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ABSTRACT
Spatial information on soil salinity is increasingly needed for decision
making and management practices in arid environments. In this
article, we attempted to investigate soil salinity variation via a digital
soil mapping approach and genetic programming in an arid region,
Chah-Afzal, located in central Iran. A grid sampling strategy with 2-km
distance was used. In total, 180 soil surface samples were collected
and then analyzed. A symbolic regression was then adopted to
correlate electrical conductivity (ECe) with a suite of auxiliary data
including predicted maps of apparent electrical conductivity (vertical:
ECav and horizontal: ECah), Landsat spectral data and terrain attributes
derived from a digital elevation model. The accuracy of the genetic
programming model was evaluated using root mean square error
(RMSE), mean error (ME), and coefficient of determination (R2) based
on an independent validation data set (20% of database or thirty soil
samples). In general, results showed that ECah had the strongest
influence on the prediction of soil salinity followed by salinity index
wetness index, Landsat Band 3, multi-resolution valley bottom flatness
index, elevation, and normalized difference vegetation index. Further-
more, results indicated that the genetic programming model pre-
dicted ECe over the study area accurately (R2¼ 0.87, ME¼ � 1.04 and
RMSE¼ 16.36 dSm� 1). Overall, it is suggested that similar applications
of this technique could be used for mapping soil salinity in other arid
regions of Iran.
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Introduction

High levels of soil salinity negatively affect crop growth and productivity leading, ulti-
mately, to land degradation in central Iran. Therefore, to manage this problem, accurate
and reliable salinity mapping is needed. However, soil mapping at a high-resolution by
conventional methods is expensive and time consuming. In recent times Digital Soil
Mapping (DSM) has been able to overcome these limitations in the form of numerical
and model-based analysis of soil-landscape relationships (McBratney, Mendonça-Santos,
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and Minasny 2003). In practice DSM may be distilled down to the use computer assisted
methods to harmonize soil data with more readily measured auxiliary variables.

The first and probably the most common auxiliary variable used in digital mapping of
soil salinity is remote sensing data (Mariappan 2010; Bilgili et al. 2011; Allbed, Kumar, and
Sinha 2014). For example, Mariappan (2010) applied Landsat Thematic Mapper (TM)
Bands 1 through 7 for identifying salt minerals and found that Landsat Band 3 was parti-
cularly important for salinity detection. Metternicht and Zinck (2008) also confirmed
Landsat spectral data could serve as useful covariate information to predict soil salinity dis-
tribution. Allbed, Kumar, and Sinha (2014) indicated that salinity index (SI) and red band
(B3) had a good relationship with soil electrical conductivity. The second auxiliary vari-
ables that have been widely used in digital mapping are terrain attributes. For example,
Sheng et al. (2010) used exclusively terrain attributes to monitor soil salinity variations
in China. In addition, terrain attributes could also be combined with Landsat spectral data
for spatial modelling of soil salinity (e.g., Akramkhanov and Vlek 2012; Hamzehpour et al.
2013; Taghizadeh-Mehrjardi et al. 2014). Another auxiliary variable (for salinity mapping)
used by some researchers is electromagnetic induction data. Good relationships between
soil salinity and ECa values have been reported by Lesch, Herrero, and Rhoades (1998),
Urdanoz and Aragüés (2011), Li et al. (2013), Taghizadeh-Mehrjardi et al. (2014), and Ding
and Yu (2014).

Various DSM techniques including artificial neural networks (Behrens et al. 2005;
Aitkenhead et al. 2012), decision trees (Bui and Moran 2001; Jafari et al. 2014), K-nearest
neighbors (Nemes et al. 1999; Nemes, Rawls, and Pachepsky 2006; Coopersmith et al.
2014), support vector machines (Kovacevic, Bajat, and Gajic 2010; Li, Im, and Beier
2013), and random forests (Stum et al. 2010; Heung, Bulmer, and Schmidt 2014) have been
developed and introduced to link soil properties and auxiliary variables in order to predict
various soil attributes and soil classes.

A relatively new, yet potentially powerful modeling algorithm, which has had little
traction to date in the DSM literature is genetic programming (GP). GP is defined as an
evolutionary computation technique inspired from the fundamentals and rules of biologi-
cal evolution (Poli, Langdon, and McPhee 2008). Briefly, GP is a systematic, domain-
independent method for computers to untangle moot point automatically beginning from
a high-level statement of what needs to be done (Koza 2010). GP starts with an initial
population of randomly generated programs. It has been utilized in photogrammetric
issues, multispectral analysis and remote sensing problems (Puente et al. 2011). It has been
successfully employed in the domain of image analysis (Yang 2007; Fonlupt and Robilliard
2000; Brumby et al. 2001; Puente et al. 2011). In soil science, GP has been used successfully
to develop pedo-transfer functions (Johari, Habibagahi, and Ghahramani 2006;
Parasuraman, Elshorbagy, and Si 2007; Padarian, Minasny, and McBratney 2012).

As previously mentioned, despite of the rapid progression of DSM in many places,
few studies have been conducted to digitally map soil salinity in arid regions in Iran
(Taghizadeh-Mehrjardi et al. 2014). The only available soil map in Iran is a recently
prepared one, at a scale of 1:1,000,000, which is not suitable for farm management plan-
ning. Thus, the lack of high-resolution soil maps for agricultural areas in Iran is particularly
felt. Therefore, the objective of the present study is to predict the spatial distribution of soil
salinity using DSM methods; in particular, focusing on the implementation of GP to fulfill
that purpose.
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Materials and methods

Description of the study area

The study area is located in Yazd Province, central Iran (Figure 1). It is situated between
53.8°E and 54.1°E, and between 32.35°N and 32.65°N. The area covers approximately
80,000 ha and is located 12-km north from Ardakan City. The elevation ranges from 953
to about 1900m a.s.l. Average annual rainfall and annual temperature are approximately
80mm and 18.3°C, respectively. Soil moisture and temperature regimes are aridic and
thermic, respectively. Land use in the area includes agriculture, natural rangeland, and bare
lands. The major geological units are comprised of red gypsiferous marls and brown to grey
limestone. The major landforms of the region are mountain, alluvial fans, playa, and
coalescing alluvial fans.

Data collection and soil sample analyses

In order to adequately cover the study area, a 2-km grid sampling strategy was used
in this study; totaling 180 composite soil surface samples from across the target area
(Figure 2a). The samples were collected in summer 2012. Each composite soil sample
was comprised of four core sub-samples that were collected at a distance of 10-m north,
south, east and west of the center sampling point. The sub-samples were collected from
the surface horizon (0–20 cm) with a hand auger (10-cm diameter) and were crushed
and mixed together to form one sample. Soil samples were dried, and ground to pass
through a 2-mm sieve. Soil organic matter (SOM) content was determined by the
Walkley-Black method (Nelson and Sommers 1986). Particle size distribution in the soil
samples (clay, silt, and sand) was measured using the procedure described by Gee and
Bauder (1986) and calcium carbonate equivalent (CCE) content was determined by
the back-titration method (Nelson 1982). Electrical conductivity (ECe) and pH were
measured in the soil saturation extracts according to standard methods (Richards
1954; Sparks et al. 1996).

Auxiliary variables

The environmental variables used in the present study included three kinds of auxiliary
variables; remote sensing data, proximally sensed apparent electrical conductivity, and
topographic variables derived from a digital elevation model.

Remote sensing
Cloud-free Landsat 7 ETMþ images were used in this study and were acquired near the
actual soil sampling date (August 2012). The imagery consisted of six spectral bands
with pixel resolution of 30 m: B1, B2, B3, B4, B5, and B7. From these data, a number
of additional variables were derived including: Normalized difference vegetation index
(Rouse et al. 1973); ratio vegetation index (Pearson and Miller 1972); soil-adjusted veg-
etation index (Huete 1988); clay index (Boettinger et al. 2008); gypsum index (Nield,
Boettinger, and Ramsey 2007); and salinity index and brightness index (Metternicht
and Zinck 2008). The images were geo-rectified to a Universal Transverse Mercator
(UTM) coordinate system using World Geodetic System (WGS) 1984 datum assigned
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to north UTM zone 40. Atmospheric correction was performed using the Dark-Object
Subtraction (DOS) technique (Chavez 1996). All the remote sensing data processing
was performed using the Environment for Visualizing Images (ENVI) version 4.8
software.

Figure 1. (a) Location of the study area located in Chah-Afzal region in central Iran (A: mountain;
B: alluvial fans; C: playa D: coalescing alluvial fans). The false color composite was prepared using
combination of three bands: B1, B2, and B3. (b) The spatial distribution of clay percentage over the study
area; (c) the spatial distribution of ECe; and (d) the spatial distribution of apparent electrical conductivity
in the vertical mode.
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Apparent electrical conductivity
The apparent electrical conductivity (ECa) of the bulk soil was measured using an electro-
magnetic conductivity meter. In order to generate ECa maps efficiently for the study area,
field ECa data were collected in different campaigns. The first of which were 180 ECa read-
ings taken at the sites used for the soil sampling. These data were also used to investigate
the calibration of ECa data with ECe measurements at these sites. This calibration was
calculated using multi-linear regression equations using MATLAB software (Mathworks
2010). An additional 24 ECa readings were taken from six transects. These transect were
selected randomly and in each, four ECa readings were taken with the mean separation
distance of 30-m. A further 156 readings were gathered based on a grid sample with a mean
separation distance of 2000-m between sites in order to adequately cover the study area
(Figure 1). In total, 360 ECa data in both vertical and horizontal modes were taken for this
study. The device measures in two modes: vertical (ECav) and horizontal (ECah) modes
working to depth of 1.5 and 0.75m, respectively. Then electromagnetic induction data
in both vertical and horizontal angles were interpolated spatially across the study area to

Figure 2. Spatial distribution of some auxiliary data including (a) salinity index (SI); (b) wetness index
(WI); (c) apparent electrical conductivity in the vertical mode; (d) multi-resolution valley bottom flatness
index (MrVBF); and (e) red band of ETMþ; (f) apparent electrical conductivity in the horizontal mode.
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derive continuous maps of ECa at the aforementioned integrated depths with 30� 30m
pixel size. The interpolation was performed using locally fitted variograms and kriging,
and implemented through the VESPER geostatistical software (Minasny, McBratney, and
Whelan 1999).

Terrain attributes
In this study eleven terrain parameters were obtained from a digital elevation model (pixel
size of 10� 10m; National Cartographic Center 2010), which included: elevation, altitude
above channel network, modified catchment area, mid-slop position, multi-resolution
ridge top flatness index (MrRTF), and multi-resolution index of valley bottom flatness
(MrVBF) (Gallant and Dowling 2003), topographic wetness index, valley depth and
catchment aspect, slope, and height. The digital terrain analysis was performed using the
open source SAGA GIS software (Olaya 2004). All auxiliary variables were co-registered
to the same raster grid size of 30m.

The next step was to select the relevant auxiliary variables for modelling. Removing
irrelevant and redundant auxiliary variables not only reduces the dimensionality of the data
but also may allow learning algorithms to operate faster and more effectively. Moreover,
irrelevant and redundant information may decrease the prediction accuracy in common
machine learning algorithms (Hall 1999; Hall et al. 2009; Mollazade, Omid, and Arefi
2012). Different techniques can be used to rank the relevance of auxiliary variables,
including correlation-based feature selection (CFS), principal component analysis (Omid,
Mahmoudi, and Omid 2010), factor analysis, and sensitivity analysis. Herein, we applied
correlation-based feature selection (CFS) technique with a best first algorithm using the
CfsSubsetEval algorithm in WEKA software to select the best subset of auxiliary variables
(Hall et al. 2009). Correlation-based feature selection is a fully automatic algorithm, not
requiring any predefined thresholds or the number of features. Correlation-based feature
selection ranks auxiliary variables according to a correlation based heuristic evaluation
function. This algorithm keeps relevant auxiliary variables that are highly correlated with
the target variable (in our case soil salinity) and screens out irrelevant auxiliary variables
that have low correlation with the ECe and exhibit a high degree of co-linearity with other
variables. From analysis for this study, the CFS algorithm reduced the number of auxiliary
variables from 26 potentials to 7 accepted, of which included: elevation, NDVI, ECah,
topographic wetness index, MrVBF, red band, and salinity index (Figure 2).

Spatial modelling

The relationship between soil salinity and auxiliary variables was implemented by applying
empirical models (McBratney, Mendonça-Santos, and Minasny 2003). Here in this study,
genetic programming (GP) was evaluated. The implementation of GP was performed using
the MATLAB software (Mathworks 2010). To overcome the limitation of Genetic
Algorithm (GA) in evolving complex models, Koza (1992) introduced Genetic Program-
ming (GP) technique as an alternative technique. Like other evolutionary algorithms, GP
initializes a population consisting of a random population of individuals. This population
of programs is progressively evolved, according to the principle of Darwin's natural selec-
tion theory in evolution, over a series of generations. The fitness of each chromosome is
evaluated with respect to a target value. First, GP selects a proportion of the existing
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population to breed a new generation. Then, a second population generated using common
variation operators—crossover and mutation. This process of selection, reproduction, and
variation iterates until a user-defined “stopping criterion” is satisfied. In this work we used
a specific method called symbolic regression, which uses GP to fit a function to a specific
dataset, going from simple functions to increasingly more complex functions. Further
description of this technique are provided in Koza et al. (1999) and Koza (1992). GP selects
the most relevant variable subsets for modelling. It calculates the relative impact of auxili-
ary variables on the target variable (ECe). Given a model equation of the form z¼ f(x, y… ),
the influence metrics of x on z are defined as follows:

@z

@x

� �

�
@ xð Þ
@ zð Þ

ð1Þ

@z
@x

h i
is the partial derivative of z with respect to x; ∂(x) is the standard deviation of x in the

input data; ∂(z) is the standard deviation of z; |x| denotes the absolute value of x (Koza
1992).

Model evaluation

In order to evaluate the accuracy of prediction, the data was divided randomly into two
data sets. The larger data set (80%) was used for training and the smaller data set
(20%) was set aside for external validation. Validation criteria which are popularly used
in digital soil mapping: root mean square error (RMSE), mean error (ME), and coefficient
of determination (R2) were applied in this study.

Results and discussion

Data summary

A data summary of soil salinity and EM38 readings in both modes (ECav and ECah) are
presented in Table 1. According to Table 1, the average soil salinity levels are more than
4 dSm� 1, indicating soils in the study area are severely affected by salt (Chhabra 2006).
The coefficient of variation (CVs) for soil salinity level is high (144.44), which indicates
a wide range of values across the study area. The ECe data across the study area ranged
from 1.00 to 229 dSm� 1. The mean ECe data was 50.29 dSm� 1. Taghizadeh-Mehrjardi
et al. (2014) reported high values of ECe in Yazd province. They reported ECe as varying
between 1 and 245 dSm� 1 from top to the bottom of soil profiles. The coefficients of

Table 1. Descriptive statistics of soil salinity and electromagnetic induction readings (n¼ 180 and 360
samples for ECe and ECa, respectively.

Layer (cm) No. Min Max Average SD CV% Skew. Kurt.
ECe (0–20) dSm� 1 180 1.00 229.00 50.29 72.64 144.44 0.54 0.11
ECah (0–75) dSm� 1 360 0.01 1.66 0.57 0.41 66.99 0.81 � 0.45
ECav (0–150) dSm� 1 360 0.03 2.27 0.69 0.46 71.97 0.61 � 0.28

ECe: electrical conductivity; ECah: apparent electrical conductivity (horizontal mode); ECav: apparent electrical conductivity
(vertical mode); No: Number of observation; Min: minimum; Max: maximum; SD: standard deviation; CV: coefficient of
variation; Skew: skewness; Kurt: kurtosis.
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variation for ECah and ECav were 66.99 and 71.97, respectively. These values were to some
extent smaller than that for ECe (144.44). This is likely to be due to that the instrument is
measuring apparent electrical conductivity in larger volume of soil, while electrical conduc-
tivity was measured in smaller soil samples taken from the 0 to 20 cm. According to the
spatial distribution of soil samples in the study area (Figure 1), soil samples found in upper
land have coarse texture and low salinity, while soils characterized with more saline and
fine texture are located in lower part of the area. The samples with highest salinity level
were located in the middle and northern part of study area.

Calibration of ECa measurements

In our study, ECe and ECa were considered as dependent and independent variables,
respectively. The linear regression model was fitted to the data from all 180 sampling sites.
Consequently, three predictive equations were achieved (Table 2). Similar approaches
already were used by Lesch, Herrero, and Rhoades (1998), Urdanoz and Aragüés (2011),
Li et al. (2013), Taghizadeh-Mehrjardi et al. (2014), and Ding and Yu (2014). According
to this table, our results indicated ECah and ECav had significant linear relationship with
soil electrical conductivity. With regard to direct relationships among ECa and soil salinity,
we can imply that using both ECah and ECav are useful predictor variables given an
observed R2 of 0.75. Furthermore, comparisons showed that correlation coefficients
between ECah and the ECe (R2¼ 0.74) were higher than those between ECav and the ECe
(R2¼ 0.70). This might be attributed to the fact that salts accumulate more intensively
in the upper soil layers, and hence, the stronger response of ECah to superficial layers
compared to ECav. With regard to these results, it was inferred that accuracy of model just
a little bit enhance as compared to simple linear regression; however, we used a simpler and
parsimonious model (only ECah) to predict the salinity.

However, the best regression model (i.e., ECah was the only input variable) for soil
surfaces recorded only an R2 value of 0.74, which is much lower when compared to other
researchers’ findings (Slavich 1990) who reported R2 values of around 0.90. Therefore,
we concluded that we cannot use the equations in Table 2 directly for the reconstruction
the soil salinity profile across the study area. This might be attributed to the fact that ECa
is influenced not only by soil salinity but also by many other factors such as soil texture,
temperature and moisture content (Slavich 1990; Lesch, Herrero, and Rhoades 1998). Clay
content in soils of some parts of the study area particularly, in middle part and the north,
exceeds 50% and, hence this might be one reason for lowering the correlation between ECa
and ECe. Low water content in the studied arid region, where the water content was less

Table 2. Regression relationships between apparent electrical conductivity and measured soil salinity
(n¼ 180).

Layer (cm)

ECe¼ aþ b.ECah ECe¼ aþ b.ECav ECe¼ aþ b.ECavþc.ECah

a b R2adj a b R2adj a b c R2adj

ECe (0–20) dSm� 1 � 1.85 0.88 0.74b � 3.16 0.75 0.70 � 3.11 0.15 0.71 0.75b

ECe: electrical conductivity; ECah: apparent electrical conductivity (horizontal mode); ECav: apparent electrical conductivity
(vertical mode); a is intercept; c & b are the coefficients of regression; R2: coefficient of determination.

aThe relation is significant at the 0.05 level.
bThe relation is significant at the 0.01 level.
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than 5%, lead to a lowering correlation between ECe and ECa (Lesch, Herrero, and
Rhoades 1998). However, temperature seemed to have the minimum effect on our ECa
values due to the fact that the survey was conducted during summer, when average soil
temperature within the upper 1m profile was around 25°C (Slavich 1990).

We proceeded to predict spatial distribution of ECa at the study area using ordinary
kriging. Evaluation of kriging models were integrated based on a cross-validation method.
Results showed that the accuracy of models based on RMSE and R2 criteria for ECah were
25.15 and 0.57, respectively. RMSE and R2 for ECav were 27.32 and 0.56, respectively. These
results are consistent with previous findings from Taghizadeh-Mehrjardi et al. (2014) who
reported RMSE and R2 as 37.74 and 0.49, respectively. As can be seen in Figure 2, the maps
clearly illustrate that there are two distinct areas of high ECa values located in center of
region (which mostly has soils of fine texture), while low ECa values located in east and
west parts of the study area (which are generally soils with coarse texture).

Importance of auxiliary variables

The correlation coefficient between ECe and all auxiliary variables is shown in Figure 3a.
As can be seen from this figure, the coefficients range between � 0.34 and 0.86. The best
correlation is between the ECe and EM conductivity information; the correlation between
ECe data and clay index, gypsum index, and mid-slope position is considerably lower.
The relative impact of auxiliary data on the electrical conductivity was also assessed by
GP. Analysis of GP (based on Equation 1) showed that ECah (68%) had the strongest
influence on the prediction of soil salinity followed by salinity index (55%), wetness index
(42%), red band (21%), MrVBF (19%), elevation (15%), and NDVI (12%) (Figure 3b).

ECah was identified as the most powerful predictor for surface electrical conductivity.
Apparent electrical conductivity has been successfully used to improve the spatial
distribution of soil salinity (Ding and Yu 2014; Taghizadeh-Mehrjardi et al. 2014). The
second most important predictor was the salinity index (55%). Red band (Landsat Band
3) and NDVI were also encountered in the model, though at a lower rate of 21% and
12%, respectively. As most of the area was bare (Figure 1), the presence of salts at the
surface can be directly detected by Landsat spectral data. However, in the vegetated area
direct approach becomes complicated and may yield unreliable results. But, the present
scattered vegetation or halophytes on the soil surfaces can serve as a sign of the salinity
problem, making it possible to indirectly detect and map areas that are affected by soil
salinity using the reflectance from vegetation. Normally, unhealthy vegetation has a lower
photosynthetic activity, causing increased visible reflectance and the reduced near-infrared
reflectance from the vegetation (Allbed, Kumar, and Sinha 2014). Therefore, based on our
findings, NDVI has been used as indirect indicators to assess and map soil salinity. Similar
results were obtained by Allbed, Kumar, and Sinha (2014) who indicated salinity index (SI)
and red band (B3) had a good relationship with electrical conductivity. Mariappan (2010)
also found that among the Landsat ETMþ bands 1–5 and 7, the visible red band (B3) per-
formed the best at characterizing the pattern and features of soil salinity. Shamsi, Sanaz,
and Abtahi (2013) confirmed that salinity index could contribute to improving the predic-
tive models of soil salinity.

Terrain attributes derived from the DEM such as MrVBF and wetness index had
also influence in mapping of soil salinity (19 and 42%, respectively). Topographic
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Wetness index, which can depict stationary water content in soils, indicated the
potential areas where salic horizons may be presented. Our results indicated a corre-
lation coefficient of 0.82 between ECe and wetness index (Figure 3a–b). Similarly,
Moore, Grayson, and Ladson (1991) reported a strong relationship between soil sal-
inity and wetness index. MrVBF was also an effective index in the flat areas,
especially for identifying flat valley bottoms and, consequently, indicated potential
zones of transport for sediment. Taghizadeh-Mehrjardi et al. (2014) and Jafari et
al. (2012) also confirmed the potential of these covariates for the identification of sal-
ine soils.

Genetic programming

A symbolic regression was used to model the relationship between ECe and auxiliary data.
Four basic arithmetic operators (þ, � , *, and /) and more complex operators (√, x2, power,
Sin and Cos) were utilized. The functional set and operational parameters used in GP

Figure 3. Correlation coefficients between ECe and auxiliary variables (a) and the percentage contri-
bution of most important auxiliary variables used in GP model (b). (ECah: horizontal; ECav: vertical read-
ings; WI: wetness index; MrVBF: multi-resolution valley bottom flatness index; B1–B7: spectral data of
ETMþ; SI: salinity index; BI: brightness index; SR: salinity ratio; MCA: modified catchment area; AACN:
altitude above channel network; NDSI: normalized difference salinity index; MSP: mid-slope position;
GI: gypsum index; CI: clay index; VD: valley depth; MrRTF: multi-resolution ridge top flatness index; SAVI:
soil-adjusted vegetation index; RVI: ratio vegetation index; NDVI: normalized difference vegetation index;
DEM: elevation; CS: catchment slope; CA: catchment aspect; CH: catchment height).
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modeling during this study are summarized in Table 3. A symbolic regression was
attempted, generating a model expressed as:

ECe ¼ 3:59� cos B3ð Þ þ 0:08� WIð Þ � ECah

þ
0:0023

NDVI � 0:138
þ 11:9ECah

� sin cos B3ð Þ � 0:0049� DEM � WIð Þð Þ

� ECah � sin SIð Þ � McVBF � sin SIð Þ � 173
� NDVI � ECah � sin

�
cos B3ð Þ

� 0:0049� DEM � WIð Þ
�

ð2Þ

where ECe is electrical conductivity; ECah denotes apparent electrical conductivity in
horizontal mode; MrVBF is multi-resolution valley bottom flatness index; WI is wetness
index, SI denotes salinity index. DEM is digital elevation model; and NDVI is Normalized
difference vegetation index.

The scatter plots of the measured against predicted ECe for the validation data set
is shown in Figure 4. According to this figure, the best fitted line is close to the a 1:1
line, indicating high accuracy of estimation by the proposed model (Padarian, Minasny,

Figure 4. Scatter gram of predicted versus measured ECe using proposed model (GP) based on
validation data set.

Table 3. Parameters of the optimized GP model.
Parameter Description of parameter Setting of parameter

P1 Function set þ, � , *, /, √,�2, power, Sin, Cos
P2 Population size 400
P3 Mutation frequency % 95
P4 Crossover frequency % 20
P5 Number of replication 10
P6 Block mutation rate % 25
P7 Instruction mutation rate % 25
P8 Instruction data mutation rate % 50
P9 Homologous crossover % 85
P9 Program size Initial 85, maximum 420
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and McBratney 2012). This outcome implies that the GP model can provide a good
relationship between auxiliary data and soil salinity. The statistical results showed the
GP model predicted ECe in the Chah-Afzal with R2¼ 0.87, ME¼ � 1.04 and RMSE¼ 16.36.
These results are acceptable when compared with similar previous researcher, for example,
Allbed, Kumar, and Sinha (2014) and Taghizadeh-Mehrjardi et al. (2014) who reported R2

values around 0.65 and 0.78, respectively. Nevertheless, for digital soil mapping, these
results indicate a good accuracy where R2 values over 70% are not very common and
values of 50% or less are more common (Malone et al. 2009). Furthermore, our results
indicate that incorporating ECa with Landsat data and terrain information to predict soil
salinity can enhance the predictive power of fitted spatial models (from 0.78 to 0.87).
This result is consistent with findings of Taghizadeh-Mehrjardi et al. (2014).

Map of the residuals (the difference between measured and predicted values) was also
calculated to assess the uncertainty of the model (Figure 5a). Using the fitted GP model, a
soil salinity map over the study area was generated (Figure 5b). As can be seen in the fig-
ure, we can easily imply that soils with the highest salinity are located in the north, whereas
the soil with the lowest salinity can be found in the east and west of the region. As a matter
of fact, most of the saline soils across the study area are located in the lower part of the
region, which is a playa landform. This is likely due to that the playa receives more soluble
salts from upper areas in the landscape. In addition, the concavely shaped plain could help
to move ground water toward the north of area in which the soils with the highest elec-
trical conductivity generally occur. In the north of area, soils are heavy or fine textured
and this might facilitate capillary movement of groundwater to the soil surface and conse-
quently lead to accumulation of saline materials in soil surfaces (Metternicht and Zinck
2008). Furthermore, as shown in Figure 1, the poor vegetation cover in the lower part
of the region could be further justification for highly affected saline soils there.

Figure 5. Spatial distribution of residuals (a) and spatial distribution soil salinity in Chah-Afzal, central
Iran, using the genetic programming across the study area (b).
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Conclusions

In the present article, we described the prediction process for mapping the spatial
distribution of soil salinity in Chah-Afzal, central Iran, using a symbolic regression tech-
nique. We believe to the best of our knowledge, that this study is the first attempt to adopt
a genetic programming for digital mapping of soil salinity in an arid region of Iran. Its use
for other DSM studies could be invaluable given the relatively high accuracy of the
modeling based on an external validation. During the application of GP, we used a variety
of auxiliary variables including the predicted maps of ECav and ECah, ETMþ images and
terrain variables. ECah had the highest influence on the model prediction followed by
salinity index, wetness index, red band, and MrVBF. Overall, fine-resolution soil salinity
maps are useful for many soil and environmental scientists and land managers in Iran.
Therefore, we recommend the use of the approach applied for the study area (i.e., Genetic
programming) to map the soil salinity in other parts of Iran.
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