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Soil texture is an essential and extremely variable physical property that strongly influences many other soil
properties that are highly relevant for agricultural production, e.g., fertility and water retention capacity. In
plain areas, terrain properties derived from a digital elevation model are not effective for digital soil mapping,
and the variation in the properties of such areas remains a challenge. In this regard, remote sensing can facilitate
the mapping of soil properties. The purpose of this study was to evaluate the efficiency of using of data obtained
from the ThematicMapper (TM) sensor of Landsat 5 for digital soil mapping in a semi-arid region, based onmul-
tiple linear regression (MLR) and a random forestmodel (RFM). To this end, 399 samples of the soil surface layer
(0–20 cm)were used to predict the sand, silt and clay contents, using the bands 1, 2, 3, 4, 5 and 7, theNormalized
Difference Vegetation Index (NDVI), the grain size index (GSI), and the relationships between bands 3 and 2,
bands 3 and 7, and bands 5 and 7 (clay index) of the Landsat 5 TM sensor as covariates. Among these covariates,
only band 1 (b1), the relationship between bands 5 and 7 (b5/b7) for sand, silt and clay, and band 4 (b4) for silt
were not significantly correlated according to Pearson's correlation analysis. The validation of themodels showed
that the properties were best estimated using the RFM, which explained 63% and 56% of the spatial variability of
sand and clay, respectively, whereas the MLR explained 30% of the spatial variation of silt. An analysis of the rel-
evance of the variables predicted by the RFM showed that the covariates b3/b7, b5, NDVI and b2 explainedmost
of the variability of the considered properties. The RFM proved to be more advantageous than the MLR with re-
spect to insensitivity to overfitting and the presence of noise in the data. In addition, the RFM producedmore re-
alistic distribution maps of the soil properties than did the MLR, taking into account that the estimated values of
the soil attributeswere in the same range as the calibration data, while theMLRmodel estimateswere out of the
range of the calibration data.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Information on soils, including knowledge of the variability in soil
properties, is critical for the formulation of agricultural policies, soil
management and monitoring of environmental impacts arising from
land use. Indeed, the lack of such information can result in the adoption
of inadequate public policies, whichmay increase the risk of ecosystem
degradation and the emission of carbon into the atmosphere (Mulder
et al., 2011).

According to Boettinger et al. (2008) and Ben-Dor et al. (2008), or-
bital remote sensing data can be used as environmental covariates in
digital soil mapping, especially in arid and semi-arid regions, thus facil-
itating mapping and reducing the need for costly and time-consuming
field surveys (Mulder et al., 2011). Several studies have demonstrated
relationships between different soil properties and remote sensing
as),
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data. Among these, studies on organic carbon (Gomez et al., 2008;
Stevens et al., 2010) and particle size composition (Demattê et al.,
2007; Breunig et al., 2008; Liao et al., 2013) are particularly noteworthy.

Themost commonly usedmethods for the prediction of soil proper-
ties, using remote sensing data as environmental covariates, are MLR
(Ben-Dor et al., 2002; Nanni and Demattê, 2006), partial least squares
regression (Stevens et al., 2008; Gomez et al., 2008), geostatistical and
hybrid methods (Lark and Bishop, 2007; Lark et al., 2012; Rivero et al.,
2007; Eldeiry and Garcia, 2010) and boosting regression tree models
(Ciampalini et al., 2014a, 2014b). By contrast, data mining methods
such as the random forest model (RFM) are less commonly used.

Random forest regression is a dataminingmethod that has some ad-
vantages over most statistical modeling methods, as noted by Breiman
(2001) and Liaw andWiener (2002). These advantages include the abil-
ity to model highly nonlinear dimensional relationships; the use of cat-
egorical and continuous variables; resistance to “overfitting”; relative
robustness with respect to the presence of noise in the data; the estab-
lishment of an impartialmeasure of the error rate; the capacity to deter-
mine the relevance of the variables used; and the requirement of few
parameters for implementation. The main disadvantage of this method
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is the limited interpretability of the results because the relationship be-
tween the predictors and the responses cannot be examined individual-
ly for each tree in the forest, which iswhy this technique is often called a
“black box” approach (Grimm et al., 2008).

Random forest regression was used by Grimm et al. (2008) for the
spatial prediction of soil organic carbon in a region in Panama. These au-
thors used the following environmental covariates: topographic proper-
ties, soil units, soil parent material and forest history of the area. Based
on this approach, digital mapping was used to predict soil organic car-
bon with high spatial resolution, to provide an estimate of the predic-
tion error, and to identify the importance of the predictor variables.

Viscarra Rossel and Behrens (2010) compared different data mining
algorithms, including an RFM, for the prediction of soil organic carbon,
clay content and soil water pH, using diffuse reflectance data from the
visible to the near-infrared region (350–2500 nm), based on a dataset
of 1104 samples of Australian soils. Wiesmeier et al. (2011) used an
RFM to predict soil organic carbon in a semi-arid region of northern
China, using the following predictive variables: use of land units, refer-
ence soil units, geological units and 12 terrain properties derived from a
digital elevationmodel. According to the authors, the prediction accura-
cy andmapswere acceptable and explained 42 to 62% and 66 to 75%, re-
spectively, of the data variation.

Ließ et al. (2012) compared the efficiency of regression trees and an
RFM for the spatial prediction of soil texture from soil properties, using
data of 56 soil profiles in the southern EcuadorianAndes. The results ob-
tained showed that the RFM performed better than the regression trees
and explained 30 to 40%of the variation in the texture of the soil surface.
Among the terrain properties, elevation had the strongest influence on
the results during the construction of the model.

In this paper, we evaluated the potential of Landsat 5 TM data and
modern statistical models and techniques for the purpose of predicting
the texture of the A horizon of soils. The purpose of this study was to
compare the efficiency of MLR and an RFM in predicting the texture of
the A horizon of soils in an area of the Brazilian semi-arid region that is
characterized by sparse savanna vegetation and high-activity clay soils.
Fig. 1. Location of the study area in the state of Bahia an
2. Materials and methods

2.1. The study area

The study was carried out in part of an area belonging to the irriga-
tion project Salitre, in Juazeiro, State of Bahia. The selected area covers
approximately 35,000 ha (Fig. 1).

According to the Köppen climate classification, the climate in this re-
gion is BSwh' (semi-arid climate with dry winters and rainy summers;
mean temperature of the coldestmonth N18 °C). Annual rainfall reaches
approximately 400 mm, and the rainy season lasts from November to
April; March is the wettest month, and the average annual temperature
is approximately 26 °C. The xerothermic indices vary from 200 to 150,
and the dry period lasts 7 to 8 months. Originally, the area had hyper-
xerophilic shrub-tree Caatinga vegetation with a marked degree of
xerophytism,much of whichwas highly degraded due to timber extrac-
tion for various purposes. The relief of the area is essentially flat. The
geologic components of the area consist mainly of limestone of the
Caatinga formation of the Tertiary–Quaternary and of gneiss–granitic
rocks of the Caraíba–Paramirim complex (Souza et al., 2003). In this
area, themost representative soil types are Vertisols, Cambisols and Pla-
nosols, according to the Brazilian Soil Classification System (Embrapa,
2013).
2.2. Soil properties and environmental covariates

For soil analysis and the prediction of the sand, silt and clay contents,
we used data of the surface layer (0–20 cm) of 399 soil profiles, collected
in a detailed soil survey of the Salitre project and provided by the
Companhia de Desenvolvimento dos Vales do São Francisco e do
Parnaíba (Codevasf). These soil properties were chosen in view of their
importance for local irrigation management. Particle size distribution
was determined by a hydrometer, using sodium hexametaphosphate
or hydroxide as a dispersing agent and separating the fractions as
d the spatial distribution of the studied soil profiles.
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follows: sand (2–0.05 mm), silt (0.05–0.002 mm), and clay
(b0.002 mm), as described by Embrapa (1979).

As environmental covariates, we used data from the Landsat 5 TM
sensor (digital numbers) with a spatial resolution of 30 m, obtained
from an image captured during the rainy season (January 2007), as fol-
lows: band 1 (0.450–0.515 μm), band 2 (0.525–0.605 μm), band 3
(0.630–0.690 μm), band 4 (0.755–0.900 μm), Band 5 (1.550–
1.750 μm), band 7 (2.090–2.350 μm), NDVI (band 4 − band 3 / band
4 + band 3), and GSI ((band 3 − band 1) / (band 3 + band 2 + band
1)), as described by Xiao et al. (2006), and the relationships between
band 3 and band 2 (b3/b2), between band 3 and 7 (b3/b7) and between
band 5 and 7 (b5/b7), as described byMalone et al. (2009) and Carvalho
Junior et al. (2014).

According to Xiao et al. (2006), the GSI was specifically designed for
using Landsat TM/ETM+ data. Considering the reflectance spectra of
different soil surfaces and vegetation, the difference between bands R
(band 3) and B (band 1) in the GSI equation is designed to distinguish
between the vegetated or water surface and bare soil; meanwhile, the
accumulation of the reflectance in the R, G (band 2) and B bands can dis-
criminate among topsoils composed of different grain sizes. Therefore,
the designed GSI can potentially detect surface soil texture or grain
size composition. The GSI value is close to 0 in vegetated and water
areas, and it can sometimes even be negative.

The importance of the environmental covariates was estimated
using Pearson's correlation coefficients, which are normally used to
measure the linear association between variables, implemented in R
(R Development Core Team, 2007) using the cor.test function, as pro-
posed by Ciampalini et al. (2012) and Carvalho Junior et al. (2014). In
Pearson's correlation, thep-value defineswhether two variables are sta-
tistically correlated; in our study, p values below 0.05 were assumed to
indicate significant correlations.
Table 1
Descriptive statistics of the samples used in the prediction of the soil properties.

Properties Calibration Validation

Max Min Mean SD CV
%

Max Min Mean SD CV
%

g ∙kg−1 g ∙kg−1

Sand 790 116 317 138 44 801 140 333 147 44
Silt 344 54 221 51 23 335 41 217 58 27
Clay 636 133 462 107 23 647 158 450 111 25

SD— standard deviation; CV— coefficient of variation.
2.3. Prediction models

In this study, we usedmultiple linear and random forest regressions.
MLR is a classical method that has been widely used to predict values of
a (dependent) response variable from (independent) predictor vari-
ables, to recognize the interaction between these variables and to ex-
plore the forms in which they are correlated. MLR was implemented
in R (R Development Core Team, 2007), using the lm function, which
is associated with the step function that can be used to perform back-
ward stepwise regression and select the best regression variables.

The random forest regression model is a non-parametric technique
that was developed by Breiman (2001) as an extension of the CART
(Classification andRegression Trees) program to improve theprediction
performance of themodel, and it consists of a combination ofmany pre-
dictor trees (i.e., a forest), in which each tree is generated from a ran-
dom vector that is sampled independently and that has the same
distribution for all trees in the forest. The subdivisions within each
tree are determined based on a subset of predictor variables chosen ran-
domly from all existing predictors. In the case of RFM application for re-
gression, the final result represents the mean of the results of all trees
(Breiman, 2001; Cutler et al., 2009).

The RFMs were implemented using the package randomForest in R
(R Development Core Team, 2007). To use an RFM, three parameters
must be defined: the number of trees in the forest (ntree), the minimum
amount of data per terminal node (nodesize) and the number of vari-
ables used per tree (mtry) (Liaw and Wiener, 2002). The standard for
ntree defined in the package is 500. Grimm et al. (2008) reported stable
results with a larger number for ntree, but preliminary tests did not con-
firm this finding, showing that a higher ntree did not improve the
model's performance. Therefore, the standard number (500) was
used. The standard value for regression studies was used for the
nodesize value, which is five for each terminal node. In regression prob-
lems, the standard value for mtry is one third of the total number of
predictor variables (Liaw and Wiener, 2002); thus, an mtry value of
three was used for the eight predictor variables.

The RFM provides reliable estimates of the errors using so-called
out-of-bag (OOB) data, which is a random subset of the data that is
not used by the algorithm to build the trees. From the OOB predictions
of every tree in the forest, themean square error (MSEOOB) is calculated,
as described by Eq. (1) (Liaw and Wiener, 2002):

MSEOOB ¼ n−1
Xn
i¼1

zi−zoobi

� �2
ð1Þ

where zi is the measured value of the variable and ẑioob is the average of
all OOB predictions. However, as theMSE depends on themeasurement
scale, it cannot be used to compare the performance of differentmodels.
Therefore, the percentage of variance explained by the model (Varex)
was calculated using Eq. (2), as proposed by Liaw and Wiener (2002):

Varex ¼ 1� MSEOOB=Varzð Þ ð2Þ

where Varz is the total variance of the variable.

2.4. Model validation

The performance of prediction models is ideally assessed using an
independent set of validation data that was not used in the calibration
process. Thus, the 399 profiles were divided into two independent
sets, one for calibration (319 samples) and the other for validation (80
samples) of the tested models, randomly selected using the R statistical
package (R Development Core Team, 2007). The performance of each
model was computed from the validation samples by calculating the
correlation between the observed and estimated values based on the
coefficient of determination (R2) and the RMSE (root mean squared
error), as described by Eq. (3).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

d2
i

vuut ð3Þ

where d is the difference between the observed and predicted values,
and n is the total number of observations. As proposed by Holmes
et al. (2000), the RMSE is normally used to estimate the error or uncer-
tainty associated with estimates where data were not measured. The
RMSE indicates the discrepancy between the observed and calculated
values. The lower the RMSE, the more accurate the prediction.

3. Results and discussion

3.1. Descriptive statistics

The descriptive statistics of the physical properties of the calibration
and validation samples of the soil surface layer (0–20 cm) are shown in
Table 1, and the descriptive statistics of the environmental covariates
are presented in Table 2.

The results indicate high similarity between the calibration and
validation samples, and no significant differences in the analyzed



Table 3
Pearson's correlation between soil properties and environmental covariates.

Environmental covariates

Properties

Sand Silt Clay

p-Value r p-Value r p-Value r

Band 1 0.66ns 0.02 0.43ns −0.04 0.64ns −0.02
Band 2 0.00⁎ −0.16 0.04⁎ 0.10 0.00⁎ 0.15
Band 3 0.00⁎ −0.19 0.02⁎ 0.12 0.00⁎ 0.17
Band 4 0.00⁎ 0.19 0.37ns −0.05 0.00⁎ −0.23
Band 5 0.00⁎ 0.20 0.00⁎ −0.15 0.00⁎ −0.19
Band 7 0.00⁎ 0.15 0.04⁎ −0.10 0.00⁎ −0.15
NDVI 0.00⁎ 0.38 0.00⁎ −0.19 0.00⁎ −0.39
Band 3/band 2 0.00⁎ −0.26 0.00⁎ 0.15 0.00⁎ 0.25
Band 3/band 7 0.00⁎ −0.58 0.00⁎ 0.37 0.00⁎ 0.56
Band 5/band 7 0.05ns 0.10 0.08ns −0.09 0.13ns −0.08
GSI 0.00⁎ −0.43 0.00⁎ 0.30 0.00⁎ 0.40

r — Pearson's correlation coefficient; ns — non-significant; NDVI — Normalized Difference
Vegetation Index; GSI — grain size index.
⁎ Significant at 5% probability.
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properties were detected at the 95% probability level based on the anal-
ysis of variance (ANOVA) results. This similarity indicates that the vali-
dation samples adequately represent the calibration samples.

The coefficient of variation (CV) was equal to or greater than 23% in
all cases, which indicates the heterogeneity of the sample sets. The sand
fraction had the highest CV, for both the calibration and validation sam-
ples, indicating that sand was the most heterogeneous fraction in this
area.

Similar to the physical properties, the covariate calibration and vali-
dation samples did not differ significantly at the 95% probability level
based on the analysis of variance (ANOVA) results. Except for the
NDVI, all covariates had a CV b18%, indicating high data homogeneity.

Demattê et al. (2007) attributed the good prediction results for sand,
silt and clay in their study to the high variance and standard deviation of
the soil properties and the spectral data they used, which allowed a bet-
ter calibration of MLR models compared with another area with lower
data variance. In our study, the variance of the soil properties was
high (CV N 23%), while the spectral data had lower variance, except
for the NDVI.

3.2. Importance of covariates

The Pearson's correlation coefficients (Table 3) showed that in gen-
eral, the environmental covariates used were significantly correlated
with the soil properties (p b 0.05).

The sand content was significantly correlated with most of the co-
variates, except with b1 and b5/b7 (Table 3), which is does not agree
with the results presented by Carvalho Junior et al. (2014), who found
no correlation between the sand content and the Landsat 5 TM image
data (NDVI and the relationships between the bands b3/b2, b3/b7 and
b5/b7). Only the covariate b3/b7 was strongly correlated (r = −0.58)
with the sand content (Cohen, 1988), whereas the NDVI and GSI were
moderately correlated (r = 0.38 and 0.43, respectively) and the other
covariates weakly correlated, with r values below 0.26 (positive or
negative).

The highest number of non-significant correlations (i.e., b1, b4 and
b5/b7) was observed for silt; the other covariates were weakly (b2,
b3, b5, b7, NDVI, and b3/b2) or moderately correlated (b3/b7 and GSI)
with this soil property (Table 3). Carvalho Junior et al. (2014) found
no significant correlation between silt and the environmental covariates
derived from a Landsat 5 TM image. In contrast, Souza Junior et al.
(2011) reported high correlation coefficients between silt and bands de-
rived from ASTER satellite-derived data (bands 1–8). The lower correla-
tions of silt with the covariates are consistent with previous studies
conducted by Islam et al. (2003) and by Wettlerlind and Stenberg
(2010). The latter suggested that silt is more difficult to distinguish in
the visible and near-infrared regions.

Inverse relationships were observed between clay and the environ-
mental covariates, but themagnitudeswere the same as those observed
Table 2
Descriptive statistics of the covariates used in the prediction of the soil properties.

Environmental
covariates

Calibration Validation

Mean Standard
deviation

CV
(%)

Mean Standard
deviation

CV
(%)

Band 1 107 13.31 12 110 13.8 13
Band 2 55 8.00 15 53 7.73 15
Band 3 65 11.25 17 64 10.91 17
Band 4 66 6.07 9 66 6.24 9
Band 5 137 18.77 14 135 17.05 13
Band 7 71 12.92 18 70 11.82 17
NDVI 0.01 0.07 700 0.02 0.08 400
Band 3/band 2 1.20 0.05 4 1.20 0.05 4
Band 3/band 7 0.93 0.09 10 0.92 0.09 10
Band 5/band 7 1.94 0.11 6 1.95 0.11 6
GSI −0.19 0.03 16 −0.20 0.03 15

CV — coefficient of variation; GSI — grain size index.
for sand (Table 3); similar results were reported by Souza Junior et al.
(2011). Only the covariates b1 and b5/b7 were not significantly corre-
lated with clay, and the most relevant covariates were b3/b7 (r =
0.56), GSI (r = 0.40), NDVI (r = −0.39) and b3/b2 (r = 0.25).
Carvalho Junior et al. (2014) found significant correlations between
clay and the NDVI index and between clay and the bands b3/b2 and
b5/b7, whereas no correlation was observed between clay and the b3/
b7 band. On the other hand, Ahmed and Iqbal (2014) only detected sig-
nificant correlations between clay and bands 4 and 6 using Landsat 5
TM.

According to Sabins (1997), the index Clay minerals (b5/b7) can be
useful to identify areas with different types of clay minerals. The soils
of the study area consisted predominantly of 2:1 clay minerals; there-
fore, the small variability in terms of clay minerals may explain the ab-
sence of a significant correlation between the properties sand, silt and
clay and covariate b5/b7. Similarly, covariate b1 was not significantly
correlated with any of the properties evaluated in the study by Ahmed
and Iqbal (2014).

Most of the NDVI index values were below 0.1, indicating little veg-
etation cover in the study area (Liao et al., 2013). Relatedly,
Bartholomeus et al. (2007) noted that an accurate estimation of soil
properties is hampered by vegetation cover of more than 20%. The
high variance of this index is noteworthy and may help explain its im-
portance in capturing the variations of the studied properties.

Demattê et al. (2009) and Liao et al. (2013) highlighted the signifi-
cant correlation of band 7 with soil texture in their studies and related
this to the greater sensitivity of this band to available soil water levels.
In contrast, in this study, band 7 was weakly correlated with sand,
clay and silt (Table 3). This result may be related to the drier conditions
of the area (400 mm of rain per year) compared with the cited studies.

Demattê et al. (2009) explained that the presence or absence of a
particular band is directly related to the specific characteristics of the
soils of a region, which probably explains the differences between the
results of the above-cited studies. On the other hand, although the ob-
served correlations are not strong for most covariates, these can be
used to improve the prediction performance of the different models.

3.3. Multiple linear regression

The MLR analysis showed a moderate correlation between the sand
and clay and the covariates, with R2 values close to 0.50 (Table 4); the
RMSE results indicated a better performance of the model for clay. The
silt was weakly correlated with the covariates, with an R2 value of
0.20 and an RMSE value of 44.5 g ∙kg−1, which is considered an unsatis-
factory result according to Nanni and Demattê (2006).

Among the covariates, themost relevant for predicting sand and clay
using the stepwise model were b2, b3, b4, b5, NDVI, and GSI. The



Table 4
Models of multiple linear regression and the respective coefficients of determination.

Property Regression equation R2 RMSE
(g ∙kg−1)

Sand y = −574.81 + (−27.40 ∗ band 2) + (43.78 ∗ band 3) + (−24.37 ∗ band 4) + (5.18 ∗ band 5) + (3634.96 ∗ NDVI) + (−1975.74 ∗ GSI) 0.51 93.28
Silt y = 430.40 + (7.15 ∗ band 2) + (−4.44 ∗ band 3) + (−1.29 ∗ band 5) + (673.66 ∗ GSI) 0.20 44.50
Clay y = 1146.23 + (20.38 ∗ band 2) + (−35.01 ∗ band 3) + (20.14 ∗ band 4) + (−3.88 ∗ band 5) + (−3060.04 ∗ NDVI) + (1408.65 ∗ GSI) 0.49 75.17
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stepwise model eliminated b3/b7 for both sand and clay, although
Pearson's correlation analysis indicated that this covariate had the
highest values (r = −0.58 and 0.56, respectively, for sand and clay)
(Table 3). This result may be related to the effect of intercorrelation
with the other covariates. For silt, the covariates b2, b3, b5 and GSI
were selected, whereas the NDVI was not selected despite a significant
Pearson correlation (r = −0.19).

The results obtained in this study for sand and clay, 0.52 and 0.67, re-
spectively, were lower than those of Nanni and Demattê (2006), who
used six bands of Landsat 5 TM and MLR analysis. In a predominantly
sandy area in Paraguaçu Paulista (SP), Demattê et al. (2007, 2009) also
found higher values. On the other hand, in these same studies, results
for sand, silt and clay were considerably lower (0.08, 0.12 and 0.18, re-
spectively) for an area with predominantly iron-rich, clayey soils in Rio
Brilhante (MS). In this respect, the greater homogeneity of the spectral
datamay have contributed to the lower results in thepresent study than
those reported by Demattê et al. (2007) for Paraguaçu Paulista.

Liao et al. (2013) studied soils rich in high-activity clay and found
lower values than in the current study for sand (0.32), silt (0.21) and
clay (0.36), which they attributed to the negative influence of atmo-
spheric, topographic and solar effects. In addition, they noted that the
spatial variability of the surface texture with a 30-m pixel resolution
also affected the accuracy of the regression models. Ahmed and Iqbal
(2014) used the same approach as earlier studies and found R2 values
of 0.51 and 50.21 g ∙kg−1 and RMSE values of 0.72 and 42.15 g ∙kg−1

for clay and silt, respectively, using only bands 4 and 6.
The differences between the cited studies may be attributed to the

satellite data being influenced by factors such as geometric and atmo-
spheric variations, surface roughness, water content, light angle and in-
tensity, cover and type of vegetation, and the characteristics of each
sensor (Moran et al., 1997; Demattê et al., 2007).
Fig. 2. Importance of the environmental covariates derived from the RFMs for sand, silt and clay
Difference Vegetation Index; GSI — grain size index; MSE— mean squared error.
3.4. Random forest model

The importance of the environmental covariates in each tested RFM
is shown in Fig. 2, inwhich thepercentage of variance explained (Varex),
derived from the out-of-bag data (MSEOOB), can be observed. This vari-
ancewas consideredmoderately satisfactory for sand (47.65%) and clay
(48.94%) and unsatisfactory for silt (8.61%). The same trend was ob-
served when using stepwise MLR. The RMSE results for sand
(99.65 g ∙kg−1) and silt (48.93 g ∙kg−1) were slightly lower than those
obtained using stepwise MLR, while the two models produced similar
results for clay (76.44 g ∙kg−1).

Thus far, few studies have used RFMs for the prediction of soil
texture, and none have used only remote sensing data as the main
covariates (Table 5). Ließ et al. (2012) used terrain properties de-
rived from a digital elevation model, combined with two determina-
tion methods of particle-size distribution (pipette and laser), and
found lower values for Varex than in this study for sand (30%) and
clay (43%) and a higher value for silt (26%) in the soil surface layer.
The poor performance of the RFM in this study was attributed to
the small size of the dataset.

In a study inNigeria, Akpa et al. (2014) reported percentages of Varex
for RFMs, i.e., 48–49% for sand, 26–27% for silt and 53–56% for clay in the
top soil layer (0–15 cm). Their results are quite similar to those obtained
in this study for sand and superior to those for silt and clay. Therefore,
the RMSE results for sand (19.26–19.67%), silt (11.72–12.22%) and
clay (13.11–13.59%) (Table 5) were lower than those obtained in the
present study.

Vaysse and Lagacherie (2015) reported lower Varex values for sand
(33 to 35%) and clay (31 to 35%) and higher values for silt (23 to 29%).
The low performance of the RFMs was attributed to the small-scale var-
iation of the sourcematerial and to the relative erosion/deposition along
. B2— band 2; B3— band 3; B4— band 4; B5— band 5; B7— band 7; NDVI— Normalized



Table 5
Results from previous studies for the prediction of sand, silt and clay using random forest models.

Author Explained variance (%) RMSE

Sand Silt Clay Sand Silt Clay

Ließ et al. (2012) 30 26 43 – – –
Akpa et al. (2014) 48–49 26–27 53–56 19.26–19.67 11.72–12.22 13.11–13.59
Vaysse and Lagacherie (2015) 33–35 23–29 31–35 139.80–140.23 97.56–98.19 99.70–99.97
This study 44 8 46 99.65 48.93 76.44
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the slope, which could not be captured by the spatial resolution of the
covariates used (100m).Moreover, these authors claimed that the qual-
ity of the soil dataset must be improved to improve prediction
performances.

The covariates used as predictors in the RFM (Fig. 2) were the same
as those used for the MLRmodels. One of the main advantages of RFMs
over MLRmodels is that the former provides an estimate of the relative
importance of the covariates in the model, unlike MLR, in which only
highly correlated predictive covariates are maintained in the model
through stepwise selection (Cutler et al., 2009). The RFM avoids the
elimination of predictive covariates that may be relevant for soil, even
if there are correlations between them (Akpa et al., 2014).
Fig. 3. Results of the coefficient of determination (R2) and RM
In this study, a threshold of importancewas defined, belowwhich the
covariateswere considered unimportant. These valueswere set at 15% for
sand, 12% for silt and 20% for clay. The results showed different combina-
tions of covariates based on the analyzed properties. Thus, the most rele-
vant covariates for sand were b3/b7 N b5 N GSI N NDVI N b2 N b4. For silt,
the most important covariates were GSI N b5 N b2 N b3/b7, and for clay,
b3/b7 N NDVI N b5 N GSI N b4 N b2. This confirmed the statement made
byAkpa et al. (2014), i.e., that the relative importance of the covariates es-
timated by the RFMs is affected by the considered property as well as by
other variables.

Themajor importance of covariate b3/b7 with respect to the predic-
tion of all propertieswas consistentwith the Pearson correlation results,
SE of the prediction models using the validation samples.
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which also showed the highest correlation coefficients for this covariate,
i.e., −0.58 for sand, 0.37 for silt and 0.56 for clay (Table 3). The NDVI
index was the second most important covariate for clay and the fourth
for sand, which is also in line with the Pearson correlation coefficients
(0.38 and−0.39 for sand and clay, respectively). In contrast, this covar-
iate was rather unimportant for silt. However, as the prediction perfor-
mance for this property was very poor, the interpretation of the
significance of the covariates is irrelevant (Grimm et al., 2008).
3.5. Validation of prediction models

The results of the predictive models (MLR and RFM)were validat-
ed using an independent dataset (Fig. 3). The RFM performed slightly
better than the stepwise MLR in predicting sand (R2 values of 0.63
and 0.57, and RMSE values of 90.77 and 98.00 g ∙kg−1) and clay (R2

values of 0.57 and 0.52, and RMSE values of 73.94 and
76.39 g ∙kg−1 for the RFM and MLR, respectively). For silt, however,
the stepwise MLR model performed better, with an R2 value of 0.30
and an RMSE value of 49.42 g ∙kg−1 versus 0.25 (R2) and
50.18 g ∙kg−1 (RMSE) for the RFM.

In general, themodels had a satisfactory predictive capacity for sand
and clay, with a slight superiority of the RFM, but bothmodels were un-
satisfactory for silt. The superior results obtained using the RFM com-
pared with MLR for the prediction of the surface texture of soils are
detailed in the study conducted by Hitziger and Ließ (2014) and that
conducted by Guo et al. (2015) for the prediction of soil organic matter.
Additionally, the RF-modeled maps of the spatial distribution of the
properties were more realistic than the maps produced by the MLR
models (Fig. 4), as was also reported by Guo et al. (2015).
Fig. 4. Spatial distributions of the physical prope
The performance ofMLR, with slightly better predictions for silt than
those obtained using the RFM,was contrary to expectations because the
RFM is a more robust approach than MLR. This result may be related to
the specific conditions of the study area, in combination with the con-
siderable difficulty in distinguishing silt in the visible and infrared spec-
tral regions (Wettlerlind and Stenberg, 2010).

Demattê et al. (2007) emphasized that the quantification of soil
properties from satellite sensor data is by no means a simple task be-
cause of the complexity of soils. Relatedly, the results observed in this
study for sand and clay using bothmethods (RFM andMLR) can be con-
sidered satisfactory, similar to the conclusions drawn by Nanni and
Demattê (2006) and Demattê et al. (2007). These results can be ex-
plained by the probable physical interference of these constituents
with the energy incident on and reflected from the soil.
3.6. Spatial prediction

Stepwise MLR and RFM were used in the spatial modeling of the
studied properties (Fig. 4). In the MLR model, the sand content varied
the most among the properties (−39–855 g ∙kg−1), whereas the varia-
tionwas smaller (−150–600 g ∙kg−1) in the RFM. The silt content had a
wider variation (48–403 g ∙kg−1) when the MLR was used than when
the RFM was used (−123–301 g ∙kg−1), while the clay content ranged
from 32 to 987 g ∙kg−1 based on the MLR and from 221 to 603 g ∙kg−1

based on the RFM.
The maps generated by the two models showed a higher clay con-

centration in the North Central part of the area (Fig. 4), which is pre-
dominated by Vertisols. The predominance of limestone in the
Caatinga formation, which covers 94.5% of the area, explains the
rties estimated using the studied methods.
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prevalence of the clay fraction in these soils. The Vertisols in the study
area have a weak or moderate A horizon, with an average thickness of
13.8 cm and a medium to very clayey surface texture, with high base
saturation.

In the southwestern and southeastern parts of the area, the sand
fraction is predominant (Fig. 4). These areas are associated with
Cambisols and Planosols. The Cambisols have a weak or moderate A ho-
rizon with an average thickness of 14.9 cm. For the most part, they con-
tain high-activity clay, are eutrophic and have a medium and more
rarely clayey texture. The Planosols are characterized by only a weak
A horizon with an average thickness of 16.6 cm and a medium surface
texture and very high base saturation. Silt has a distribution similar to
clay, being predominant in the area of the Vertisols.

The map generated by the RFM shows the predicted fitted values of
the distribution of this fraction in the range of the observed data, while
in the MLR-modeled map, the predicted values are extrapolated.

4. Conclusions

• Remote sensing data combined with the random forest models to es-
timate grain size, particularly the sand and clay contents of soils under
semi-arid climate conditions, produced satisfactory results.

• According to Pearson's correlation analysis, the highest correlations
with the soil variables were obtained with the covariates b3/b7, GSI,
NDVI and b3/b2, in that order. The following covariates were selected
in the MLRmodel for the sand and clay contents: b2, b3, b4, b5, NDVI
and GSI. For the silt prediction, the covariates b2, b3, b5 and GSI were
selected in the stepwise model.

• The assessment of the importance of the covariates for the random
forest model (RFM) showed that the most significant covariates
were b3/b7 N b5 N GSI N NDVI N b2 N b4 for the prediction of the
sand, GSI N b5 N b2 N b3/b7 for the prediction of the silt and b3/
b7 N NDVI N b5 N GSI N b4 N b2 for the prediction of the clay contents.

• Based on the validation samples, the coefficients of determination
(R2) and the RMSE values were more favorable for the RFM than for
MLR for the prediction of sand (R2 values of 0.63 and 0.57 and RMSE
values of 90.77 and 98.00, respectively) and clay (R2 values of 0.56
and 0.53 and RMSE values of 73.94 and 76.39, respectively). For silt,
the prediction performance was better for the MLR model, with an
R2 value of 0.30 and an RMSE value of 49.42 versus 0.25 (R2) and
50.18 (RMSE) for the RFM. These results are similar to those of other
studies.
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