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There is no doubt that snow cover plays an important role in the hydrological cycle of mountainous basins.
Therefore, it is essential to measure snow parameters such as snow depth and snow water equivalent in these
areas. The aim of this study is to estimate the snow depth from terrain parameters in the Sakhvid Basin, Iran
using artificial neural networks (ANNs) and M5 algorithm of decision tree. For this purpose, snow depths were
measured in 206 sites based on systematic network. Furthermore, 30 terrain parameters were extracted from
a digital elevation model (DEM) of the basin. The results indicated that the decision tree model is the most
suitable method to estimate snow depth in the study areawith a Nash–Sutcliffe Efficiency (Ens) of 0.80, followed
by ANNs with an Ens of 0.73. Moreover, the most significant parameters in the M5 decision tree algorithm are:
channel network base level, stream power, wetness index and height.
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1. Introduction

Snowfallmakes up a significant part of total annual precipitation in a
variety of high latitude areas (Marofi et al., 2011). Measurement of the
amount of water stored in the snowpack is essential for management
of water supply (Shi and Dozier, 2000). In recent years, there is an
urgent requirement to predict the snowpack. This is not only because
of a rising demand for fresh water, but also due to the concerns about
the effects of climate change (Gleick, 1993; López-Moreno et al.,
2009). Climate change is likely to change the snow cover area and
alter the water availability in the future making long term water man-
agement more challenging (Khadka et al., 2014). Simona et al. (2015)
analyzed the snow depth and snowfall data in the western Italian Alps
during the period of 1961–2010 and showed a significant decrease of
snow depth in all the stations over seasonal time scale. The earth
warming is ascribable to the threat posed by climate change and snow
accumulations throughout the world. This requirement in arid and
semi-arid regions such as Yazd Province in Iran with seasonal snowfall
is apparent. In the Sakhvid basin of Yazd Province, although snow
events may take place only once or twice a year, this small quantity of
snowfall has a principle function to drinking water supplies of down-
stream regions (Yazd Regional Water Authority, 2015).
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In order to analyze, quantify, and model the snowmelt runoff, it is
necessary to account for spatial differences in snow accumulation
(Luce et al., 1998; Seyfried and Wilcox, 1995). Generally, the spatial
resolution of snow data and in situ observations of snow distribution
are sparse and poor (Tarboton et al., 2000). Because of the enormous
spatial variability of snow properties (i.e. snow depth and snow water
equivalent), these few snow samples may not be illustrative of spatial
patterns (Elder et al., 1991). Snow accumulation is heterogeneous, and
once on the ground, the snowmay be redistributed by some secondary
agents such as wind, avalanching and sloughing (Blöschl et al., 1991;
Elder et al., 1991; Kind, 1981).

Snow depth (SD) is an important variable in climate and hydrologi-
cal model simulations (Dressler et al., 2006; Gong et al., 2007). Snow
depth presents an extra dimension for snow cover studies by providing
information relevant to water resources, soil processes, moisture and
energy balance, and ecosystems (Dyer and Mote, 2006). As was previ-
ously mentioned, since the number of snow survey stations in moun-
tainous areas is inadequate, employing a prediction technique to
overcome this deficiency is necessary. In parallel with the research
into snowpack, new modeling approaches, such as machine learning
(ML) are emerging. ML approaches (i.e. artificial neural networks
(ANNs), fuzzy logic, decision trees, support vector regression) are
being employed in all fields of water resource sciences as an alternative
to traditionalmethods (i.e. regression or auto-correlation-based statisti-
cal method such as ARIMA) to find a functional relationship between
input (terrain attributes) and output (snow depth) variables. (Deka,
2014; Nourani et al., 2014).
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Fig. 1. The study area and location of measured data and spatial distribution of testing and training points.

Table 1
The terrain parameter used for both of the ANN model and the model tree.

No. Parameters No. Parameters

1 Longitude (X) 16 Strahler order
2 Latitude (Y) 17 Stream power
3 Slope 18 Flow accumulation
4 Slope length 19 Flow direction
5 Mid-slope position 20 Flow connectivity
6 Ls factor 21 Analytical hill shading
7 Catchment slope 22 Aspect
8 Slope height 23 Convergence index
9 Height 24 Catchment area
10 Normalized height 25 Modified catchments area
11 Curvature 26 Wind effect
12 Plan curvature 27 Multi resolution index of valley bottom flatness
13 Profile curvature 28 Multi resolution ridge top flatness index
14 Valley depth 29 Altitude above channel network
15 Wetness index 30 Channel network base level
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ANNs are one of the ML algorithms that have been widely applied in
hydrology science (Govindaraju, 2000). An ANN model can overcome
large scale complex problems such as non-linear modeling, classifica-
tion and association by learning and generalizing the knowledge from
adequate pairs of data (Govindaraju, 2000). There is no need to have
the knowledge about the physical process being modeled by the ANN
technique (Nourani et al., 2011). Therefore, due to these features of
ANNs, they are suitable methods for prediction in hydrologic sci-
ence. Although, the ANN methods are applied widely in predicting
hydrological variables, they have some difficulties. For instance,
using trial and error method in order to detect the number of hidden
layers and neurons is time consuming. Furthermore, the regression
based models are black box models (Etemad-Shahidi and Mahjoobi,
2009).

Another type of ML algorithms is the model tree (Quinlan, 1992)
that produces binary decision trees and is a spread of regression
trees (Etemad-Shahidi and Mahjoobi, 2009). According to some
researches, the advantages of decision tree against neural networks
are that they demonstrate clear rules and can be trained faster. The
rules are simple and they can be easily understood. In addition, the
model tree does not require the optimization of geometry and internal
network (Etemad-Shahidi and Mahjoobi, 2009; Solomatine and Xue,
2004).
Balk and Elder (2000) in their study modeled the spatial distribution
of snow using binary decision tree and geostatistical techniques in Loch
Vale Watershed (LVWS), Rocky Mountain National Park, Colorado. The



Fig. 2. The typical structure of ANNs model.

Fig. 3. An example of tree-building process in M5 model trees, dividing the domain of
X1 × X2 into four sub-domains.
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result showed an improvement over previous approaches in predicting
the distribution of snow water equivalent (SWE) in mountainous basins.
Tedesco et al. (2004) in their study also used the ANNs, spectral polariza-
tion difference (SPD) algorithm, the Helsinki University of Technology
(HUT)model-based iterative inversion and the Chang algorithm to pre-
dict the SWE and snow depth from Special Sensor Microwave Imager
(SSM/I) data and observed series across Finland. It was concluded that
the ANN model performance with the observed data produced the most
accurate predictions. Furthermore, Bhattacharya and Solomatine (2005)
in their study investigated the relationship between water level and dis-
charge using ANNs and M5 model tree in Swarupgunj on the river
Bhagirathi, India. The result indicated that the ANNs and the M5 model
tree performed substantially better than the traditional models such as
polynomial regression and auto-correlation-based statistical method
(i.e. ARIMA).

Erickson et al. (2005) applied a geostatistical approach with a com-
plex variable mean to model the spatial distribution of snow depth
over a wind-dominated alpine basin, Green Lakes Valley watershed in
Colorado. The terrain parameters including elevation, slope, and potential
radiation, an index of wind sheltering and wind drifting were supposed.
They concluded that all parameters affected the snow depth substan-
tially when there is a non-linear interaction between the mentioned
parameters.

Tabari et al. (2010) in their study compared the snow depth and
snow water equivalent estimated by some geostatistical and artificial
intelligence methods in the Samsami basin of Iran. The result showed
that an artificial intelligence method i.e. neural network–genetic algo-
rithm (NNGA) and ANNs provided the best results among the other
models. Marofi et al. (2011) also studied SD and SWE to detect the
amount of water stored in the snow in the Samsami basin, Iran. In this
regard, they applied a multivariate non-linear regression (MNLR) meth-
od, and four types of ANNs and a neural network–genetic algorithm
(NNGA) model. They concluded that the NNGA model gave the best
performance in terms of estimating SWE in the studied area.

Although, theM5model tree has showngoodperformances in several
hydrologic studies such as rainfall–runoff modeling (Solomatine and
Dulal, 2003), flood forecasting (Solomatine and Xue, 2004), modeling
water level discharge relationship (Bhattacharya and Solomatine, 2005),
and sediment transport (Bhattacharya et al., 2007), it has not been
given enough attention in snow related investigations.

Wang and Witten (1997) in their investigation reconstructed and
improved the M5 model in a system called M5′. The M5′ model tree is
an effective learning method for predicting real values. Similarly, the
Cubist model, an advanced version of M5, is a data mining algorithm
which allows one to explore non-linear relationships in observed data
(Minasny and McBratney, 2008). The primary objective of this research
is to analyze howmuch the newML algorithms can improve the predic-
tion of spatial distribution of SD and secondary, according to the high
quantity of terrain parameters, which one of them have the most influ-
ence on snow distribution.

2. Methodology

2.1. Study area and data

The SakhvidMountain is located in the southernpart of Yazdprovince,
Iran (53.84–53.93°E, 31.58–31.67°N) and covers the area of 92.5 km2. The
average annual temperature and rainfall account for 14 °C and 222.8mm,
respectively. Most parts of the Sakhvid area are mountainous and the
elevation ranges from 2840 to 2990 m a.s.l. The snow accumulation in
the Sakhvid Mountain is a considerable part of water resources in Yazd
province. The area of 16 ha, as the representative area of the basin, was
chosen in order to study the snowdepth. The SDparameter can be obtain-
ed by sampling at different sites. The sitesmay be selected based on phys-
ical features of the catchment, executive limitations and funds (Marofi
et al., 2011). In this study, the sample sites were selected based on
topographic features of the area, existence of meteorological stations
and accessibility. The SD measurements were made by Mt. Rose Snow
Sampler in 206 points with 30 m distance based on systematic network.
Fig. 1 shows the study areawith the location ofmeasuring points. Because
of the quick change of SD data in the arid regions, the period of snow sur-
veywas short. In this study, thefieldworkwas carried outwithin an inter-
val of 3 days in February, 2012.

Considering the impact of terrain parameters on SD, these parame-
ters were utilized as the auxiliary data. Terrain parameters were calcu-
lated directly by the analysis of a digital elevation model (DEM) with a
20 m grid cell size. The DEM used in this study was originally prepared



Table 2
Summary statistics of measured snow depth.

Mean (cm) Max (cm) Min (cm) Range (cm) Standard deviation (cm) Coefficient of variation (%) Kolmogorov–Smirnov

Snow depth 53.54 114 17 97 20.9 38.5 0.614
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from RADAR images. The raw DEM contains a number of anomalies –
and by all accounts, is a ‘noisy’ dataset – as a result of the data collection
and method of preparation. This in turn affected the derivation of the
terrain attributes from the DEM. Therefore, in this study, the simple
filtering method was used for removing noise from the terrain attri-
butes. Then, the System for Automated Geo-scientific Analysis
(SAGA) was applied to calculate terrain parameters. Table 1 shows
the extracted parameters from the DEM map. The next step was to
select the most appropriate auxiliary data to reduce the dimension-
ality but also allow learning algorithms to operate more effectively.
Moreover, irrelevant and redundant information may decrease the
prediction accuracy in common machine learning algorithms (Hall,
1997; Hall et al., 2009; Mollazade et al., 2012). Different techniques
can be used to rank the relevance of auxiliary variables, including
correlation-based feature selection (CFS), principal component anal-
ysis (Omid et al., 2010), factor analysis, and sensitivity analysis.
Here, a correlation-based feature selection (CFS) was applied using
the CfsSubsetEval algorithm available in theWEKA software package
(Hall et al., 2009). Correlation-based feature selection is a fully auto-
matic algorithm, not requiring predefined thresholds or number of
features. The algorithm ranks auxiliary data according to a correla-
tion based heuristic evaluation function, retaining relevant auxiliary
data that are highly correlated and soil classes. Irrelevant data, with
low correlations, were screened out. Correlation-based feature
selection typically eliminated over half of the features. In our case,
CFS algorithm reduced the size of covariates from 30 to 16 layers,
including mid-slope position, slope, height, normalized height, cur-
vature, plan curvature, profile curvature, wetness index, stream
power, analytical hill shading, aspect, wind effect, multi resolu-
tion index of valley bottom flatness, multi resolution ridge top
flatness index, altitude above channel network and channel net-
work base level. 80% of the data was utilized to train both the
ANNs and decision tree models and the remaining data employed
for validating the models. Fig. 1 shows the location of testing and
training points.
Fig. 4. Spatial distribution of two terrain parameters derived from
2.2. Artificial neural networks (ANNs)

ANNs are mathematical models, which try to copy the parallel
local computing system of the human brain in the simplest way
(Huo et al., 2012). The most common type of ANNs is a feed-forward
back-propagation (FFBP) neural network. The network contains
interconnecting nodes called neurons that are connected to each other
through weighted synapses. In order to teach an ANN model, first, the
random initial values of weights are given to the synapses. Then, these
values are progressively corrected during a training phase. Afterward,
the computed outputs of the network are compared with the real values.
Finally, the errors are back-propagated to adjust the values of theweights
in order to minimize the errors (Kisi, 2005). In this study, an FFBP neural
network with one hidden layer was utilized. The network was trained
through back-propagation Levenberg–Marquardt algorithm (Bernd
et al., 1999). The number of neurons in the hidden layer was obtained
by trial and error method. A typical structure of the ANN model is
shown in Fig. 2. In the present study, the NeuroSolution 5 software
(NeuroDimension, Inc.) was employed to establish the FFBP neural
network.

2.3. M5 model tree algorithm

Fig. 3 illustrates the procedure of the tree build, where the space is
split into four subspaces with each possessing a linear regression model.
At the first step, the M5 model tree algorithm partitions the parameter
space to make the basic tree based on the splitting criterion, which is
the standard deviation reduction (SDR):

SDR ¼ sd Tð Þ−
X
i

T i

T
� sd T ið Þ ð1Þ

where T denotes the set of examples that reach the node, Ti are the sets
that result from splitting the note according to the chosen attribute and
Sd is the standard deviation (Wang andWitten, 1997).
DEM a) plane curvature and b) channel network based level.



Table 3
Evaluation of model performances using error criteria.

Efficiency coefficient r (%) RMSE (cm) Bias (cm) MAE (cm) Ens

M5 algorithm 89 8.7 0.53 7 0.80
Artificial neural network 85 12.1 −2.9 10 0.73
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The M5 algorithm employed standard deviation as the amount of
error of the values that reach a node. All attributes were examined at
a node and the expected reduction in error was computed. Then, the
attribute that maximized the SDR was selected. The process of splitting
ceases when a slight variation is observed in the value of all instances
that reach a node or only a few instances stand (Etemad-Shahidi and
Mahjoobi, 2009). Next, a linear regression model was introduced for
each subspace. The regression model uses only the related data to the
branches examined in that subspace. The growing of tree raises the
performance of the model, while it could lead to overfitting of the
problem. This problem can be solved by pruning the tree, whichmerges
a few lower subspaces. The tree is pruned if this process results in a
lower expected estimated error.

Themean of absolute differences between the predicted value and the
observed value for each of the training data points is the expected error
(Wang andWitten, 1997). As the expected errormay be underestimated,
this value is multiplied by the following equation:

nþ ϑð Þ= n−ϑð Þ ð2Þ

in which n is the number of training data points that reach that node and
ϑ is the number of parameters in the model that represents the value at
that node (Wang and Witten, 1997). On applying the pruning process,
there will be a substantial discontinuity in the neighbor linear model at
the leaves of the pruned tree. The M5 algorithm gets the final model at
the leaf by combining the obtained model at that leaf with the existing
model on the path to the root (Wang and Witten, 1997). In this process,
first the estimated value of the linear model at the leaf is filtered along
the path back to the root. Then, this value is smoothed at each node by
combining it with the estimated value by linear model at that node as
follows:

P
0 ¼ npþ kq

nþ k
ð3Þ
Fig. 5. Scatter plot of measured and
where P' is the prediction passed up to the next higher node, p is the
prediction passed to this node from below, q is the value predicted by
the node at this node, n is the number of training instances that reached
the node below, and k is a constant (default value is 15).

In this article, the decision tree method was performed in the
Cubist data mining software. Cubist is an advanced version of regres-
sion tree. This model is based on the M5 algorithm of Quinlan that
generates different models, namely; rule-based models, composite
and committee models (Quinlan, 1992). In rule based models, Cubist
produces amodel from training data and themodel consists of sever-
al rules. In some applications, the performance of rule-based models
can be improved by applying the composite models. The composite
models are of the most benefit when there are a small number of
input parameters and all the parameters participate in the prediction
of the target value. Beside the composite rule-basedmodels are commit-
tee models, which constitute some rule-based models and can be
produced by Cubist. When the initial model is sufficiently accurate, the
committee model becomes most effective (Quinlan, 2001). In this study,
theM5algorithmof the decision treewas constructedusing a conjugation
of committee models with composite models to produce the most
effective results.

In order to evaluate the performance of the appliedmodels, the corre-
lation coefficient (r), root mean square error (RMSE), bias, mean ab-
solute error (MAE) and Nash–Sutcliffe efficiency (Ens)were computed
(Eqs. (4)–(8)).

r ¼
Xn

i¼1
Xi−X
� �

Yi−Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Xi−X
� �2

Yi−Y
� �2q ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Yi−Xi½ �2
vuut ð5Þ

Bias ¼ Y−X ð6Þ

MAE ¼
Xn

i¼1
Xi−Yij j
n

ð7Þ

Ens ¼ 1−

Xn

i¼1
Xi−Yið ÞXn

i¼1
Xi−X
� � ð8Þ
predicted SD a) ANN and b) M5.



Fig. 6. The most important auxiliary data detected by a) ANN b) M5 models.
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where Xi is the recorded value, Yi is the predicted value, X denotes the
average of the recorded values, Y is the average of the predicted value,
and n is the length of dataset.
3. Results and discussion

3.1. Summary statistics

Relevant statistics of the SD is given in Table 2. The SD ranged from
17 to 114 cm in the study region. The average and range values of SD
are 53.54 and 97 cm, respectively. The coefficient of variation for snow
depth is relatively high (38.50), which indicates a wide range of values
across the study area. The Kolmogorov–Smirnov test confirmed a nor-
mal distribution of the raw data.

3.2. Selection of auxiliary data

There are different techniques to rank the relevance of auxiliary
variables. For the ANN model, a sensitivity analysis was applied
and the decision tree auxiliary data were ordered according to
their effectiveness. For example, Fig. 4a shows the changes of plan
curvature on the study area which resulted from irregular changes
of plan curvature over several parts of the study area while channel



Fig. 7. Spatial distribution map of SD for observed data.
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network base level has nearly a moderate and uniform change
throughout the basin (Fig. 4b).
3.3. Spatial models

The results of multi-layer perceptron (MLP) to predict snow depth
from 30 terrain parameters are shown in Table 3. The number of neurons
in the hidden layer from 2 to 20was tested with 80% of the sampled data
Fig. 8. Spatial distribution map of SD gene
and it was found that the network with 11 neurons produced the lowest
RMSE,which is 12.1 cm. Therefore, the 30–11–1 structurewas selected as
the best architecture to forecast the snow depth. As shown in Table 3, the
ANN models estimated snow depth at an acceptable level of precision
with the correlation, coefficient of determination, RMSE, Bias, MAE and
Ens values of 85%, 0.73, 12.1 cm,−2.9 cm, 10 cmand0.73 respectively. Ac-
cording to Fig. 5a, the strength of the relationship between the predicted
values and the observed data is high.

Committee–composite models, which constitute several rule-based
models, can be produced by Cubist. Each rule-based model (regression
treemodel) predicts the target value for a case and then thefinal predic-
tions are obtained by averaging the all rule-based models' predictions
(Quinlan, 2001). The M5 decision tree model performance with 80% of
the sampled data revealed the committee models and corresponding
rules as Appendix A.

Thefirstmodel of a committee–compositemodel is always exactly the
same as the model generated without the committee option. The second
model is generated to correct the first model's predictions; if the predic-
tions of the first model are too low for a case, the second model by fore-
casting a higher value will expiate. The third model attempts to correct
the predictions of the second model, and so on. The suggested number
of models is five.

The obtained models based on 80% of the sampled data were applied
to estimate the snow depth for the remaining (20%) data sets. As shown
in Table 3, theM5-decision tree algorithmperformedbetter than theANN
model in terms of correlation, RMSE, Bias,MAE and Ens. Fig. 5b also shows
that the modeled snow depth by the decision tree fitted the observed
data at a good level of accuracy.

According to theweight values given to each input parameter by the
ANNmodel, it was found that the plan curvature was given the greatest
weight and was the most effective parameter that affected the snow
depth in the area. The important parameters were ordered as follows:
plan curvature, curvature, profile curvature, wind effect, slope, and
analytical hill shading (Fig. 6a).

One advantage of the decision tree is that it uses only the effective
parameters. According to Fig. 6b, channel network base level is the most
important parameter affecting snow depth by decision tree model. The
significant parameters in M5 decision tree algorithm are ordered as
rated by a) ANN and b) M5 models.
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follows: channel network base level, stream power, wetness index,
height, analytical hill shading, altitude above channel network, plan
curvature, wind effect, slope and curvature.

General findings revealed that the M5 decision tree algorithm was
more appropriate for snow depth estimation in the basin. This method
was able to simulate 89% of changes in snow depth, whereas, ANN
model performed at correlation coefficient values of 85%. In term of
Ens value, the M5 decision tree with Ens = 0.80 peformed better than
the ANN model with Ens = 0.73. Therefore, we could recommend M5
as the best model for the prediction of SD. This result is similar with
the finding of other researchers who demonstrated the performances
of decision tree model (Balk and Elder, 2000; Elder et al., 1995). From
a statistical point of view, both algorithms M5 and ANN performed
well in terms of prediction ability, and hence, can be recommended as
models for spatial modeling. However, M5 is easier to interpret in com-
parisonwithneural networks (Clark andPregibon, 1992). Another advan-
tage of M5 is their ease of interpretation and their ability to incorporate
both continuous and categorical auxiliary data (Grinand et al.,
Fig. 9. Spatial distribution map of error resulted from the differen
2008); which would make using this type of modeling approach
suitable in places such as Iran. Furthermore, there is no concern
about the number of predictors and variable selection (Grinand
et al., 2008; Taghizadeh-Mehrjardi et al., 2014).

3.4. Spatial distribution

Fig. 7 illustrates the spatial distribution of observed snow depth
in the area and it is clear that the highest snow depth is seen in
the south, northern and eastern parts of the basin, while west of
the watershed had the lowest snow depth. Similarly, Fig. 8 shows
the spatial distribution of snow depth for the area obtained by
ANNs and M5 decision tree algorithm. These distribution maps
have a fine similarity to the distribution map produced from the
recorded data (Fig. 7). However, the M5-decision tree produced a
more accurate map.

As an additional visual analysis of the validation, the differences
between actual and predicted SD values are shown in Fig. 9. From
ce between observation data and a) ANN and b) M5 models.
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these plots, it is possible to get a sense that the average error in
the ANN and M5 models is −1.31 and −0.88 cm, respectively. In
both models, the greatest error is in the northeast of the study
area where the elevation was higher than the other parts.

4. Conclusions

In this study, the potential of using terrain-based parameters in
evaluating the spatial distribution of snow has been inquired through
the algorithms of artificial intelligence. Terrain parameters are the vari-
ables which can be derived from DEM simply. In spite of the multiplicity
of these parameters, the most effective of them were: channel network
base level, stream power, wetness index, height, analytical hill shading,
altitude above channel network, plan curvature, wind effect, slope and
curvature, respectively.

On the other hand, artificial intelligence methods have many
applications in water resource sciences. The approach used employs
two relatively new models of artificial intelligence. The spatial
distribution of snow depth is a function of several conditions
where artificial intelligence can desirably simulate these conditions
and evaluate them. Although, this research was done in a limited area
and time, it can draw a view on the amount of water in this region
which has an important role in the water budget of Yazd. Generally,
as there is no accessibility to many parts of this region, snow sapling
is done in limited points and spatial distribution of snow carried out
by some approximate methods such as Thiessen polygons. Because of
some mentioned limitations in this research, it is recommended to carry
out some similar investigations in a larger scale of temporal and spatial
pattern, so as to improve the accuracy of the applied parameters
and models.

General findings revealed that the M5 decision tree algorithm was
more appropriate for snow depth estimation in the basin. This method
was able to simulate 89% of changes in snow depth, whereas the ANN
model performed at correlation coefficient values of 85%. In terms of
Ens value, the M5 decision tree with Ens = 0.80 peformed better than
the ANN model with Ens = 0.73. The M5 decision tree algorithm not
only had a higher performance, but also had more accurate rules and
easier interpretation.

The results of the ANN application showed that the most effective
parameters on snow depth are plan curvature, curvature, profile curva-
ture, wind effect, slope, and analytical hill shading, respectively. Howev-
er, for theM5decision tree algorithm, themost effective parameters are
channel network base level, stream power, wetness index, height, ana-
lytical hill shading, altitude above channel network, plan curvature,
wind effect, slope and curvature, respectively. Plan curvature, curva-
ture, wind effect, slope and analytical hill shading are common influen-
tial parameters on SD detected utilizing both the models.

The error map derived from the observations and simulation snow
depth showed that both of the models had more errors in higher eleva-
tions. In spite of the dominant role of wind effect on redistribution of
snow (Winstral et al., 2009), and because of the lack of weather station
in the study area, it was not considered in this study. In addition, the
study area was a rocky mountain and there were no vegetation types
on it. Solar radiation was assumed constant over the basin due to very
small area. Thus, the effect of these ground data was not considered in
this research.
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