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Abstract A geostatistical approach based on ordinary kriging
is presented for the evaluation and the augmentation of an
existing rain gauge network. The evaluation is based on esti-
mating the percentage of the area that achieves a targeted level
of acceptable accuracy. The variances of kriging estimation
erros at un-gauged locations were assumed to be normally
distributed. Kriging estimation erros with a probability that
equals to or exceeds a given threshold value of acceptance
probability were assumed to have satisfactory accuracies.
The percentage of the area that achieved the targeted proba-
bility of acceptance is delineated and used to judge the overall
performance of the existing rain gauge network. A study area
in northern Oman located in Sohar governorate is selected as
the pilot case. The area has 34 rain gauges and it is character-
ized by a terrain surface that varies from coastal plain to
mountains. For a threshold value of 0.85, and 0.90 of acceptance
probability, the existing network achieved area of acceptable
probability of 88.71 and 77.72 %, respectively. For a success
criterion of 80 %, the existing rain gauge network indicated
acceptable performance for acceptance probability threshold of
0.85 and inadequate performance is noticed in the case of prob-
ability threshold of 0.90, which necessitated further network aug-
mentation. A sequential algorithm for ranking and prioritization

of the existing rain gauges is used to classify the existing rain
gauges into base and non-base rain gauges. The base rain gauge
network for mean annual rainfall comprised about 29 of the
existing rain gauges. The identified non-base rain gauges were
sequentially relocated to achieve higher levels of percentage
of area with acceptable accuracy. The percentage of area with
acceptable accuracy increased from 88.71 % for the original
rain gauge network to about 94.51 % for the augmented net-
work by adding four rain gages at probability acceptance
threshold of 0.85. It also increased from 77.72 % for the
existing network to 90.50 % for the augmented rain gauge
network at acceptance threshold of 0.9.

Keywords Rain gauge network . Geostatistics . Ordinary
kriging . Sequential algorithm . Semivariogram . Oman

Introduction

Countries in the Middle East region are particularly suffering
from the lack of adequate rain gauge network. The vulnera-
bility of these countries to potential climate change effects
combined with the already existing water scarcity and hyper
aridity conditions suggest more investments in rainfall moni-
toring for efficient management of the limited water resources.
The hydrometeorological characteristics of the Sultanate of
Oman has a tendency to produce short duration high intensity
storms giving rise to flash floods with consequent damage and
disruption to properties.

The optimum rain gauge network is the one that eliminates
serious deficiencies in the utilization, development, and man-
agement of water resources. In un-gauged catchments, the rain
gauge network should be developed as rapidly as possible,
incorporating existing gauges and providing a framework for
future expansion to meet the information requirements of
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specific water uses. The concept of rain gauge network den-
sity is intended to serve as a general guideline if specific guid-
ance is lacking. As such, the design densities must be adjusted
to reflect actual socioeconomic and physio-climatic condi-
tions. Computer-based mathematical analysis techniques
should also be applied, where data are available, to opti-
mize the rain gauge network density required to satisfy spe-
cific needs.

Modern rain gauges are capable of providing rainfall rates
in real time and at very fine resolution in time. However, the
spatial variation of rainfall is still difficult to be characterized
without a rain gauge network of adequate density in space.
The latest advances in satellite imagery, weather satellites, and
remote sensing appear to have the potential to provide full
spatial coverage of rainfall estimates. Satellite-based monitor-
ing techniques have also caused deterioration of rain gauge
networks in some cases (Ali et al. 2005). In fact, data provided
by satellite-based techniques are still incapable to provide ac-
curate rainfall estimates at a spatial resolution that matches
rain gauge measurements. In addition, the mathematical algo-
rithms used to retrieve rainfall data from satellite observations
still need to be calibrated and validated using ground-based
rainfall measurements, i.e., by rain gauges. In some applica-
tions, the satellite images were even coupled with rain gauge
observations to produce better estimates of point or areal
rainfalls (Krajewski 1987).

The objective of having a rain gauge network is to properly
capture the rainfall and explain its spatial and temporal vari-
abilities within a certain area. The rainfall variability depends
on topography, wind, direction of storm movement, and type
of storm. The locations and spacing between gauges depend
not only on the above-mentioned factors but also upon the
purpose of the rain gauge network, accessibility, ease of main-
tenance, topographical aspects, etc. Some of the rain gauge
networks are intended for applications related to water re-
sources planning and management (e.g. water balance studies,
storage dams, and groundwater recharge). The other type of
rain gauge network is the one intended for use in storm drain-
age and flood protection purposes, i.e. hydrological studies
required for hydraulic design of bridges, culverts, channels,
storm water networks, etc. The main data required from the
first type is the long-term averaged rainfall data, e.g., mean
monthly and mean annual rainfall depths. Whereas the data
needed from the second type of rain gauge network is the
high-temporal resolution records (hourly and sub-hourly re-
cords) which are crucial to define the storm pattern and conse-
quently the design rainfall intensity. Some rain gauge network
could be intentionally designed to serve both purposes of water
resources planning and drainage design applications. Hence, a
methodology for performance evaluation and augmentation of
an existing rain gauge network is crucial. It can help to under-
stand the capability of an existing rain gauge network in
achieving its purpose and the quality of the data it provides.

The literature review includes several attempts to study the
rain gauge network design. Langbein (1960) suggested that a
reasonable minimum rain gauge density should be above 2
gauges per 1000 km2. The World Meteorological
Organization, WMO (2008), recommends certain densities
of rain gauges to be adopted for different types of catchments.
The World Meteorological Organization (WMO 2008) mini-
mum rain gauge network criterion distinguishes between two
classes of rain gauges, the non-recording and the recording
rain gauges. In flat terrain of temperate zones, 500 km2 per
non-recording gauge and 5000 km2 per recording gauge are
recommended. For small mountainous islands with irregular
precipitation, 25 km2 per non-recording gauge and 250 km2

per recording gauge are recommended. The recommended
rain gauges’ densities byWMO are not applicable to the great
deserts (Sahara, Gobi, Arabian, etc.) and great ice fields
(Antarctic, Greenland, and the Arctic islands) that have no
organized hydrographic networks.

In contrast to the above-mentioned descriptive guidelines
for the design and evaluation of a rain gauge network, there
are more data driven-based techniques. These methods utilize
the available rainfall records from the existing rain gauges in a
certain area to provide basis for evaluation and augmentation
of the rain gauge network. Statistical techniques are commonly
adopted for rain gauge network design and evaluation. Patra
(2001) used simple statistical approaches, e.g., the coefficient
of variation and the allowable percentage of error, to estimate
the optimal number of rain gauges. However, the design of rain
gauge network does not only involve the determination of the
number of gauges, but also the location of the gauges is also
necessary. Both number and locations are necessary to achieve
the required accuracy by providing observation that depicts the
temporal and spatial variations of rainfall in a certain context.

Geostatistical techniques proved to have many potential
applications in hydrological research; in particular, the optimal
estimation of the average value over a region using the vari-
ance reduction concept. Several applications of rain gauge
evaluation and optimization using geostatistics are reported
in the literature, including (Cheng et al. 2008; Mahmoudi-
Meimand et al. 2015; Kar et al. 2015; Adhikary et al. 2015a;
Seo et al. 2015; Hui-Chung et al. 2011; Chebbi et al. 2011; St-
Hilaire et al. 2003; Tsintikidis et al. 2002; Pardo-Igúzquiza,
1998; Kassim and Kottegoda 1991; Bastin et al. 1984).
Another major approach for the design and evaluation of the
rain gauge networks is the information entropy (Mahmoudi-
Meimand et al. 2015; Hongliang et al. 2015; Hui-Chung et al.
2011; Chen et al. 2006). The nature of the objective function
used for optimization of rain gauge network could be any of
geostatistical-based (variance-based), entropy-based, fractal-
based, or distance-based techniques. In this paper, we adopt
the geostatistical approach which has the merit of taking the
spatial nature of the rainfall phenomena and observations into
consideration and using the semivariogram as a measure to
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quantify the spatial variability. The geostatistical approaches
are a well-understood way of capturing spatial variation com-
pared to other methods. A detailed presentation of
geostatistical theories can be found in Webster and Oliver
(2007).

Most of the geostatistical applications for rain gauge net-
work design considered only annual or monthly time steps
for network evaluation, e.g. (Lloyd 2005; Vicent-Serrano et
al. 2003). High-resolution time scale of hourly data is also
reported (Haberlandt 2007). The analysis of the spatial dis-
tribution of hourly and daily rainfall is rather difficult mainly
because of intermittence and large variability (Carrera-
Hernandez and Gaskin 2007). Rain gauge network optimi-
zation aims at providing correct description of the spatial
rainfall estimation. The performance of a certain network
focuses on minimizing the estimation variance of the areal
rainfall and not that of point rainfalls across the area of
concern. In some cases using areal rainfall to force hydro-
logical and rainfall-runoff simulation models may be ade-
quate for flood simulation. This is because catchments act
as low-pass filters and the necessary intervals for rainfall
measurements in time and in space may be determined by
the variability in the discharge simulated at the outlet of the
catchment (Eagleson 1967). Monitoring of localized high-
intensity rainfall is immensely important in catchments that
have steep slopes with quick response to local rainfall. In
this case, rain gauge network shall be installed tailoring to
such needs.

The main objective of this paper is to analyze, and evalu-
ate the performance, and provide augmentation recommenda-
tions of an existing rain gauge network located in the northern
part of Sultanate of Oman. The methodology is based on the
well-known ordinary Kriging approach. A sequential prioriti-
zation algorithm is developed to prioritize the existing rain
gauges and hence determine the base rain gauges which must
be kept in their locations and the non-base gauges which can
be eliminated or relocated.

Following this BIntroduction^ section, the BStudy area^
section provides description of the study area and data includ-
ed in the paper. The BMaterials and methods^ section provide
details of the material and methods including data preparation,
the governing equations ordinary kriging, cross-validation
methods, and description of the prioritization sequential algo-
rithm. In the BResults and discussion^ section, we present the
results of the ordinary kriging, rain gauge network evaluation
and augmentation. Finally, the BConclusions^ section summa-
rizes the main findings of the paper.

Study area

A case study of rain gauge network in Sultanate of Oman is
used to represent the conditions in arid regions. Oman lies on

the southeast corner of the Arabian Peninsula between longi-
tudes 55.50 E to 60.0 E and latitudes 21.50 N to 26.50 N. It
occupies a total land area of about 309,500 km2 and includes
different terrains that vary from highlands, wadies, inland
plains, and coastal plains. Only the Al Hajar Mountains in
the north and the Dhofar Mountains in the south, have regular
rainy seasons with substantial rainfall. Rainfall in the rest of
the country is low and irregular. Heavy rains can occur, some-
times delivering all the rainfall amount of the year in a single
shower event, causing violent floods. Mean annual rainfall is
less than 50 mm in the interior regions which cover two thirds
of the country and is around 100 mm in the coastal areas. In
the Al Hajar Mountains rainfall ranges between 100 and
350 mm. Parts of the Dhofar Mountains, influenced by mon-
soons, receive between 200 and 260 mm of rainfall annually.
During September to November, very little precipitation is
observed in the country. There are four major climatic condi-
tions causing rainfall in Oman, which can be summarized as
follows:

& Low air pressure caused by cold boundaries: it is common
during winter and early spring, when it leads to rainfall
fairly constant in the northern parts of the country, and
scattered showers of rain in the central and southern parts
of the country.

& Tropical cyclones from the Arabian Sea: the cyclones
originate over the Arabian Sea and reach the Sultanate
every 3 years in average in Dhofar and every 10 years in
Muscat. They tend to be distributed equally between two
cyclone seasons: May to June and October to November.

& Seasonal coastal currents monsoon rains: these currents
are common during the period from June to September,
associated with surface currents over the Arabian Sea.
These currents are dominated by the south-west current,
and may be mixed partly with air current coming from the
Gulf of Aden. As a result, the summer in the Governorate
of Dhofar is characterized by high humidity, a decrease
during the months of June and July.

& Convectional rainfall: this kind of rain is the result of the
presence of local convectional storms that can occur at any
time during the year.

A network of 305 rain gauges covers an area of about
122,466 km2 with daily rainfall data from 1973 to 2009. Not
all of the rain gauges have records that cover the entire period
from 1973 to 2009 because some gauges were dismantled,
others were not accessible or damaged. It is found that by
the year 2010, there were 225 rain gauges still in operation.
From 1993 to 2010, a total of 115 rain gauges were operation-
al and having common records. Considering the scarcity of
data in arid regions, 17 years records are considered to be
adequate for the analysis of the rain gauge network.
Figure 1a shows the locations of the available rainfall data in

Arab J Geosci  (2016) 9:552 Page 3 of 15  552 



northern Oman, Fig. 1b shows a bar chart of the number of
rain gauges with records from 1973 to 2010.

The exact limit of the study area has been decided based on
clustering of the rain gauges using the Agglomerative
Hierarchal Clustering (AHC) dissimilarities approach. The
rainfall parameters used in the clustering are the maximum
daily rainfall depth and the total annual rainfall depth.
Figure (1c) shows that the rain gauges are categorized into
three clusters. Group 1 has an average total annual rainfall
depth of 84.57 mm and an average altitude of 354.0 m above
mean sea level (amsl). Group 2 has an average annual rainfall
depth of 201.53mm and an average altitude of 1219.0m amsl.
Group 3 has an average annual rainfall depth of 140.7 mm and
an average altitude of 705.90 m amsl. Based on the clustering
results, the selected area is located at the northern part of
Oman and is entirely located in Sohar Governorate. It has a
surface area of about 8500 km2 and it includes a total of 34
rain gauges all of them belong to the clustering group 1. The
selected study area extends along the coast of the Gulf of
Oman from Shinas to Liwa in Sohar Governorate and extends
towards the mountains up to Al Hajar Mountains to the south-

west. The altitude of the area varies from +0.0 at the coastal
plain to a maximum altitude of 1100.0 m amsl at the moun-
tainous area.

Table 1 shows a summary of the different attributes of the
34 rain gauges included in the study area (rain gauge ID,
easting, northing, altitude, mean annual rainfall, and maxi-
mum daily rainfall). The altitudes of the different rain gauges
range from 0.7 to 832.87 amsl covering terrain conditions that
extends from the coastal plains towards the Al Hajar
Mountains. The mean annual rainfall ranges from 50.5 to
151.4 mm/year with the maximum value taking place at the
rain gauge with the highest altitude. The maximum daily rain-
fall depth ranges from 42.5 to 121.8 mm/day. These attributes
indicate the apparent spatial variability of the rainfall charac-
teristics in the selected study area.

Material and methods

In this paper, the geostatistical approach of ordinary kriging is
implemented using the ArcGIS Geostatistical Analyst
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Fig. 1 a Area of study, Sultanate of Oman with the available ground rain gauges. b Number of available rain gauges (rain gauges)/year. c Clustering of
the rain gauges in northern Oman into three clusters and the extents of the selected area of the case study in Sohar Governorate
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extension to evaluate the performance of the existing rain
gauge network in the study area and to propose any necessary
augmentation of the network. The following sub-sections
present the approach and methodology that we adopted to
achieve the objectives.

Rainfall interpolation using geostatistical approach

Spatial interpolation is commonly performed by guessing a
regionalized value at un-gauged locations using the
weights of other observed regionalized values. In this pa-
per, un-gauged points refer to the centers of a rectangular
mesh of 1-km2 covering the selected study area. The gen-
eral equation for spatial interpolation is given by Eq. (1) as
follows:

Zg ¼ ∑ i¼N
i¼1 φiZsi ð1Þ

where Zg is the interpolated value at point g, Zsi is the
observed value at point i, N is the total number of ob-
served rain gauges, and φi is the individual weight of
each rain gauge contributing to the interpolation. The
focus of the interpolation procedure is the accurate cal-
culation of the individual weight contribution φi at other
points. The literature include different approaches fre-
quently practiced for calculating these weights, e.g.,
Thiessen polygon method (Chow 1964), inverse distance
weighting method (Teegavarapu and Chandramouli 2005),
and the geostatistical methods.

Geostatistical approaches have been applied in the interpo-
lation and evaluation of any monitoring networks including
rain gauge networks. The geostatistical approaches produce
un-biased interpolated estimates with minimum variance er-
ror. The semivariograms are the main tools used in
geostatistical approaches to characterize the spatial variation
and spatial dependence in the rainfall distribution. By using
Kriging, the best linear un-biased estimate of the interpolated
value can be estimated at each location. Kriging usually em-
ploys a theoretical semivariogram model to represent the spa-
tial dependence between the different observed points. An
empirical semivariogram is initially developed using the ob-
served records from the different rain gauges and hence used
in the development and evaluation of the appropriate theoret-
ical semivariogram. Different forms of Kriging are reported in
the literature, ordinary Kriging (Ly et al. 2011), universal
Kriging (Basistha et al. 2008), kriging with an external drift
(deutsch 1996), and ordinary cokriging (Goovaerts 2000) are
the most common kriging methods.

Ordinary kriging is one of the most widely used
geostatistical methods due to its computational simplicity
and data availability in different applications. The optimal
interpolation in Kriging is based on regression against ob-
served rainfall Zsi which is a random variable defined at loca-
tion si and it is assumed to be a second-order stationary ran-
dom field. To estimate the unknown value of Zg at an
ungauged location, the general formula of the interpolated
value is given by Eq. (1). The weights φi are obtained using
the semivariogram model such that the weights are not biased

Table 1 Summary of the attributes of the 34 rain gauges in included in the study area in Northern Oman

(1)* (2)** (3)*** (4)x (5)xx (6)xxx (1) (2) (3) (4) (5) (6)

CM996898AF 396,900 2,698,800 432.9 81.6 65.7 DM576043AF 456,679 2,670,254 201.0 55.9 60.5

CN915047AF 395,400 2,710,700 452.0 77.9 77.5 DM578762AF 459,033 2,677,420 148.6 53.1 42.5

DM089906AF 409,000 2,689,600 622.1 66.0 90.2 DM580942AF 450,426 2,689,150 168.5 73.4 74.6

DM155846AF 415,400 2,658,600 625.0 86.1 54.4 DM672387AF 462,094 2,673,060 148.9 60.4 45.0

DM173968AF 413,619 2,679,834 602.7 50.5 121.8 DM688469AF 468,551 2,684,908 44.8 52.2 48.3

DM260958BF 420,500 2,669,800 653.9 83.8 62.0 DM760001AF 470,022 2,660,114 157.8 66.0 55.0

DM264436BF 424,300 2,664,600 832.7 151.4 69.0 DM774437AF 474,272 2,674,707 69.3 61.1 85.4

DM271711BF 421,100 2,677,100 528.8 67.3 59.2 DM792227AF 472,200 2,692,700 8.8 68.6 61.6

DM339923AF 439,200 2,639,300 749.2 95.2 68.0 DM868954AF 488,500 2,669,400 13.0 73.6 70.5

DM374569AF 434,600 2,675,900 619.1 86.7 85.0 DN018590AF 408,900 2,715,000 633.7 76.2 102.0

DM383052AF 433,765 2,680,444 377.4 81.6 66.4 DN206495AF 426,924 2,704,572 527.7 63.6 56.8

DM444945AF 444,400 2,649,500 576.4 89.9 62.5 DN324310AF 426,586 2,723,896 468.2 98.2 49.8

DM459225AF 449,200 2,652,500 512.8 106.1 73.0 DN417300AF 447,523 2,713,540 69.8 63.7 80.0

DM464536AF 444,287 2,665,645 695.9 66.0 49.0 DN436617AF 446,100 2,736,700 0.7 105.0 91.0

DM474200AF 444,080 2,671,958 501.8 82.3 83.5 DN516027AF 456,200 2,710,700 9.1 91.9 103.0

DM476902AF 446,042 2,679,166 300.8 64.7 63.6 DN603661AF 463,600 2,706,100 2.3 83.7 100.3

DM565082AF 455,862 2,660,102 314.9 78.3 60.0 DM382737BF 432,300 2,687,700 528.7 79.7 68.0

(1)* rain gauge ID, (2)** rain gauge easting (m), (3)*** rain gauge northing (m), (4)x rain gauge altitude (amsl), (5)xx mean annual rainfall (mm/year),
and (6)xxx maximum daily rainfall (mm/day)
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and the variance is minimized. The ordinary Kriging equa-
tions set of (ns + 1) is given by Eq. (2) as follows:

∑ ns
i¼1φiγij−μ ¼ γi0 f or j ¼ 1;…; ns ð2aÞ

∑ ns
i¼1φi ¼ 1 ð2bÞ

where γij represents the calculated semivariances of Zsi be-
tween any two locations i and j, and μ is the Lagrange param-
eter. The weights φi that will be derived from Eq. (2) will feed
Eq. (1) in order to get the interpolated values of the variables.
To avoid biased predictions, the summations of the weights of
φi are forced to be 1, which necessitates the identification of
the Lagrange parameter.

Semivariogram modeling

The random nature of spatial variation of rainfall phenomena
can be represented by a random field Z(x), where x represents
the spatial location and Z is the rainfall depth. The distance
separating between pair of rain gauges is known as the lag
vector (h). z(u) represents the rainfall depth as a function of
spatial location and z(u + h) represents the lagged version of
the rainfall depth as a function of spatial location. As we can
think of the two variables as located at the tail and head of the
lag vector, the z(u) can be referred to as the tail variable and
the z(u + h) can be referred to as the head variable. The spatial
variation structure of the rainfall depth Z(x) with a stationary
mean can be represented by its semivariogram, defined by
Eq. (3):

Semivariance : γ hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

α¼1
z uα þ hð Þ−z uαð Þ½ �2 ð3Þ

where N(h) is the number of data pairs separated by lag dis-
tance plus or minus the lag tolerance, and the γ(h) is the
semivariance. The semivariance is the moment of inertia or
spread of the scattergram about the 45 degrees line. Unlike the
correlation and covariance which are measures of data simi-
larity, the semivariance is a measure of data dissimilarity.

Equation (3) shows that the semivariance is independent of
the locations of different points, i.e., it only depends on the
distance between the two points under consideration. The plot
of the semivariance versus the lag is called the semivariogram.
The influence range of a semivariogram is the minimum dis-
tance |(u + h) − (u)| beyond which the random variables ob-
served at two points separated by a lag distance, z(u + h) and
z(u), become independent. For a second-order stationary ran-
dom field, as the lag distance h increases, the semivariance
will reach an asymptotic value, known as the sill, denoted by c,
which is numerically the same as the variance of the random
variable z(u). Theoretically, the semivariogram value at the
origin should be zero; however, if it significantly deviates
from zero at very small lag distances, then the semivariogram

value at the origin is called nugget. The nugget represents the
spatial variability at small lag distances that are less than the
sampling distance or represents measurements errors. For fur-
ther details of semivariogram modeling, refer to Bohling
(2005) and Adhikary et al. (2015b).

After developing the empirical semivariogram derived
using the observed data, the theoretical semivariogram model
should be identified. This theoretical model is necessary be-
cause the ordinary kriging algorithm needs to get the
semivariance values for other lag distances rather than those
used in the development of the empirical semivariogram.
Also, to ensure solvable ordinary kriging equations, the select-
ed semivariogram model needs to conform certain numerical
properties. Two of the most commonly used basic theoretical
semivariogrammodels are applied herein. These are the spher-
ical model (Eq. 4) and the exponential model (Eq. 5). Each of
these models is combined with a nugget effect.

spherical semivariogram model : g hð Þ

¼ c: 1:5
h

a

� �
−0:5

h

a

� �3
 !

if h≤a

c otherwise

8><
>: ð4Þ

Exponential semivariogram model : g hð Þ

¼ c: 1−exp
−3h
a

� �� �
ð5Þ

Whereas g(h) represents the semivariance for a pair of data
points separated by a lag distance h. c is the asymptotic max-
imum value of the semivariance, and a is the range or the
distance at which the random variables become independent.
The spherical model reaches the specified sill value, c, at the
specified range, a. The exponential model approaches the sill
asymptotically, with a representing practical range which is
the distance at which the semivariance reaches 95 % of the
sill value.

Evaluation criteria of the interpolation

The evaluation of the kriging interpolation using different
semivariogram models is carried out using cross-validation.
This process involves temporarily discarding data from the
sample dataset and then estimating such values using the re-
maining samples (Isaaks and Srivastava 1989). In this way, the
predicted values can be compared with the observed values at
the same location and consequently get useful information
about the kriging model and how good it works.

Summary statistics are made by comparing the predicted
value to the actual value from cross-validation given that Zsi is
the predicted value from cross-validation, Zgi is the observed
value and σsi is the predication standard error for location si.
Johnston et al. (2001) provided five summary statistics for
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evaluating geostatistical models. These are mean prediction
error (Eq. 6), root mean square prediction error (Eq. 7), aver-
age kriging standard error (Eq. 8), mean standardized predic-
tion errors (Eq. 9), and root mean square standardized predic-
tion error (Eq. 10).

Mean prediction error ¼ ∑ n
i¼1 Zsi−Zgið Þ

n
ð6Þ

Root mean square prediction error

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑ n

i¼1 Zsi−Zgið Þ2
r

ð7Þ

Average kriging standard error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑ n

i¼1σsi

r
ð8Þ

Mean standardized prediction error

¼ ∑ n
i¼1 Zs−Zgið Þ=σsi

n
ð9Þ

Root mean square standardized prediction error

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X n

i¼1
Zsi−Zgið Þ=σsið Þ2

r
ð10Þ

The mean prediction error is used to assess the degree of
bias in the predictions. For un-biased predictions, the mean
prediction error should be near zero. The mean standardized
prediction error is estimated by dividing the mean prediction
errors by the prediction standard error. For un-biased predic-
tions, the mean of the standardized prediction error should be
also near to zero. To have the predictions as close to the ob-
served values as possible, the root mean square prediction
error is computed, the closer the predictions are to the obser-
vations, the smaller will be the root mean square prediction
error. The standardized root mean square error shall be near to
or equal to 1.0 to have a model that neither overestimates nor
underestimates the variability in the predictions.

Characterization of the acceptable accuracy

Cheng et al. (2008), Kassim and Kottegoda (1991), and Bastin
et al. (1984) used the ordinary kriging variance for optimal
estimation of areal rainfall average using an interactive selec-
tion procedure. The ordinary Kriging estimation variance is
given by Eq. (11) as follows.

σ2
k x0ð Þ ¼ μþ ∑ ns

i¼1φiγi0 ð11Þ

A reliable rain gauge network should have an acceptable
accuracy of rainfall estimation at most of the points within the
area served by the network. The estimate rainfall at any point
can be considered acceptable if it falls within a certain range of
the actual value. By taking into account that the estimation
accuracy of rainfall varies from time to time and from one

event to another and taking into consideration the variance
of the rainfall field, the formula of the probability of
acceptance provided by Cheng et al. (2008) is used, Eq. 12.

P Zg x0ð Þ−Zg x0ð Þ
��� ��� < kσk

h i
≤a ð12Þ

where Zg x0ð Þ is the true rainfall at a certain location (x0)
and Zg(x0) is the kriging estimation of the rainfall at the same
location, k is a multiple and a is the minimum acceptance
probability selected on the basis of the factors such like avail-
able budget for gauge installation, maintenance level, and re-
quired estimation accuracy. We calculated the provability of
acceptance for two thresholds of acceptance (a = 0.85 and
0.9). The percentage of the area that achieves the minimum
acceptance probability (Ap) is calculated and used as basis for
rain gauge network evaluation.

Evaluation of the existing rain gauge network

The percentage of area with acceptable accuracy is used as the
basis for rain gauge network evaluation. On the same basis,
rain gauge network augmentation can be achieved by adding
new rain gauge or removing/relocating existing rain gauges.
In order to enable the augmentation process, exiting rain
gauge is ranked and prioritized. Ranking will identify the base
rain gauges which are essential in the network and cannot be
removed or relocated and the non-base gauges which are sub-
ject to removal or relocation to new sites.

A sequential ranking algorithm suggested by Cheng et al.
(2008) is applied to rank and prioritize rain gages in the
existing network. In this algorithm, one gauge at a random
location, hereafter referred to as gauge, is chosen from a set
of m remaining rain gauges. The algorithm starts with a set of
remaining rain gauges consisting of all existing rain gauges.
At each grid node, the variance of the estimation error is cal-
culated using Eq. (11) with only rain gauges involved. Then,
the area of acceptable accuracy with the remaining gauges in
place is calculated. The next step will be to return the previ-
ously selected rain gauge to the set of existing rain gauges (m)
and to select a different rain gauge and recalculate the variance
of the estimation error and the area of acceptable accuracy for
the remaining rain gauges. This process is repeated until all
rain gauges in the network are selected and the areas of ac-
ceptable accuracy are calculated in each step. The rain gauges
are then ranked according to their corresponding areas of ac-
ceptable accuracy. The rain gauge with the highest area of
acceptable accuracy is the least important gauge with no sig-
nificant contribution to the area of the acceptable accuracy
provided by the network, i.e., with no added value to the areal
estimation of rainfall. This gauge is then removed from the
network and the whole above-mentioned procedure is repeat-
ed again on the remaining rain gauges. This algorithm is re-
peated until there is only one rain gauge remaining.
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Results and discussion

Exploratory Analysis of the observed rainfall data

Geostatistical methods are optimal when the input data are
normally distributed and spatially stationary, i.e. the mean
and variance of the data does not vary significantly in
space. Significant deviations from normality and station-
ary may lead to violation of the method assumptions. As
such, the analysis begins by looking at a histogram plot to
check for normality and plotting of the data values in
space to check for significant trends.

Figure 2a shows the distribution of the average mean an-
nual rainfall data for the 35 rain gauges included in the case
study. The distribution indicates a skewness coefficient of
1.5611 and a kurtosis coefficient of about 7. According to this,
the original mean rainfall data cannot be considered as nor-
mally distributed and shall be subject to transformation prior
to the application of further analysis. The appropriate method
used for transformation in this case is the Box-Cox transfor-
mation. Figure 2b shows the distribution of data after being
transformed using the Box-Cox, with a transformation param-
eter of −0.8. The transformed data resulted in a skewness
coefficient of −0.03182 (nearly equal to zero) and a kurtosis
coefficient of 2.888 which can be considered as normally dis-
tributed data.

For a second order stationary rainfall depth, the
semivariogram approaches its sill, which numerically equals
to the variance of the rainfall. The existence of an orographic
or spatial trend in the data will eliminate the condition of
second-order stationarity and causes the semivariogram to in-
crease continuously without a sill. Therefore, it is necessary to
explore the orographic and spatial trend in the observed rain-
fall data prior to fitting a semivariogram model.

The spatial trend is explored by plotting the values of the
mean annual rainfall data of all rain gauges over X–Y plane
with Z-axis representing the rainfall depth at each rain gauge.
A second-order polynomial is fitted to the rainfall data on both
north-south and east-west directions. Figure 3 shows that a
clear orographic trend exists in the east-west direction. In the
east-west direction of the study area, there is the coastal plain
followed by Al Hajar Mountains and then followed by the
inland plains. The rainfall records are highest over the moun-
tainous zone compared to the plains because of the orographic
effect. It is worth noting that since the data have a trend effect
in both directions; it may also be subject to anisotropy. This
will be subject to further checking while executing the
semivariogram fitting. De-trending is applied to the data in
order to remove the existing trend by subtracting the trend
surface (second-order polynomial function). The residuals,
after the de-trending are used in fitting the semivariogram
model. In the kriging process, the global trend is added back
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Fig. 2 Histogram distribution of
the mean annual rainfall data a
before transformation and b after
transformation
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to the data such that the kriging interpolation is carried out on
the original mean rainfall data.

Fitting of semivariogram model

The spherical and exponential semivariogrammodels are both
fitted to the de-trended mean annual rainfall data. Figure 4
shows the resultant semivariograms for the exponential model
(Fig. 4a) and the spherical model (Fig. 4b). As we are working
in a two dimensional space, it is expected that the
semivariogram and covariance functions may not only change
with distance, but also with direction (anisotropy). The check
for the spatial trend shown in Fig. 3 illustrated second order
polynomial trends on north-south and east-west directions
which favor the case of anisotropy. Anisotropy can be ex-
plained by prevailing wind direction, orography, etc. By
checking the semivariogram cloud in several directions, it is
evident that the semivariance of themean annual rainfall depth
varies not only with distance but also with direction for the

same lag distance. As such the space can be considered under
anisotropy effect. Figure 4 shows the relation between the de-
trended semivariance values on the vertical axis and the lag
distance on the horizontal axis for all pairs of stations. Each
line inside the envelop represents the best fit model in a spe-
cific direction. Based on the generated best fit models, the
major and the minor ranges as well as the angle of influence
are calculated.

Figure 5 shows the directional anisotropy of the exponen-
tial semivariogram model. The model resulted in a prevailing
directional anisotropy at 30.0° from the north with a major
range between pairs of rain-gauges of 33663.20 m. The
minor range in the perpendicular direction (120.00°)
equals 18655.10 m. The spherical model resulted in an
angle of directional anisotropy of 33.40°, a major range
of 33972.50 m, and a minor range of 21445.40 m (results
are not shown). This indicates that both models reached the
same sill value at similar values for the major and minor
ranges. It is also noted that the directions of anisotropy are

Fig. 3 Spatial trend of the mean
annual rainfall data records for
different rain gauges in the study
area in different directions

Fig. 4 Anisotropy semivariogram model envelop. Exponential model on the average of total annual rainfall
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also close to each other. This is logical since the anisotropy
is not directly related to the theoretical model to be fitted,
but it is more relevant to geography and wind directions,
etc.

Applying kriging interpolation

The weights for the kriging interpolation are acquired using
the surrounding measured values to predict values at each

Fig. 5 Check of directional anisotropy for the exponential semivariogram model for the mean annual rainfall data

Fig. 6 Interpolated annual mean
rainfall of the study area using
ordinary Kriging based on
exponential semivariogram
model
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point in a mesh that consists of 1-km grid points. The kriging
weights come from the theoretical semivariograms that was
developed by looking at the spatial structure of the data. The
interpolated rainfall at each grid point is estimated based on
the semivariogram and the spatial arrangement of nearby ob-
served values. The contours of the interpolated mean annual
rainfall generated by ordinary Kriging based on the exponen-
tial semivariogram model are shown in Fig. 6. The mean an-
nual mean rainfall varies from 55 to 150 mm/year, with an
aerial mean of 85 mm/year.

Statistical measures are used to evaluate the interpolated
rainfall acquired using the exponential and the spherical
semivariogram models. Figure 7 shows the cross-validation
values of the interpolated de-trended mean annual rainfall ver-
sus the observed values acquired using the exponential
semivariogram model (Fig. 7a) and using the spherical
semivariogram model (Fig. 7b).

Table 2 summarizes the statistical measures (i.e., mean pre-
diction error, mean prediction standardized error, average
kriging standard error, root mean square prediction error,
and standardized root mean square prediction error). For both
models, the statistics indicate that the mean prediction error
and the mean standardized prediction error for both
semivariogram models are close to zero. In addition, the
root-mean square standardized prediction error is close to

1.0, which give a good indication that unbiased predictions
are reached and that the two semivarigram models neither
overestimates nor underestimates the observations.
Accordingly, the used criteria have adequate estimation of
the areal mean annual rainfall over the study area. It is noted
that there is no significant difference between the two
semivarigrammodels and both are representative of the spatial
variability in the annual rainfall in the study area. Hence, it is
decided to select the exponential model for further analysis.

Network performance evaluation

This step is the main goal of the previously explained
geostatistical analysis. The rainfall estimation accuracy at each
grid point can be evaluated using the acceptance probability.
The performance evaluation of the rain gauge network has
been made based on the area with acceptance probability,
hereinafter expressed by Ap. Ap is calculated at each point in
the study area after being discretized into a grid of 1-km mesh
size which enables the establishment of contour maps for the
acceptance probability.

Figure 8 shows contour maps of acceptance probability for
the mean annual rainfall over the study area. Figure 9 shows
the area of acceptable accuracy (Ap) of the mean annual rain-
fall depth for of 0.90 (Fig. 9a), and for of 0.85 (Fig. 9b). At α

Fig. 7 Cross-validation scatter
plot of the mean annual rainfall
depth, a spherical semivariogram
and b exponential semivariogram
model

Table 2 Statistical measures of
the goodness of the exponential
and spherical semivariogram
models

Semivariogram
model

Mean
prediction
error (Eq.
6)

Root mean
square prediction
error (Eq. 7)

Average
kriging
standard
error (Eq. 8)

Mean
standardized
prediction
error (Eq. 9)

Root mean
square
standardized
prediction
error (Eq. 10)

Exponential
semivariogram

0.70 21.25 18.77 −0.024 1.01

Spherical
semivariogram

0.90 21.99 18.91 −0.108 1.23
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= 0.90, the area of acceptable accuracy Ap ≈ 77.72 % of the
total study area. The remaining 22.28 % of the area, shaded in
grey, did not achieve the predetermined level of acceptance. It
means that the existing rainfall network could not provide
adequate spatial coverage for predicting the mean annual rain-
fall at 22.28 % of the study area. With a relaxed and less
conservative acceptance threshold with set to 0.85, the area
of acceptable accuracy increased to 88.71 % and the remain-
ing 11.29 % of the area did not achieve the success threshold.

In the vicinity of the rain gauges, the acceptance probability is
close to 1.0 and it decreases as we are going far from the rain
gauges. This is because the ordinary kriging interpolation re-
sults are exact rainfall predictions at the locations of the rain
gauges with zero kriging estimation error.

The decision of whether the performance of the existing
rainfall network is acceptable or it needs further augmentation
depends on a pre-determined threshold of the area of accept-
able accuracy. If the authorities set as an acceptance threshold,

Fig. 8 Contours of acceptable
probability for the mean annual
rainfall depth
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Fig. 9 Area of acceptable accuracy ( Ap) of mean annual rainfall depth for a a = 0.90 and b a = 0.85
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that 80 % of the area should be with acceptable accuracy limits,
then the existing rain gauge network would pass the criterion for
set to 0.85 and it will not meet the criterion for set to 0.90. The
area of acceptable accuracy for set to 0.85 is 88.71 % indicating
a pass result and the area of acceptable accuracy for set to 0.9 is
77.72 % indicating the need for augmentation. The value of and
the threshold of the area of acceptable accuracy depend on the
purpose of the network, the downstream uses of the data, as well
as on the economic constraints, budget availability, and author-
ities’ willingness to upgrade the existing rain gauge network.

Prioritization of rain gauges and augmentation
of the existing network

It is important to prioritize the rain gauges within the study
area to have an idea about the rain gauges essential to keep and
the other less important gauges (non-base gauges).The base
gauges be kept in their location and the non-base gauges can
be stopped or relocated in order to improve the area of accept-
able accuracy. The sequential algorithm, described in the

methodology, is applied to the existing rain gauge network
to carry out the network augmentation.

Figure 10 shows the 33 steps carried out for prioritizing the
rain gauges with their corresponding areas of acceptable ac-
curacy. According to the prioritization, rain gauges number
DM089906AF, DM383052AF, DM260958BF and
DM672387AF didn’t significantly increase the area of accept-
able accuracy. Accordingly, these rain gauges can be stopped
to reduce the cost of operation and maintenance or they can be
relocated to increase the percentage of area with acceptable
accuracy. The remaining 29 rain gauges that were not re-
moved or relocated form the base rain gauges in the network.

We also considered providing additional rain gauges in addi-
tion to relocating the above-mentioned rain gauges. New rain
gauges are added in locations where the area of acceptable accu-
racy is less than 0.85 (shaded area in Fig. 9). In order to perform
this, the predicted value from the kriging interpolation at the un-
gauged locations is used as input to the augmented rain gauges
configuration. The area of acceptable accuracy is recalculated for
the new set of rain gauges in the network to determine the added

Fig. 10 Prioritization of the 34
rain gauges. Mean annual rainfall
data and effect of relocation/
addition of rain gauges
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Fig. 11 Area of acceptable accuracy after augmentation for the mean annual rainfall a for α = 0.90 and b for α = 0.0.85
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value from network augmentation, i.e., after adding new rain
gauge and relocating other rain gauges.

Figure 11 shows the area of acceptable accuracy for the
predicted mean annual rainfall after relocating the above men-
tioned 5 rain gauges and adding new 4 rain gauges. Figure11
considers both acceptable accuracy thresholds of α=0.90 and
α=0.85. The rain gauges in red color are the existing rain
gauges and those in cyan are both the relocated/additional rain
gauges. From the new configuration, it is found that the area of
acceptable accuracy for the average total annual rainfall data
increased from 77.72 % to 90.50 % for acceptable accuracy
threshold of α=0.90 and from 88.71 % to 94.51 % for accept-
able accuracy threshold of α=0.85.

Conclusions

A geostatistical approach for evaluation and augmentation of an
existing rain gauge network is presented. The evaluation ap-
proach is based on estimating the total area that achieves the
targeted level of acceptable accuracy. The variances of estimation
error at un-gauged locations were calculated using ordinary
kriging approach and were assumed to be normally distributed.
The acceptance probabilities were defined as the kriging estima-
tion error fallswithin a predetermined range of standard deviation
of rainfall. Kriging estimation errors with probability of accep-
tance that equals to or exceeds a given threshold value of α =
0.85 or 0.90 are assumed to have acceptable accuracies. A pre-
determined value of the total area that satisfied the above criterion
is set as a limit for evaluation and need for augmentation of the
exiting network. A sequential algorithm is also applied to prior-
itize the existing rain gauges, identify the base rain gauge in the
network and to provide recommendation for omission and relo-
cation of other non-base gauges.

A study area in northern Oman located in Sohar governorate
is selected as a pilot case. The area has 34 rain gauges and it is
characterized by a terrain surface that varies from coastal plain to
mountains. The mean annual rainfall exhibited significant oro-
graphic effects due to the prevailing terrain conditions. For a
threshold value of acceptance probability of 0.85, the existing
network achieved 88.71 % of the total area with acceptable ac-
curacy for mean annual rainfall data. Also for a threshold value
of acceptance probability of 0.90, the existing network achieved
77.72 % of the total area with acceptable accuracy for mean
annual rainfall data. For a success criterion of 80 %, the existing
rain gauge network indicates acceptable performance for accep-
tance probability threshold of 0.85. However, inadequate perfor-
mance is noticed in the case of probability threshold of 0.90
which necessitated further network augmentation.

Using a sequential algorithm for ranking and prioritization
of the existing rain gauges, all rain gauges were classified into
base and non-base rain gauges. The base rain gauge network
for mean annual rainfall comprised about 29 of the existing

rain gauges. The base rain gauge network can achieve almost
the same level of the percentage of area with acceptable accu-
racy as the complete network that consists of 34 gauges. The
identified non-base rain gauges were sequentially relocated to
achieve higher levels of percentage of area with acceptable
accuracy. For the mean annual rainfall data, the percentage
of area with acceptable accuracy increased from 88.71 % for
the original rain gauge network to about 94.51 % for the aug-
mented network by adding four rain gages at a probability
acceptance threshold of 0.85. It also increased from 77.72 %
for the existing network to 90.50 % for the augmented rain
gauge network at an acceptance threshold of 0.9.

The presented approach focused on estimating the accuracy of
areal rainfall across the study area. It is more convenient to be
applied in catchments with high-intensity rainfall and short time
of concentration. The approach is flexible in regards to the pa-
rameters used in accuracy assessment such as the threshold of the
probability of acceptance and criterion for the percentage of area
with acceptable accuracy. The previous analysis could be re-
applied in the evaluation of the same rain gauge network but
based on higher temporal resolution rainfall data (e.g., maximum
daily rainfall). This will be useful in examining the performance
of the existing rain gauges in applications related to storm water
management and flood protection.

Finally, we conclude that the commonly used WMO recom-
mendations shall not be considered as a general governing rule
for the minimum number of rain gauges applicable anywhere.
One must take into consideration that the rain gauge network
must be able to reproduce the spatial rainfall pattern in the area.
It is not only the density of rain gauges that govern the perfor-
mance of the network, but also the exact location of rain gauges
in a crucial factor.
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