exception of Rio Vallecitos (Nb = 19.1), estimated

effective number of breeders for the two most northern

watersheds were the highest (Nb range 65.3–89.1). The low

Nb of Rio Vallecitos caused an increase in linkage dise-

quilibrium as four locus pairs were out of equilibrium.

These same loci were in equilibrium in Rio Chama and

other upper Rio Grande populations. However, G. pandora

in the Rio Vallecitos, tributary to the Rio Chama, may have

linkage disequilibrium due to a bottleneck. The Rio Val-

lecitos is impaired due to high turbidity, high levels of

aluminum, and high temperatures (RC-WRAS 2005). In

contrast, neither Rio Ojo Caliente nor El Rito experience

water quality impairment.

Gila pandora from Cieneguilla Creek, a tributary within

the Canadian drainage basin in eastern New Mexico,

Table 3 Effective number of G. pandora as breeders (Nb)

Drainage Population Nb 95 % CI

Rio Grande Alamosa Creek 37.1 15.8–428.1

East Fork Jemez River 43.3 20.3–286.8

Jemez River 41.5 20.4–183.0

Rio Guadalupe 63.1 24.9–?

Rio Cebolla 34.5 17.0–135.1

Rio de las Vacas 42.1 21.0–177.7

Rito Peñas Negras 50.8 21.7–3003.9

El Rito 73.3 30.0–?

Rio Ojo Caliente 65.3 27.7–?

Rio Vallecitos 19.1 11.5–36.4

Rio Pueblo de Taos 89.1 31.9–?

Canadian Cieneguilla Creek 49.8 19.5–?

Pecos Pecos River 64.7 29.5–1251.2

Upper Rio Bonito 6.1 3.1–9.8

Rio Peñasco 109.7 42.0–?

Harmonic Mean 32.4

Estimates were calculated using the linkage-disequilibrium method as

implemented in NeEstimator2 (PCRIT = 0.02), 95 % CI from the

Jackknife method

? represents infinity
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shared a unique genetic cluster with the population in El

Rito (a tributary in the upper Rio Grande basin). Historical

accounts of G. pandora in the Canadian River basin are

few and often lack details. Sublette (1975) reported G.

pandora in the Mora River, a tributary of the Canadian

River; however, collection details were not provided.

Minckley (1980) and Rees and Miller (2005) indicated that

G. pandora may have been introduced into tributaries of

the Canadian River, but again, details or citations were not

provided. Evidence of distributions from the other two

species of the native fish assemblage (O. c. virginalis and

C. plebeius) is either conflicting or lacking (Pritchard et al.

2008).

The effective number of breeders (Nb) estimates for

G. pandora were low, but in some cases similar to G. nigra

(Headwater Chub; NeD = 61.0–112.0) from the Gila River

in New Mexico (Pilger et al. 2015) and G. nigrescens

(Chihuahua Chub; NeD = 54.4–226.0) from the Mimbres

River, also in New Mexico (Osborne et al. 2012). In spe-

cies with overlapping generations, these raw Nb estimates

are likely biased downward due to the Wahlund effect with

the magnitude of the bias affected by the number of cohorts

within the sample (Waples 2005; Waples et al. 2014; see

also Robinson and Moyer 2013). This bias could be cor-

rected and used to estimate generational effective size (Ne)

using several life history traits including adult lifespan and

age at maturity (Waples et al. 2014); however, values of

these traits are unknown for G. pandora. Relating the

current Nb estimates to the Ne 50–500 rule (see Frankham

et al. 2013; Jamieson and Allendorf 2012, 2013) is

unwarranted at this time because Nb = Ne (see Waples

et al. 2014). That being said, an Nb of 6.1 (Upper Rio

Bonito) is likely below an Ne = 50. This population is in

danger of extirpation due to increased inbreeding (Palstra

and Ruzzante 2008).

Conservation implications

Habitat loss was listed as the leading cause of decline in G.

pandora (WildEarth Guardians 2013). Habitat loss can

fragment and thus reduce genetic exchange among popu-

lations as well as increase susceptibility to extirpation from

catastrophic events. We characterized genetic variation and

population structure throughout the extant range of G.

pandora in New Mexico to aid as reference points in

conservation planning and recovery. We recommend

incorporating genetic monitoring into conservation plan-

ning of G. pandora to determine how physical barriers of

connectivity as well as biological barriers of non-native

fishes affect genetic variation and number of breeders.

Conservation planning should also take into consideration

the impact that a changing climate will have on biological

diversity (Comte et al. 2013). For example, Zeigler et al.

(2012) reported an increase in air temperature (0.29 �C
decade-1), earlier onset of snowmelt (2.3 days decade-1),

and a decrease in snow-water equivalent (5.3 % decade-1)

throughout southern Colorado and New Mexico. Not only

will these climate patterns affect the distribution and con-

tinued persistence of cool-water fishes such as G. pandora,

but also such conditions increase the frequency and

intensity of wildfires (Rieman and Isaak 2010). An exam-

ple was the 2012 Whitewater-Baldy fire in the Gila

National Forest of New Mexico where approximately

121,410 ha burned (Tillery et al. 2012). The fire eliminated

several populations of the federally endangered Gila trout

(O. gilae). Prior knowledge of genetic diversity resulted in

a multi-agency response to rescue relict populations for

preservation of extant genetic diversity. In the event that

populations of G. pandora are subject to extirpation, then

populations can be targeted for translocations to preserve

genetic diversity. Proactive planning such as this would

guide rescue and conservation efforts of G. pandora to

ensure continued persistence in an arid landscape.
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