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Abstract Forest fire is one of the most important source of
land degradation that lead to deforestation and desertification
processes. Thus, prediction of forest fire front is necessary to
control it. In this study, Alexandridis model based on Cellular
Automata (CA) rules was applied to predict the fire front in a
part of Hyrcanian forests of Iran. The data of effective factors
on fire front in the model (including vegetation type and den-
sity, wind speed and direction, and ground elevation) were
p rov ided f rom Mazanda r an Na tu ra l Resou rces
Administration (MNRA), Mazandaran Meteorological
Administration (MMA), and Digital Elevation Model
(DEM) of ASTER sensor. The model was used to simulate
the front of a wildfire that burned a part of District Three of
Neka-Zalemroud forests (DTNZ) on December of 2010. The
required data of actual fire for simulation of fire front (includ-
ing actual fire map, fire area, fire start point, etc.) were pro-
vided from MNRA. All effective factors maps for actual fire
confine were organized in a Geographic Information System
(GIS). The simulation environment was provided based on the
ASCII files of altitude, vegetation density, and vegetation type
matrices, together with a matrix containing the burned area.
The fire front model was programmed and it was implemented
by uploading of all digital layers (coding ASCII matrices) of
effective variables and considering of the certain wind speed
and direction in fire confine. Fire front simulation was run by
considering of fire start point coordination and the fire front
simulation was depicted. Finally, the number of burned and
unburned cells in fire confine matrix was obtained. Results of

model implementation including fire front direction and shape
were compared with the actual fire confine to evaluate the
accuracy of the used model qualitatively. Thus, the fire front
polygon was overlaid on the actual fire polygon and the high
similarity was observed between them. In addition, total ac-
curacy and Kappa index were used to evaluate the accuracy of
the used model quantitatively. The total accuracy and Kappa
index were obtained 0.88 and 0.74, respectively. These results
can show the accuracy of CA-based model to predict the fire
front in Hyrcanian forests of Iran in current research.

Keywords Cellular Automata (CA) . District Three of
Neka-Zalemroud (DTNZ) forests . Fire front model . Fire
simulation . Geographic Information System (GIS)

Introduction

The extreme wildfires are the global phenomena that consis-
tently result in loss of life, property and further impact the
cultural, economic, and political stability of communities
(McRae et al. 2015). The environmental effects of forest fires
are enormous, and therefore, there is a constant demand for
more effective firefighting and management (Good and
McRae 1989). Modeling and simulation have been applied
to fire fighting and management for many years, particularly
in order to predict the fire behavior and front in forests under
various scenarios of weather conditions. Generally, the goal of
a model for prediction of fire fronting in the forests is deter-
mination of the time-evolving fire front in a physical land-
scape under various weather conditions (Karafyllidis and
Thanailakis 1997). A model for fire fronting in the forests
can be used as a real-time decision support system, in order
to enhance effectiveness of firefighting strategies (Kessell and
Beck 1991). Such a model could be part of a system for real-
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time fire front determination. Such a system would combine a
Geographic Information System (GIS) and satellite imagery
with a model for forest fire fronting (Beer 1989). Wildfire
front is a complex spatial and temporal dynamic process that
depends on many factors such as weather, topography, and
fuel types. Wind direction and speed are the most important
factors in such a model. Other effective factors on forest fire
fronting are topography of landscape and existence of areas
with different rates of fire front (Karafyllidis and Thanailakis
1997). Therefore, vegetation type and density also play the
important roles in such a model.

A wide range of wildfire front modeling approaches has
been developed over the last decade to describe the physical
processes at flame scale as well as the interactions between the
fire and the atmosphere (Rochoux et al. 2015). One of the
approaches used in enhancing the dynamic modeling capabil-
ity of raster-based GIS is Cellular Automata (CA) modeling.
Cellular automata were first introduced by Von Neumann
(1966) as mathematical representations of complex systems
which consist of a grid or lattice of cells where each cell is
in one of a number of finite states. The state of a cell depends
on a set of rules and the state of the neighboring cells. Cells
change state as a result of deterministic, probabilistic, or sto-
chastic transition rules (Yassemi et al. 2008). Cellular autom-
ata are dynamical systems which are discrete in space and
time, operate on a regular lattice, and are characterized by
Blocal^ interactions. Cellular automaton is a known method
to simulate the forest fire front in the recent years. Two-
dimensional cellular automata have often been used to model
landscape phenomena such as bushfires, forest fire, and epi-
demic front (Bodrožic 2006).

Many researchers have used cellular automata for forest
fire front modeling in the world (Karafyllidis and
Thanailakis 1997; Li and Magill 2001; Berjak and
Hearne 2002; Ohgai et al. 2004; Yongzhong et al. 2004;
Yongzhong et al. 2005; Encinas et al. 2007a; Yassemi
et al. 2008). Here, we imply to the recent studies.
Alexandridis et al. (2008) presented the simulation results
of a cellular automata model to predict the forest fire front
using factors such as the type and density of vegetation,
the wind speed and direction, and the spotting phenome-
non. The model was used to simulate the wildfire that
destroyed a major part of the Island’s forest. Results
showed that the proposed model predicts in a quite ade-
quate manner the evolution characteristics in space and
time of the real incident. Almeida and Macau (2010) pro-
posed a stochastic CA model for wildfire front under flat
terrain and no-wind conditions and analyzed its dynamics.
The dynamics of fire front was modeled as a stochastic
event with an effective fire front probability S which was
a function of three probabilities: the proportion of vegeta-
tion cells across the lattice, the probability of a burning
cell become burnt, and the probability of the fire front

from a burning cell to a neighbor vegetation cell. The
effective fire front probability was obtained from Monte
Carlo simulations. Results showed that the capability of
the model catches both the dynamical and static
qualitative properties of fire propagation. Pak and
Hayakawa (2011) proposed a CA-based forest fire dynam-
ics model considering intensities of fires as multiple states
and having the probability that fire front depends on the
states of the neighboring cells. Furthermore, the idea of
percolation threshold was introduced to characterize the
strength of the fire propagation. Innocenti and Cancellieri
(2013) suggested the use of activity paradigm to model
the uncertain and imprecise nature of the local dynamics
in fire fronting simulations. A new algorithm (random-
activity) was presented to track activity concept in a CA
model which combines activity and stochastic precepts.
This algorithm enhances the realism of the spatial simula-
tions. Results showed that the random-activity algorithm
outshines the classical algorithm in terms of graphical res-
titutions’ realism. Iudin et al. (2015) applied a new arith-
metic method to a CA forest-fire model which was con-
nected with the percolation methodology and in some
sense combined the dynamic and the static percolation
problems and under certain conditions exhibited critical
fluctuations. By means of the new approach, it was ob-
served that as far as user chooses an infinitesimal tree
growing rate and infinitesimal ratio between the ignition
probability and the growth probability, the measure or ex-
tent of the system size infinity is determined that provides
the criticality of the system dynamics.

Regarding to importance and capability of cellular autom-
ata model to simulate the forest fire front, the aim of this study
is prediction of the fire front based on cellular automata model
in a part of Hyrcanian forests of Iran (DTNZ forests). The limit
area of Hyrcanian forests and annual destruction of them by
continuous fires shows the importance of improving current
supervision and prediction systems in these forests (Eskandari
and Chuvieco 2015). DTNZ forests located in the North of
Iran include some rare plant and animal species and also have
high potential for ecotourism. Unfortunately, some parts of
these forests have been burned by fires in the recent years.
The major fire burned a part of DTNZ forests on December
of 2010. Therefore, in this study, a CA-based model was im-
plemented to simulate the front of a wildfire which burned and
destroyed a part of DTNZ forests in 2010.

In the first step of this research, a CA-based model for
fire prediction is introduced; then the effective input vari-
ables and the methods to generate them as geographical
data layers are described; in the second step, the CA-
based model is implemented for actual fire and the fire
front is simulated. Finally, the fire front simulation results
are validated using data of actual fire which burned a part
of DTNZ forests in 2010.
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Material and methods

Study area

DTNZ forests have been located between 36° 30′ to 36° 40′ N
latitude and 53° 15′ to 53° 26′E longitude in South of Neka and
Behshahr counties of the Mazandaran Province in Iran. These
forests cover the area of 153.07 km2 and are bounded by Neka-
Behshahr road in the North, Chakhani and Souterabad in the

East, Zarandin Khoramchamaz in the South, and Ablou in the
West. Minimum and maximum altitudes from sea level are 11
and 874 m, respectively. DTNZ forests have 103.4 km forest
roads, 27 km rural roads, and 21 km asphalt roads (Fig. 1).

Forests of study area have uneven-aged andmixture structure.
Plant species include tree species (Fagus orientalis, Carpinus
betulus, Quercus castaneifolia, Alnus subcordata, Parrotia
persica, Zelcova carpinifolia, Acer sp., etc.), shrub species
(Buxus hyrcanus, Mespilus germanica, Crataegus pentagyna,

Fig. 1 Study area map

Table 1 The basic data sources

Data Source Cell size

Topographic data (DEM) ASTER 25-m pixel size

Vegetation type Mazandaran Natural Resources Administration (MNRA) 25-m pixel size

Vegetation density Mazandaran Natural Resources Administration (MNRA) 25-m pixel size

Wind direction and speed Mazandaran Meteorological Administration (MMA) –

Actual fire map Mazandaran Natural Resources Administration (MNRA) 25-m pixel size

Constant coefficients of the model (Ph, a, c1, c2) Alexandridis model –
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Prunus caspica, etc.), and herb species (Asperula odorata,
Ruscus hyrcanus, Siclaman sp., Carex sp., Rubus sp., etc.)
(MazandaranNatural ResourcesAdministration (MNRA) 2010).

Data

In this study, the basic data for fire frontmodel based on cellular
automata included DEM, vegetation type and density, wind
direction and speed, and the actual fire map. The topographic
data were obtained from Digital Elevation Model (DEM) de-
rived from ASTER sensor (with 25-m pixel size). The vegeta-
tion type and density data were provided from Mazandaran
Natural Resources Administration (MNRA). The wind direc-
tion and speed data were also provided from Mazandaran
Meteorological Administration (MMA). The actual fire map
in DTNZ forests was also provided from MNRA (Table 1).
All data were organized in a GIS framework to provide the
digital maps of the variables and to analyze the digital layers.

CA method for fire front prediction

Cellular automaton is one of the semi-empirical models for
fire front modeling. In cellular automata model, the study area
is considered as a cellular grid which fire in this grid has
different front rates based on cells environmental

characteristics, cells states (flammability or non-flammabili-
ty), and the basic rules of fire front (Pastor et al. 2003). These
rules are based on mathematical and semi-empirical models.
Cellular automata use a two-dimensional grid for forest area
which the grid is divided to many cells. Actually, each cell
represents a small patch of the land and its shape is usually
chosen as a square. Thus, there are eight possible directions
for fire front (Fig. 2) (Alexandridis et al. 2008). Each cell is
described by some environmental variables.

States of the cells

In cellular automata, each cell is characterized by a number of
states which evolve in the discrete time. The possible states
have been described in Table 2.

The state of each cell is then coded as an element of a
matrix S which from now on will be called the state matrix.
Figure 3 shows an example of how an area of 16 cells with
random number of states is coded in a matrix form
(Alexandridis et al. 2008).

Rules of fire evolution

At each discrete time step t of the simulation, some rules are
applied to the elements i, j of the state matrix S (and thus to all
the cells). These rules have been described in Table 3.

Pburn (probability of burning) is a function of various pa-
rameters that affect the fire front and will be analyzed in the
following paragraphs. It should be noted that, due to the
square grid, we have assumed that the fire can be propagated
to the neighboring cells i ± 1, j ± 1; these are the eight cells
depicted in Fig. 4 (Alexandridis et al. 2008).

Fire front model

In this study, Alexandridis model based on cellular autom-
ata rules was used to model the fire front. Based on this
model, the following variables can affect both the shape
and rate of front of a forest fire: the vegetation type and
density, the wind speed and direction, and the ground
elevation effect. We removed the spotting effect from

Fig. 2 Possible directions of fire propagation on a square grid

Table 2 States of the cells

States of the cells
Number of state State 1 State 2 State 3 State 4

Cell shape

Description of 
state

The cell contains no 
forest fuel (city and 

rural areas)

The cell contains 
forest fuel that has 

not ignited

The cell contains 
forest fuel that is 

burning

The cell contained 
forest fuel that has 
been burned down
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model because this variable is not an effective factor in
fire front in Hyrcanian forests of Iran. Hyrcanian forests
of Iran are the broad leaves forests while spotting is an
effective factor on fire front in the needle leaves forests.
Spotting is a phenomenon where burning material is
transferred by the wind or other reasons such as the fling
of flaming pinecones to areas that are not adjacent to the
fire front (Alexandridis et al. 2008). There is no pine in
Hyrcanian forests of Iran and thus there is no report that
spotting has the important role in fire front in Hyrcanian
forests of Iran.

The variables that are terrain-specific, i.e., the type and
density of vegetation and the ground elevation, were also

coded in matrices similar to the state matrix. The pburn (prob-
ability of burning) of each cell is calculated by Eq. 1.

Pburn ¼ Ph 1þ Pveg

� �
1þ Pdenð ÞPwPs ð1Þ

Where ph denotes the constant probability that a cell adja-
cent to a burning cell containing a given type of vegetation
and density will catch fire at the next time step under no wind
and flat terrain; pden, pveg, pw, and ps are the fire propagation
probabilities that depend on the density of vegetation, the type
of vegetation, the wind speed, and the slope (elevation), re-
spectively. These probabilities are described below. Notice
that these probabilities are multiplied by the constant proba-
bility ph to obtain the corrected probability that takes into
account all the aforementioned factors (Alexandridis et al.
2008). To run this model, we needed four constant empirical
values regarding Eq. 1 and other equations (Eqs. 2, 3, and 4).
These constant empirical values were extracted from
Alexandridis model (Alexandridis et al. 2008). These values
have been given in Table 4.

Effect of vegetation type and density

The vegetation type and density are the important effective
variables in fire front rate in the forest areas. In this study,
the effects of the type and density of vegetation are represent-
ed by the probabilities pveg and pden, respectively. More spe-
cifically, the type and the density of vegetation in the study

Fig. 3 Coding the state of the cells in the state matrix S

Table 3 The rules of the elements i, j of the state matrix S (cell rules)

Number of rule Rule Description of rule

Rule 1 If state (i, j, t) = 1,
then state (i, j, t +
1) = 1.

This rule implies that the
state of a cell with no
forest fuel (empty cell)
remains the same and
thus it cannot catch fire.

Rule 2 If state (i, j, t) = 3,
then state (i, j, t +
1) = 4.

This rule implies that a
burning cell at the
current time step will be
burned down at the next
time step.

Rule 3 If state (i, j, t) = 4,
then state (i, j, t +
1) = 4.

This rule implies that the
state of an empty cell
that has been burned
down in the previous
step stays the same.

Rule 4 If state (i, j, t) = 3,
then state (i ± 1,
j ± 1, t + 1) = 3
with a probability
pburn.

This rule implies that when
a cell catches fire at the
current time step, the fire
can be propagated to the
neighboring cells at the
next time step with a
probability pburn.

(i-1, j-1)

(i,j-1)

(i+1, j-1)

(i-1, j)

(i,j)

(i+1, j)

(i-1, j+1)

(i, j+1)

(i+1, j+1)

Fig. 4 Central cell and neighboring cells

Table 4 Optimized values for the CA algorithm operational parameters

Parameter Name Value

ph The constant probability of fire propagation 0.58

a The slope coefficient 0.078

c1 The wind coefficient 0.045

c2 The wind coefficient 0.131
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area are divided to some categories. The type of vegetation
was clustered into three categories: resistant to fire (code
−0.3), medium resistant to fire (code 0), and sensitive to fire
(code 0.4) (Table 5). The density of vegetation was also scaled
into three categories: sparse vegetation (code −0.4), medium
vegetation density or normal (code 0), and dense vegetation
(code 0.3) (Table 6). These codes were empirically considered
based on influencing level of each given category in fire front
rate (Alexandridis et al. 2008). These were organized into two
matrices, the vegetation typematrix and the vegetation density
matrix where, for each of the respective categories, a certain
value (code) for the probabilities pveg and pden was assigned
(Tables 5 and 6) (Alexandridis et al. 2008).

Effect of wind speed and direction

Modeling of fire front based on effect of the wind speed and
direction is one of the current challenges in fire front modeling
studies. So far, a proper model which canmodel the wind effect
on fire front has not been presented, because wind as a fluid has
a complex behavior especially in the gradient terrains. The
different empirical relations have been proposed to model the
wind effect in fire front modeling studies. In this study, we
applied a more flexible empirical wind-effect relation which it
has shown the better results in fire front modeling. In this rela-
tion, the probability that contains the effect of wind velocity
and direction (pw) is calculated by the following equations:

Pw ¼ exp c1Vð Þ f t ð2Þ
f t ¼ exp Vc2 cos θð Þ−1ð Þð Þ ð3Þ

Where c1, c2 are the constant values (Table 4); V is the wind
velocity and θ is the angle between fire propagation direction

and wind direction. Notice that, using this formula, the wind
direction can receive any continuous value between 0 and
360°. While in many other models, the wind can have just
some given directions.

The probability pw is a function of the angle θ for some
arbitrary values of the constant parameters c1, c2 and wind
velocity (V) (Alexandridis et al. 2008).

Effect of the ground elevation

The ground elevation also is an effective variable in fire front
rate. When the fire moves on the uphill slopes, distance be-
tween flame and fuel (vegetation) is decreased. It can facilitate
the burning of the fuel and increases the fire front rate. This
issue is inversed on the downhill slopes. In this study, the
probability that models the effect of the patch-slope (ps) is
according to Eq. 4.

Ps ¼ exp aθsð Þ ð4Þ

Where θs is the slope angle of the patch and a is a constant
value (Table 4). It should be noted that due to the square grid,
the slope angle is calculated in a different way depending on
whether two neighboring cells are adjacent or diagonal to the
burning cell (Fig. 5).

More specifically for adjacent cells, the slope angle is cal-
culated as below:

θs ¼ tan−1
E1−E2

l

� �
ð5Þ

Where E1 and E2 are the altitude of two cells and l is the
length of square side (25 m in this research).

Whereas for diagonal cells, the slope angle is calculated as
below (Alexandridis et al. 2008):

θs ¼ tan−1
E1−E2ffiffiffi

2
p

l

� �
ð6Þ

Implementation of CA-based fire front model

The described CA-based model was applied for simula-
tion of the front of a wildfire that burned a part of DTNZ
forests on December of 2010. Unfortunately, there is not a

Table 5 Values for the
probability pveg depending on the
type of vegetation

Vegetation type Classes Fire front
probability

Pveg

Resistant to fire Agriculture, Bare area Low −0.3
Medium resistant to fire Quercus, Zelkova-Quercus Medium 0

Sensitive to fire Protected area, Shurb, Carpinus-fagus, Fagus-carpinus,
Carpinus, Carpinus-parrotia, Parrotia-carpinus

High 0.4

Table 6 Values for the probability pden depending on the density of
vegetation

Vegetation
density

Classes Fire front probability Pden

Sparse Agriculture—bare area Low −0.4
Normal <100 m3 and 100–200 m3 Medium 0

Dense Protected area, 200–350
m3 and >350 m3

High 0.3
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complete database of fires data in Hyrcanian forests of
Iran at present. In this research, we tried to use the data
of a wildfire in study area which its data (fire map, fire
area, fire start point, etc.) was available for testing of
capability of CA-based model. About other occurred fires
which the fire polygons were available, the fire areas were
very small to run cellular automata model or fire data in
the fire time were not available to run this model.

The wildfire in DTNZ forests on December of 2010 oc-
curred due to unknown causes somewhere near the North of
these forests and was quickly fronted to the South by
Southeast winds. The fire was extinguished around 11.5 h
later, after burning of a forest area about 443.69 ha. Figure 6
shows the burned area map.

The first step of implementation of fire front model for
actual fire in study area was to consider a confine for fire
front simulation and to collect the actual fire data at fire
time. The required data of actual fire for fire front simu-
lation in study area (actual fire map, fire area, fire start
point, etc.) were provided from MNRA (Table 7)

In the second step, the vegetation type and density
maps of fire confine (before fire occurrence) provided
from MNRA and elevation map provided from DEM of
ASTER sensor were organized in GIS. Then, the state
matrices of the elevation (including the values from 35
to 706), vegetation density (including sparse, normal,
and dense), and vegetation type (including resistant to
fire, medium resistant to fire, and sensitive to fire) were
generated based on digital geographical data. For this pur-
pose, the coding raster-file of vegetation density and type
of the fire confine were created in GIS (Figs. 7 and 8). In
addition, a coding raster-file of the elevation data for fire
confine was created in GIS (Fig. 9). Finally, a raster-file
of the fire confine (including the burned area) was created
in GIS (Fig. 6).

Based on these digital files, a raster data file was built,
containing the values of all the aforementioned variables
and overlaid on the grid. The side of the square grid was
selected equal to 25 m. This selection was sufficient
enough to give a crisp image and representation of the

Fig. 6 The burned area (actual fire) in DTNZ forests

a. Distance of two adjacent cells  b. Distance of two diagonal cells (m) (m)

Fig. 5 The adjacent and diagonal
cells to calculate the slope angle
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geographical data. Finally, all raster files were converted
to ASCII files in GIS. Based on the ASCII files of alti-
tude, vegetation density and vegetation type matrices, to-
gether with a matrix containing the burned area provided
in MATLAB, the fire front simulation environment was
created.

The wind conditions for fire day in the study area were
provided from MMA (the wind data in the nearest mete-
orological station to the fire start point). These data were
used to include the wind effect in fire front simulation. As
the fire area was not very extensive (4.43 km2), wind
speed and direction were considered the same for all the
cells in fire day. Thus, wind direction was considered
Southeast and wind speed was considered 9 m/s in pro-
gramming of fire front model in MATLAB. It is noted that
the wind speed and direction usually do not change in the

Fig. 8 Vegetation type map of fire confine

Fig. 7 Vegetation density map of fire confine Fig. 9 Digital elevation model of fire confine

Table 7 The actual fire data in the study area

Fire area (ha) Number of
burned cells
in fire simulation
confine

Number of
unburned cells
in fire simulation
confine

Fire start point

443.69 7100 18,706 Northwest of
fire polygon
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small areas in the nature too. The wind conditions in fire
day have been given in Table 8.

The fire front model was programmed in MATLAB and
it was implemented by uploading of all digital layers (cod-
ing ASCII matrices) of effective variables and considering
of the certain wind speed and direction in fire confine. The
fire front simulation was run by considering of fire start
point coordination and the dynamic exhibition of fire front
was depicted in MATLAB. The burning probability of each
cell was based on Pburn during fire front simulation pro-
cess. At each step of the fire front, the entire fire incident
was simulated until the fire stopped (no burning cells).
Finally, the number of burned and unburned cells in fire
confine matrix was obtained in MATLAB when the fire
front simulation process was ended.

Validation of CA-based fire front model

Results of model implementation including fire front direction
and shape were compared to the actual fire confine to evaluate
the accuracy of the CA-based model qualitatively. Thus, the
fire front polygon (CA-based model output) was overlaid on
the actual fire polygon.

In addition, error matrix was created to compare the
number of burned and unburned cells in the simulated fire
and the actual fire to evaluate the accuracy of the CA-
based model quantitatively. In error matrix, the real data
are organized in the rows while the simulation data are
organized in the columns. Finally, total accuracy and
Kappa index were calculated by error matrix. Kappa in-
dex computes the frequency with which the simulated

Fig. 10 The burned area predicted by the simulation (the fire start point
has been shown by red point; while the fire front evolution has been
marked by the color contours depicting 1-h intervals)

Table 8 Wind
conditions at DTNZ
forests in fire time

Variable Description

Wind direction Southeast

Wind speed 9 m/s

Fig. 11 Overlaying of the simulated fire and the actual fire

Table 9 Error matrix obtained from comparison of actual fire data and
simulated fire data

Simulated fire

Burned cells Unburned cells Total

Actual fire Burned cells 7021 79 7100

Unburned cells 2870 15,836 18,706

Total 9891 15,915 25,806
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area agrees with the observed area, with an adjustment
that takes into account agreement by chance (Filippi
et al. 2014). The value of Kappa index is from 0 to 1.
Kappa index was calculated as follows:

k̂ ¼
n
X j

i¼1
nii−

X j

i¼1
niþnþi

n2−
X j

i¼1
niþnþi

ð7Þ

Where k̂ is Kappa index; n is the total number of observa-
tions; ni+ is the number of observations in row i; n+i is the
number of observations in column i; nii is the number of ob-
servations in main diagonal of the matrix; and j is the number
of rows in the matrix.

Results

Implementation of CA-based fire front model

The results of the fire front simulation by CA-based model in
the actual fire confine have been shown in Fig. 10. The color
contours show the evolution of the fire in time intervals of 1 h.
In our simulations, the fire burned a total area of 618.23 ha.
The actual forest fire burned a total area of 443.69 ha.

Validation of CA-based fire front model

The fire front polygon (CA-based model output) was overlaid
on the actual fire polygon to evaluate the accuracy of the CA-
based model qualitatively (Fig. 11).

The error matrix to evaluate the quantitative accuracy of the
CA-based model has been shown in Table 9. In addition, the
evaluating of the accuracy of the CA-based fire front simula-
tion model based on total accuracy and Kappa index has been
shown in Table 10.

Discussion

This research was done to simulate the fire front in a part of
Hyrcanian forests of Iran using a CA-based model. Data of an
actual fire in the study area was used for fire front simulation.
In fact, the CA-based model was implemented for simulation
of the front of a wildfire that burned a part of DTNZ forests on
December of 2010. All simulation steps were done by cellular

automata based on cell states and rules. The fire front simula-
tion was run by considering of fire start point coordination.
Finally, the dynamic exhibition of fire front was depicted in
MATLAB. The number of burned and unburned cells in the
fire confine matrix was obtained in the end of simulation.

Results of CA-based model output including fire front di-
rection and shape were compared with the actual fire confine
to evaluate the accuracy of the CA-based model qualitatively.
In the simulation process, fire conditions were considered just
like fire conditions of the actual fire on December of 2010.
Whereas the fire start point in actual fire had been located in
the North of study area, the fire start point in simulation model
was also selected in the same location. In addition, the wind
direction in simulation model was also considered just like the
wind direction in actual fire (Southeast). Thus, fire in simula-
tion model was fronted from the North to the South of study
area after selecting of the fire start point. Notice that the in-
creasing elevation and slope toward the South of study area
(Fig. 9) which had been accompanied with the wind direction
(Southeast), strengthened the fire front to the South of study
area; because in all of the fire front models, if the dominant
wind exists, wind direction will determine the fire front direc-
tion. Otherwise, topography will determine the fire front di-
rection. In addition, vegetation type and density have the im-
portant roles in the fire permanence. In simulation of the fire
front in this research, topography and wind direction had the
most important roles in determination of fire front direction. In
addition, the dense vegetation and sensitive vegetation to fire
(Figs. 7 and 8) was provided the suitable conditions for fire
front to the South of simulation confine. On the other hand,
the actual fire on December of 2010 was also fronted to the
South of study area based on some reports (MNRA 2011).
Therefore, the results of CA-based model to predict the fire
front direction seem satisfactory. This can confirm the high
efficiency of cellular automata model in simulation of fire
front in Hyrcanian forests of Iran. The capability of this model
in fire front simulation has already been proved in other stud-
ies (Karafyllidis and Thanailakis 1997; Bodrožic 2006;
Encinas et al. 2007a; Encinas et al. 2007b; Yassemi et al.
2008; Alexandridis et al. 2008; Almeida and Macau 2010;
Pak and Hayakawa 2011; Innocenti and Cancellieri 2013).

The simulation results of the fire front have been
shown in Fig. 10. In our simulation, the fire burned a total
area of 618.23 ha in 11 h. The actual fire burned a total
area of 443.69 ha in 11.5 h. The simulated fire front poly-
gon (CA-based model output) was overlaid on the actual
fire polygon to compare the simulated fire shape with the
actual one (Fig. 11). Results showed that the shape of
simulated fire is very similar to the shape of actual fire.
This confirms that the CA-based model has had the satis-
factory results in fire front simulation. In addition, Kappa
index and total accuracy were used to evaluate the quan-
titative accuracy of the CA-based model. Results showed

Table 10 Accuracy of the CA-based fire front simulation model

Area of predicted (simulated)
burned region (ha)

Area of actual
burned region (ha)

Kappa
index

Total
accuracy

618.23 443.69 0.74 0.88
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that Kappa index and total accuracy of CA-based model
are 0.74 and 0.88, respectively. It can show the acceptable
accuracy of the CA-based model to predict the fire front
in Hyrcanian forests of Iran.

Finally, it is suggested that effect of the cell size would be
investigated on the shape and process of fire front in the next
studies. In addition, the effect of other factors such as temper-
ature, relative humidity, and fuel moisture content (FMC) can
be evaluated in fire front simulation in the next researches.
Further, if the aforementioned factors show the important ef-
fects in fire front, they can be imported to the fire front simu-
lation model in the future studies. In addition, the results of
this study can be compared with the results of other fire front
models (such as FARSITE) in the study area to find out the
most proper model in the fire front prediction.

Conclusion

The results of this study showed that the CA-based model has
the acceptable efficiency in prediction of the fire front in
Hyrcanian forests of Iran. However, there were some limita-
tions in this work. Unfortunately, there is not a complete da-
tabase of fires data in Hyrcanian forests of Iran at present. In
this research, we tried to use the data of a wildfire in the study
area which its data was available for testing of capability of
CA-based model. In addition, modeling of fire front based on
effect of the wind speed and direction was one of the chal-
lenges of fire front modeling in the current study. So far, a
proper model which can model the wind effect in fire front
has not been presented, because wind as a fluid has a complex
behavior especially in the gradient terrains. For this purpose,
the wind modeling to consider its effect in fire front models
should be done in the separate studies.

The capability of CA-based model in this study should be
further evaluated by implementing it in different actual fires
(in case of fire data availability) in Hyrcanian forests of Iran. It
is noted that further improvements in thismodel may result the
better predictions in fire front simulation. In this case, this
model can present a good monitoring pattern for predicting
of fire front direction in these forests. This pattern can be used
as a decision support system for firefighting and allocating of
facilities and human forces in the proper locations at the fire
time in Hyrcanian forests of Iran.
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