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The shrub patch pattern has important influence on the ecosystems in the arid water-wind erosion crisscross re-
gions. The objective of this study was to examine the effects of vegetation pattern of shrub spot patch on species
diversity and soilwater content at the sand in slopes inwater-wind erosion crisscross region on the Loess Plateau.
In this study, the shrub patch size was classified to four size classes, contrasting with bare land patch, and herba-
ceous plants, and soil water content of the shrub patch were measured in each patch. The Shannon–Wiener in-
diceswere 0.364 and 1.074 respectively in small and large patches,whichwerehigher than 0.231 in the bare land
patch. The Richness index was 1.41 in bare land patch, which was lower than 1.704 in small shrub patch and
4.370 in large shrub patch. The above- and below-ground biomass and surface soil water content were also sig-
nificantly (p b 0.05) higher in the shrub patch than that in the bare land patch. These results suggest that the
shrub patch could significantly increased species diversity, the above- and below-ground biomass, and surface
soil water content. Based on these results, the soil was aggregated in shrub patch and the vegetation pattern
was successive and each cycle of vegetation patternwas benefited by its previous stage in thewater-wind erosion
crisscross region on the Loess Plateau.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The arid and semiarid regions cover about one third of the Earth's
land surface, especially the water-wind erosion crisscross region on
the Loess Plateau, and they are heavily influenced by desertification
(D'Odorico et al., 2013). Landscapes of water-limited systems are mo-
saics of fertile vegetative patches and crusted soil of low productivity
(Sheffer et al., 2007). Bands (Merino-Martín et al., 2012), rings (Ravi
et al., 2007), stripes (Mauchamp et al., 1993) and spots (Couteron and
Lejeune, 2001) are the common vegetation patterns of ecosystems,
and they are characterized by the size and shape. There are some discus-
sions about the importance of their present study. Some scholars stud-
ied the interactions among factors such as overgrazing, recovery from
anthropogenic disturbance (Segoli et al., 2008; Archer, 2010; Daryanto
et al., 2013), increases in CO2 and N deposition, reduced fire frequency
and long-term climate change (Eldridge et al., 2011). In different as-
pects, the vegetation patterns also have various process and mecha-
nism. Under spot vegetation pattern in the denser plant areas, runoff
and sediment transport processes result in the formation of heteroge-
neous landscape with a mosaic of nutrient rich soil patches – known
rosion andDryland Farming on
, Shaanxi 712100, China.
as “fertility islands” - bordered by unfertile bare soil (Charley and
West, 1975). These vegetation patterns can efficiently prevent the ero-
sion of water and soil. There are many researches on the desert shrub
patch, mainly about plant community (Koyama et al., 2014;) and the
soil property (Ludwig et al., 2005; Hu et al., 2009; Vásquez-Méndez et
al., 2010; Zhao et al., 2010). In arid ecosystems, it was common to find
islands of fertility associated with individual shrub plants (Garcia-
Moya and McKell, 1970). The shrub vegetation displayed a pattern of
higher soil organic matter and mineral nutrients in the vegetation
patches compared with the low-cover matrix (Garcia-Moya and
McKell, 1970; Rostagno et al., 1991; Mazzarino et al., 1996). Vegetated
patches and their dominant shrub plants serve as protection from graz-
ing for preferred plant species and protection from predation for small
animals (Jaksić and Fuentes, 1980). However, studies of patch succes-
sion dynamics in arid and semi-arid environments have been compara-
tively scarce, especially the shrub spot patch at the sand in slopes.

Artemisia ordosica is one of the dominant shrubs in the semi-arid re-
gions of China, and is an excellent sand-fixing shrub in Mu Us Desert,
thereby playing an important role in fixing sand, maintaining biodiver-
sity and ecosystem stability in the region (Yang et al., 2008). Consider-
ing the importance of the vegetation pattern of the A. ordosica shrub
canopy patch in semi-arid regions, there is lack of research on the effects
of the A. ordosica shrub canopy patch on the plant community and soil
water content in sand in semi-arid regions. A. ordosica is the dominant
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Fig. 1. Shannon–Wiener index (a), Pielou evenness index (b) and Richness index (c) of
five patches at three different positions at the slope. Different letters indicate significant
differences at p b 0.05 among the different patches at the same position at the slope.
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species of the plant community succession in the semiarid regions. A.
ordosica is a squat shrub and grows in a vegetation patch pattern with
individual clumps of plants up to 180 cm across the canopy. Its tangled
branches and stems are woody and corky (Huang et al., 2010). A.
ordosica is long-lived about 10 years and the population recruitment
was generally realized by reproduction from seed. At present, many re-
searchers are studying the effects ofA. ordosica onwind erosion (Yang et
al., 2014). Therefore, the A. ordosica shrub patches could prevent the
erosion of soil, and provide comfortable environment beneath the
shrub canopy for the herbaceous plants. In order to manage the shrub
patches to deal with the conundrum of the deteriorating environment
in arid and semiarid regions; clarification of the mechanism, progress
and law that governs vegetation patterns is needed.

Based on the above studies, we assumed that the shrub patches may
increase the species diversity and the above- and below-ground bio-
mass, and prevent the erosion of soil and that vegetation pattern of
the shrub patches may cycle together with the accompanying herba-
ceous plants, and the difference of the microsites formed by different
sizes shrub individuals may contribute to the cycling (formation, devel-
opment and decline of shrub patch). So, we hypothesized that the plant
species diversity, above- and below-ground biomass, and the soil water
content should be greater under shrub canopies than that in their re-
spective interspaces, and the shrub patches will appear in the environ-
ment with the dynamics of soil water in the water-wind erosion
crisscross region on the Loess Plateau.

2. Materials and methods

2.1. Study sites and design

The study site was located at the Liudaogou watershed (110°21′–
110°23′E, 38°46′–38°51′N, H: 1080–1270 m) of Shenmu County in the
southern part of theMu Us desert, it belongs to the water-wind erosion
crisscross region on the Loess Plateau. There is continental semiarid and
seasonal wind climate, with an average annual precipitation of 437mm.
Most of the precipitation falls mostly from June to September during in-
tense rainstorms. Mean annual potential evapotranspiration is 785mm.
The soil of this study is an Aeolian sandy soil (particle size was
N0.05 mm), which suffers wind erosion in spring and winter, and
water erosion in summer and autumn (She et al., 2014). As such, the
Chinese government implemented “the Grain to Green” program to re-
duce soil erosion in 1998 in the study region (Xu et al., 2006).

At the study site, the dominat species was Artemisia ordosica (A.
ordosica, with some common species, such as Artemisia sphaerocephala,
Salix cheilophila, Lespedeza davurica, and Astragalus adsurgens). A.
ordosica is a squat shrub and grows in a vegetation patch pattern with
individual clumps of plants up to 180 cm across the canopy. Its tangled
branches and stemarewoody and corky (Huang et al., 2010). A. ordosica
is long-lived about 10 years and the population recruitment is generally
realized by reproduction from seed. A single shrub plant can facilitate
the development of the understory herbaceous species (Callaway,
2007) by decreasing abiotic stress or grazing damage (Facelli and
Temby, 2002; Weedon and Facelli, 2008; Cushman et al., 2010). Four
categories of A. ordosica shrub patch size (canopy diameter) were de-
signed in this study: Small Shrub Patch (SSP) (b60 cm), Middle Shrub
Patch (MSP) (60–95 cm), Large Shrub Patch (LSP) (N95 cm), Dead
Shrub body Patch (DSP) (N95 cm) patches. Canopy diameter (diameter
of the crown of the shrub) was measured at 40 cm above ground level.

2.2. Plant community investigations

In each quadrat, all green, aboveground plant parts of each species
was cut, collected, and put into separate labeled envelops. To measure
the belowground biomass, we used Complete Excavation method (get
the entire root from the soil) to collect the entire root, andwemeasured
the depth and width of the root. The roots and aboveground plant
parts were dried at 65 °C for 24 h and weighed to determine the dry
biomass.

The Richness Index, Shannon–Wiener diversity index and Pielou
evenness index of the patches communities were calculated using the
following functions (Stirling and Wilsey, 2001):

Richness index (R):

R ¼ S



Table 1
The above- and below-ground biomass (g/m2) of different patches on three positions at the slope.

Index Patch type

Position of the slope

Top Middle Base

Aboveground biomass (g/m2) BLP 3.53 ± 1.24c 3.29 ± 2.15c 1.60 ± 0.74d
SSP 20.34 ± 3.36c 18.65 ± 8.73c 13.48 ± 5.15d
MSP 159.05 ± 17.53bc 121.41 ± 32.41b 98.76 ± 20.96c
LSP 524.03 ± 118.93a 347.74 ± 40.10a 455.08 ± 16.91a
DSP 252.99 ± 37.28b 198.74 ± 32.66b 180.44 ± 33.67b

Belowground biomass (g/m2) SSP 8.49 ± 1.70c 6.33 ± 2.73d 6.85 ± 3.19b
MSP 47.86 ± 8.89b 26.97 ± 4.85c 30.76 ± 8.62b
LSP 120.23 ± 14.56a 107.07 ± 4.68a 106.35 ± 16.42a
DSP 54.16 ± 17.10b 50.57 ± 6.10b 33.96 ± 5.09b

Note: The data in the table ismean±SEM.Different superscript lowercase letters indicate a significant difference at 0.05 level among thedifferent patches at the sameposition at the slope.
BLP: bare land patch; SSP: small shrub patch; MSP: middle shrub patch; LSP: large shrub patch; DSP: dead shrub patch. Values followed by different lowercase letters within rows are
significantly different at pb0.05.

Table. 2
Pearson correlation coefficients among positions, Shannon–Wiener index (H), Pielou evenness index (E), Richness index (R), below-ground biomass (BGB), above-groundbiomass (AGB),
root-shoot ratio (R/S), and soil water content (SWC).

H E R BGB (g/m2) AGB (g/m2) R/S SWC (%)

Positions −0.075 −0.187 −0.034 −0.139 −0.105 0.039 −0.530
H 0.26 0.953⁎ 0.886⁎ 0.857⁎ −0.365 0.658⁎

E 0.296 −0.184 0.195 −0.122 0.228
R 0.923⁎ 0.901⁎ −0.392 0.653
BGB (g/m2) 0.976⁎ −0.513 0.749⁎

AGB (g/m2) −0.605⁎ 0.819⁎

R/S −0.484

Note: Shannon–Wiener index (H), Pielou evenness index (E), Richness index (R), below-ground biomass (BGB), above-ground biomass (AGB), root-shoot ratio (R/S), and soil water con-
tent (SWC).
⁎ Indicates significant difference at p b 0.05.

Fig. 2. The root-shoot ratio of different A. ordosica shrub patches at different positions at
the slope. Different letters indicate significant differences at p b 0.05.
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Shannon–Wiener diversity index (H):

H ¼ −
XS

i¼1

P iLog2Pi

Pielou evenness index (E):

E ¼ H
ln Sð Þ

where S is the total number of species and Pi is themass ratio of ith spe-
cies biomass to the total biomass in the patch community.

2.3. Soil sampling and determination

Soil samples were taken in the quadrats of each block near the be-
lowground biomass sampling points. Soil samples were collected from
ten layers (0–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70, 70–80,
80–90, 90–100 cm) in three places within each quadrat using a soil
core and a soil drilling sampler (9 cm inner diameter), and samples
taken at the same layer were then mixed to make a single sample. The
soil water content at the time of sampling was determined subtracting
the weight of the oven-dried core samples from the weight of the
fresh samples (Caviezel et al., 2014). The soil sandy surfacewas difficult
to get using soil drilling sampler at 0–5 cm layer, so the soil was mixed
with the soil at 5–10 cm layer.

2.4. Data analysis

Figures were created using SigmaPlot version 8.0 (Systat software
Inc., San Jose, CA, USA). All datas were expressed as SEM (mean± stan-
dard error of mean). Statistical analyses were conducted by using SPSS
software v. 16.0 (IBM Corporation, New Youk, USA). The differences in
species diversity, biomass, root-top ratio and soil water content of
vegetation community among patches were compared by using one-
way analysis of variance (ANOVA) procedures. Significant differences
were evaluated at 0.05 level.
3. Results

3.1. Effects of shrub patch size succession on plant community

The bare land patch was the lowest both in Shannon–Wiener index
(top of the slope: 0.25 ± 0.07; middle: 0.24 ± 0.04; base: 0.21 ± 0.02)
and Richness index (top: 1.44 ± 0.11; middle: 1.44 ± 0.11; base:
1.33 ± 0.05) in three positions of the slope. The two indices were in-
creasing with the growth of the patch. When the patch grew to the
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Fig. 4. Shrub patch dynamics (Aguiar and Sala, 1999).
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large shrub patch, the Shannon–Wiener index (top: 0.98 ± 0.08; mid-
dle: 1.23 ± 0.04; base: 1.01 ± 0.07) and Richness index (top: 4.33 ±
0.38; middle: 4.33 ± 0.19; base: 4.44 ± 0.22) reached the peak, and
were significantly higher than other four patches (p b 0.05). However,
when the patches were to die (called dead body patches), the two indi-
ces were significantly (p b 0.05) decreased to 0.60 ± 0.13 (top), 0.5 ±
0.12 (middle), 0.29 ± 0.13 (base) and 2.11 ± 0.22 (top), 2.00 ± 0.19
(middle), 1.89 ± 0.29 (base). There was a similar trend at the three po-
sitions on the slope. For the Pielou evenness index, there was no signif-
icant difference among the five patches in three positions of the slope
(p b 0.05), ranging from 0.37 to 1.73 (Fig. 1).

In the three positions, the bare land patch aboveground biomass
were 3.53 ± 1.24 g m−2 (top), 3.29 ± 2.15 g m−2 (middle) and
1.60 ± 0.74 g m−2 (base), and the large patch aboveground biomass
were 524.03 ± 118.93 g m−2 (top), 347.74 ± 40.10 g m−2 (middle)
and 455.08 ± 16.91 g m−2 (base). For the belowground biomass, the
small patch was 8.49 ± 1.70 g m−2 (top), 6.33 ± 2.73 g m−2 (middle),
6.85 ± 3.19 g m−2 (base). In the large shrub patch, the belowground
biomass (top: 120.23 ± 14.56 g m−2, middle: 107.07 ± 4.68 g m−2,
base: 106.35 ± 16.42 g m−2) reached the peak at three positions on
the slope (Table 1). (See Table. 2.)

3.2. The root-shoot ratio of shrub patch response to geomorphology

At the top position, there was no significant difference among the
four shrub patches, and at the middle position, the root-shoot ratio
was significantly larger (p b 0.05) in the small patch (0.35 ± 0.04)
than the middle shrub patch (0.24 ± 0.03), at the same time, there
was no significant difference with the large and dead patches. At the
base position, however, the root-shoot ratio was significantly higher
(p b 0.05) for the small shrub patch (0.48 ± 0.03) than the large
(0.23 ± 0.03) and dead (0.20 ± 0.02) patches, and there was no signif-
icant difference in the middle shrub patch (0.30 ± 0.04) than in other
three shrub patches (Fig. 2).

3.3. Effects of shrub patch size succession and geomorphology on soil water
content

In the surface soil layer (0–10 cm), the soil water contentwas higher
in large shrub patch (top: 5.60%; middle: 4.77%; base: 4.60%) than that
in the other four patches, especially significantly (p b 0.05) higher
than bare land patch (top: 4.14%; middle: 4.01%; base: 3.90%) and
small shrub patch (top: 4.25%; middle: 4.08%; base: 3.98%). In the soil
layers of 0–30 cm, the soil water content was increasing with the in-
creasing soil depth. In the soil layers of 30–70 cm, the soil moisture
Fig. 3. Surface soil water content of five patches at three positions at the slope. (a) top, (b) Mid
large shrub patch, DSP: dead shrub patch.
content was fluctuating with the increasing soil depth. And, in the
three positions of the slope, the soil desication emerged at the 70–
100 cm (Fig. 3).

3.4. Relationship between plant community feature and soil water content

Correlation analyses showed that surface soil water content was
positively related to positions (R=−0.530, p b 0.05), Shannon–Wiener
index (R = 0.658, p b 0.05), richness index (R = 0.0.653, p b 0.05),
below-groundbiomass (R=0.749, p b 0.05) and above-ground biomass
(R = 0.819, p b 0.05), while it was non-significant positively related to
evenness index (R = 0.228, p N 0.05) and root/shoot ratio
(R=−0.484, p N 0.05). There were significant positive correlations be-
tween above-ground biomass and Shannon–Wiener index (R = 0.857,
p b 0.05), richness index (R = 0.901, p b 0.05), and below-ground bio-
mass (R = 0.976, p b 0.05). Shannon–Wiener index was significantly
positive related to richness index (R = 0.953, p b 0.05).

4. Discussion

This study results confirmed the effectiveness of the vegetation pat-
tern of A. ordosica shrub patch in improving the species diversity, the
above- and below-ground biomass, and surface soil water content. A.
ordosica shrub patch strongly influenced the structure of herbaceous
plant community in our research. Consistent with the previous re-
searches, the A. ordosica shrub patch could provide comfortable micro-
environment for the herbaceous plants, as shown by the increased
plant diversity index with increasing size of the shrub patch. Previous
studies (Noy-Meir, 1973; Noy-Meir, 1981; Sala and Aguiar, 1996)
showed increases in plant above- and below-ground biomass and diver-
sity. Li et al. (2013) discovered that above-ground biomass and cover
are higher within shrub patches than at their interspaces. Such conclu-
sions of previous studies could be brought about by small canopy size
and unstable root which caused inefficient water sequestration from
rain or runoff by the small shrub patch. From the results of our research,
theheterogeneity of thewater distribution, in the spot pattern, could re-
sult in the promotion of above- and below-ground biomass, as well as
the plant species diversity However, about the Pielou evenness index
and root-shoot ratio, there was no unified view.

In this study, we measured the soil water in different size shrub
patches and bare land and agreed with the main trend about the
shrub patch, known as “fertility islands” (Charley and West, 1975;
Hibbard et al., 2001), so shrub patch could provide comfortable protec-
tion for the plants that grew under the canopy (Brantley and Young,
2009). In our research, the surface soil water content was positively re-
lated with species diversity, richness, and above- and below-ground
biomass. The surface soil water content was higher in the shrub patches
than that in the bare land patch, leading higher species diversity and
above- and below-ground biomass in the shrub patches. Maybe, the
reason was that the precipitation was less precipitation. Changes in
the microenvironments (i.e., increased water infiltration and lower
soil water evaporation from the soil) due to the presence of small size
shrub patches are dominantly occurring within densely vegetated
patches compared to those of bare-soil patches (Soriano and Sala,
1986; Rostagno et al., 1991).

In this study, comparedwith the bare land patch, the vegetation pat-
tern of shrub patch increased species diversity and richness, and surface
soil water content. In addition, the indices were advanced with the in-
crease of the shrub patch size. The different size shrub patches had dif-
ferent features. When the shrub patch was small, it was not large
enough to afford protection for the herbaceous plant. With the shrub
growing, the shrub patch could be considered as “fertility islands” and
aerial protection. Wind and animal action were the major dispersal
dle, (c) Base. BLP: bare land patch, SSP: small shrub patch, MSP: middle shrub patch, LSP:
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agents (Mauchamp et al., 1993; Aguiar and Sala, 1994; Aguiar and Sala,
1997), in spotted vegetation. So, shrubs could catch seeds and guard
them from the erosion of wind and water (Ma and Liu, 2008; DeFalco
et al., 2009; Giladi et al., 2013). The positive and negative effects coexist.
On the one hand, the plant shrubs formed habitats benefiting to them-
selves, decreasing the death ratio of seedlings (D'Odorico et al., 2010),
and on the other hand, adult shrubs increased seedling survival by ame-
liorating themicroenvironment or by deterring herbivory (Aguiar et al.,
1992), and adult plants could also reduce seedling survival by decreas-
ing light orwater availability (Franco andNobel, 1988;Mauchamp et al.,
1993). As the shrub grew up to the limit of its life history, the surround-
ing favourable environments with aerial protection it created would
collapse, thus the situations of multi-species plants coexistence would
break up. The seedlings around the mother shrub would conduct the
next succession process (Fig. 4). Thus, the microsites formed by the
shrub patches would be in favor of the later shrub patches, forming
the spot vegetation pattern in arid and semiarid lands. The vegetation
pattern was successive and each cycle was benefited by its previous
stage in the water-wind erosion crisscross region on the Loess Plateau.

5. Conclusion

The shrub patch patternwas important and had considerable conse-
quences in the semiarid ecosystem processes and their associated feed-
backs. The A. ordosica shrub patch pattern had significant (p b 0.05)
effects on plant community and soil water content in semiarid regions.
The aspects addressed in the study as follows: i) the succession process
was from individual shrub patch to multi-species plants pattern. ii) the
plant diversity, above- and below-ground biomass, and soil water con-
tent was higher in shrub patches than the bare land patches; iii) the
community plant diversity, above- and below-ground biomass, and
soil water contentwas increasing with the growing of the shrub canopy
patch; iv) the shape and structure of different size shrub patches was
successive from small shrub patch to dead shrub body patch. The
microsites formed by the shrub patches would be in favor of the later
shrub patches, forming the patch-mosaic vegetation pattern in the
water-wind erosion crisscross region on the Loess Plateau.
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