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Abstract Assessment of aquifer vulnerability to contamina-
tion is an effective tool for the delineation of groundwater
protection zones. Geophysical approach was used to deter-
mine vulnerability zones in a study area located at 70 km north
part of In Salah region, Southern limits of hydrogeological
occidental basin in the outcrops Continental Intercalaire ter-
rains. Ninety vertical electrical soundings (VES) were con-
ducted in the study area. The results from the electrical survey
data were used to assess the potential risk of groundwater
pollution and define the protective properties of geologic
layers as well as identifying suitable areas with poor, moder-
ate, and high aquifer protective capacity rating. The inverted
resistivity values and thickness of the layers above the ground-
water table were used in order to estimate the integrated elec-
trical conductivity (IEC) that can be also used for the quanti-
fication of aquifer vulnerability.
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Introduction

Groundwater is an essential commodity for the well-being of
human societies to live in arid and hyper-arid areas. The qual-
ity of groundwater plays an important role in the water scar-
city regions, especially for drinking water supply (Al Hallaq
2002). During the recent decades, the groundwater exploita-
tion has dramatically increased and hence the agricultural use
of water has grown rapidly, while the increasing concentration
of populations in urban areas has meant that large-scale well
fields have been developed for urban water supply. These
situations make the groundwater more easily vulnerable to
pollution. Furthermore, vulnerability is the degree to which
human or environmental systems are likely to experience
harm due to perturbation or stress and can be identified for a
specified system, hazard, or group of hazards (Popescu et al.
2008). In hydrogeology, vulnerability assessments typically
describe the susceptibility of the water table, a particular aqui-
fer, or water well to contaminants that can degradate the
groundwater quality (e.g., nitrates, industrial chemicals, and
hydrocarbons). The contaminants may originate from a natu-
ral source (e.g., rock containing arsenic) or be introduced by
human activity (e.g., agriculture:fertilizers; industry:chemical
storage and spills) (Liggett and Talwar 2009). Vulnerability
assessments are also powerful educational tools for raising
public awareness of groundwater protection issues, which is
an on-going need (Nowlan 2005). The intensive utilization of
aquifers has changed the groundwater chemical quality.
According to Foster et al. (2002), contamination of ground-
water occurs when the load of contaminants on the ground or
leachates generated by urban, industrial, agricultural, or min-
ing activities is not adequately controlled, and certain compo-
nents exceed the natural attenuation capacity of subsoil and
cover layers. The study of these changes requires the design of
monitoring networks. One of the most successful tools for
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further investigation, protection, and monitoring system has
been the use of vulnerability maps. Vulnerability maps have
become an ever more essential tool for groundwater protection
and environmental management (Vias et al. 2005). The studies
on vulnerability are mostly based on the development of vul-
nerability maps using index (and overlay) methods, because
they are easy to implement, inexpensive to produce, use read-
ily available data, and often produce categorical results
(Focazio et al. 2002). Among the methods used to evaluate
the aquifer vulnerability, DRASTIC (Aller et al. 1987), GOD
(Foster 1987), AVI (Van Stempvoort et al. 1992), SINTACS
(Civita 1994), ISIS (Civita and De Regibus 1995), GLA
(Hölting et al. 1995), DAC (Celico 1996), HYDROmed
(Ketelaere et al. 1997), U.K. vulnerability system (Palmer
and Lewis 1998), EPIK (Doerfliger et al. 1999), IRISH
(Daly and Drew 1999), PI (Goldscheider et al. 2000),
VURAAS (Cichocki and Zojer 2007), and COP (Vias et al.
2006) are purely analytical hydrogeologic assessments.

However, several studies have use the resistivity methods
for the quantification of aquifer vulnerability, as Kalinski et al.
(1993a, b); Rottger et al. (2005); Lenkey et al. (2005), Casas
et al. (2008), Abiola et al. (2009); Atakpo and Ayolabi (2009),
and Omosuyi (2010). A simple method for assessment and
quantification of aquifer vulnerability based on the electrical
conductivity has been proposed. Christensen et al. (2002) suc-
cessfully tested the method for the Flensburg area (Danish-
German border region). This method is called Integrated
Electrical Conductivity, IEC (Rottger et al. 2005).

In the present study, a sector of the Continental Aquifer
system has been chosen in order to test and apply the electrical
conductivity in the assessment of groundwater vulnerability.
Thus, the main objectives of the study are to carry out detailed
geological and hydrogeological mapping of the study area and
to conduct geophysical approach to assess the aquifer
vulnerability.

The study area

The study area is located in the north part of In Salah region
(Southeast of Algeria; Fig. 1). This region is defined by lati-
tude 27° 11′ N and longitude 2° 28′ E covering an area of 43,
937.50 km2. It occupies about 7.88 % from Tamanrasset
Province, which extends over a Reg, represented by a small
slope ranges from 1 to 2%. The heterometric deposits covered
at elevations that vary from 350 to 450 m. Its natural bound-
aries are the Tademaït plateau to the north, the sand dunes,
locally represented by Mahabes Tiguendaft Erg, which butts
farther on the northern prolongation of Tademaït plateau to the
West. The straightening Paleozoic bedrock ensures the closure
of hydrological system to the east, and finally depression
closed by endorheic character, which encompasses sebkha
and palm trees to the South.

In Salah region has a hyper-arid to arid climate with low
and scarce rainfall. Average annual rainfall is about 19 mm. In
addition, the temperature is moderately high throughout the
year, with an annual range from 20.5 to 45 °C and a potential
evaporation rate of 4120 mm/year, with the hottest period of
the year during the dry season. These conditions assuring the
persistence a steppe vegetation type. The hydrographic system
is constituted by ephemeral rivers; the most important are
Souf, Rokna, and Redjem. The latter are supplied in an inter-
mittent way by local rainfall. Increases of the industrial, do-
mestic effluents and intensive pumping have largely contrib-
uted to the contamination of groundwater.

The geological setting of In Salah region is the southern
limits of Occidental basin of the North Sahara Aquifer
System (NSAS) in the outcrops Continental Intercalaire (CI)
(Fig. 2). According to Kilian (1932), the term BContinental
Intercalary^ means a continental episode located between the
two marine sedimentation cycles: the Paleozoic cycle, which
completes the hercyian orogenesis at the bottom, and the upper
Cretaceous cycle, from the Cenomanien transgression at the
summit. The Continental Intercalaire formation is represented
by sandy-sandstone and sandy clay of the Lower Cretaceous
continental deposits (Cornet 1964), unconformably overlain a
clastic formation ranging from Cambro-Ordovician to
Carboniferous essentially comprising sand, sandstone (con-
glomerate on the bottom of Cambrian) with intercalations of
marl, clay and some limestone beds (Busson 1967).

The hydrogeological cross-section along the region is pre-
sented in Fig. 3. It shows the presence of a horizontal structure
composed by the coarse gravel siliceous sand fine to medium,
red sandstone tender crossing sandy red clay of Lower
Cretaceous age; it total thickness is of 300 to 400 m
(UNESCO 1972). This latter is limited to the bottom by red
clay compact and sandstone, representing the aquifer base-
ment. On the top, heterogeneous coarse materials represented
essentially by Quaternary (alluvium).

The aquifer is recharged by two different ways. First, is a
direct infiltration of rainfall and runoff, which are occurred on
outcrop areas on the West (Touat-Gourara) and on the South
(Tidikelt) of Tademaït Plateau; secondly, is an indirectly in
Grand Erg Occidental across dune sands and Continental
Terminal Terrains (ERESS 1972; BRL 1998; and OSS 2003).

The groundwater flow directions are generally north to-
wards the south, from the Saharan Atlas piedmont to the
Grand Erg Occidental, Touat-Gourara and Tidikelt
(UNESCO 1972; Guendouz 1985; Mamou 1990; Edmunds
and Gaye 1997; Edmunds et al. 2003); natural outlet is formed
by borders West and South of Tademaït where are located the
foggaras of Gourara, Touat and Tidikelt (OSS 2003).

Finally, this region is characterized by the oases formerly
supplied via foggaras and artesian wells, since the early twen-
tieth century, but this artesianism has been decreasing during
the current years, due to over-exploitation of water resources.
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The exploitation, during the period of 1902–2012, is marked
by an important increase in time. The quantity of water re-
sources exploited increased from 0.25m3/h in 1902 to 60m3/h
in 2012, according to the data of National Hydraulic
Resources Agency (ANRH, its French acronym). This situa-
tion is reflected also by the increasing drawdown and degra-
dation of water quality in some areas that are more vulnerable
to salinization.

Material and Methods

Electrical resistivity method

Vertical electrical sounding (VES) survey was carried out at
90 points using Schlumberger four-electrode configuration.

These sounding points were measured by the engineering of-
fice BEREGH (2008, Etude géophysique par prospection
électrique de la zone N°1 Oued Souf dans la region d’In
Salah, unpublished) and used to identify the nature and the
extension of the aquifer within the study area. The VES points
are located on a level with Souf Wadi (Fig. 1), numbered A–J,
and marked as A1–J9 were established covering an area of
288 km2. The sounding points spacing was 2 km while the
maximum value of emission line AB chosen was 4000 m,
which allowed a vertical investigation reaching up to 600 m
in depth. The electrode spread of AB/2 was varied from one to
a maximum of 2000 m. The expected depth of investigation
was ranging between L/5 and L/3, where L = AB/2 and AB the
current electrode. The apparent resistivity values of the layers
were measured using the resistivity meter in association with
the generator system reaches up to 6000 m in depth.

Fig. 1 Location map of study
area and VES positions
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Field resistivity structures of sounding data were
interpreted quantitatively by computer iteration with the aid
of the software IPI2Win (version 2.1) developed by the
Geophysics GroupMoscow State University for inverse inter-
pretation to obtain the true resistivity and thickness of the
layers. The software was further used for both computer iter-
ation and modeling. Computer iteration was carried out to
reduce errors to a desired limit and to improve the goodness
of fit. The fit between model response and the field data for the
VES points were generally lower than 8 %.

Geoelectrical methods are used to obtain the following
physical parameters of geological formation (Komatina
1994) and determine the flow of electric current in the forma-
tion (Sundararajan et al. 2012). Resistivity varies with the
texture of the rock, nature of mineralization, and conductivity
of electrolyte contained within the rock (Parkhomenko 1967).
Resistivity not only changes from formation to formation but
also changes within a particular formation (Sharma 1997).
Resistivity increases with grain size and tends to maximum
when the grains are coarse (Sharma and Rao 1962), also when

Fig. 2 Geologic map of In Salah showing the study area. (1) Dunes, (2)
recent quaternary: clayey sand alluvium, (3) tertiary continental: clay and
sandstone, (4) upper Senonian: limestone, (5) lower Senonian: clay

gypsum, (6) Turonian: dolomite and chalk, (7) Cenomanian: dolomite,
(8) Cenomanian and Turonian: dolomite and clay, (9) Lower Cretaceous:
clay, sandstone, gravel, and sand, (10) Lower Visean Carboniferous: clay

Fig. 3 Hydrogeological cross-
section of study area (modified
from ANRH-DRSO 2004)
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the rock is fine grained and compact such as dolerite dyke
(Sankaran et al. 2010).

The spatial distribution of electrical parameters of the subsur-
face can provide valuable information for characterizing the het-
erogeneity of the groundwater and the soil zone. The
geoelectrical method is an effective tool for ascertaining the sub-
surface geological framework of an area (Griffith andKing 1965;
Keller and Frischknecht 1966; Zohdy et al. 1974; Griffith 1976;
Kelly 1977; Zohdy 1989). However, it becomes an increasingly
important tool in subsurface hydrogeological applications
(Kirsch 2006). Geoelectrical measurements can contribute to
the determination of catchment areas and aquifer characteristics,
such as hydraulic conductivity, sorption capacity, dominant flow
regime (Worthington 1975; Allessandrello and Lemoine 1983;
Mazac et al. 1990; Boerner et al. 1996; Kemna 2000; Soupios
et al. 2007; Sinha et al. 2009; Tizro et al. 2010; Massoud et al.
2010; Weihnacht and Boerner 2005), the monitoring of water
content, water movement and water quality (Daily et al. 1992;
Gruhne 1999; Berger et al. 2001; Berthold et al. 2004; Liu and
Yeh 2004;Mhamdi et al. 2006; Boughriba et al. 2006; Al-ahmadi
and El-Fiky 2009), evaluation the protection of groundwater re-
sources (Henriet 1975; Douma et al. 1990; Robert et al. 1993;
Braga et al. 2006) and mineral alteration connected with active
remedial measures on contaminated sites as well as with natural
attenuation processes (Grissemann et al. 2000; Atekwana et al.
2004), the assessment of aquifer vulnerability and depth to water
table (Kalinski et al. 1993a; Kirsch 2000). Geoelectrical methods
are used extensively in groundwater mapping for the investiga-
tion of the vulnerability of aquifers and shallow aquifers them-
selves (Kirsch et al. 2006). The clay content of the formation
defines the electrical formation resistivity with clayish less per-
meable formations showing low resistivities and sandy perme-
able formations showing high resistivity values. The geoelectrical
method is capable of mapping both low and high resistive for-
mations and therefore a valuable tool for vulnerability studies
(Christensen and Sorensen 1998; Sorensen Kurt et al. 2005).

The main relationship between the electrical conductivity
and vulnerability of aquifer based on the key principal called
the clay content of the material. The clay content related to
hydraulic conductivities of soils (Scheffer and Schachtschabel
1984) and influences on the electrical resistivity or conductiv-
ity. High clay content generally corresponds with low resistiv-
ities and low hydraulic conductivities, increasing clay content
leads to decreasing electrical resistivity or to increasing elec-
trical conductivity (Sen et al. 1988). Of special interest for
vulnerability assessment is the groundwater covering layers
above the water table, the unsaturated zone.

Assessment of aquifer vulnerability

The key expression for a quantification of aquifer protection is
vulnerability. Vulnerability of an aquifer is defined as the sen-
sitivity of groundwater quality to an imposed contaminant

load, which is determined by the intrinsic characteristics of
the aquifer (Lobo-Ferreira 1999). It is defined by the charac-
teristics of the covering layers, which are called protective
layers (Kirsch 2006). Younger (2007) define aquifer vulnera-
bility as the readiness with which a given aquifer is likely to
become polluted. The vulnerability of a certain area can be
described by the degree of susceptibility of that area to
groundwater pollution (Baalousha 2006). In 1968, the
French Margat was the first who used the term vulnerability
in hydrogeology; thereafter, the concept was adopted world-
wide (Albinet and Margat 1970; Haertle 1983; Aller et al.
1987; Foster and Hirata 1988; Adams and Foster 1992;
Drew and Hötzl 1999; Zwahlen 2003). Recently, several prop-
ositions have been given by scientists to define the groundwa-
ter vulnerability, many are quite similar; however, there is not
any recognized and accepted common definition that has been
developed yet. The concept of vulnerability assessment used
in this case is similar to concepts of the Aquifer Vulnerability
Index (AVI) and is a widely used method to assess the aquifer
vulnerability to surface contaminants (Van Stempvoort et al.
1992). This method quantifies groundwater vulnerability by
hydraulic resistance to vertical flow of wastewater through the
unsaturated layers. The hydraulic resistance (C) can be obtain-
ed using the formula:

C ¼
X n

i¼1

hi
ki

ð1Þ

where ki and hi are, respectively, the hydraulic conductivity
and the thickness of the layers above the aquifer zone.
Alternatively, the state geological surveys (SGD) a vulnerabil-
ity quantification system based on the cation exchange capac-
ity (CEC) of the protective layers (Hölting et al. 1995).
Vulnerability is quantified by a protection function SG
(Schutzfunktion) calculated by:

C ¼
X n

i¼1
di:GLi ð2Þ

where di and GLi are thickness and cation exchange capacity
code (Punktzahl) of each covering layer: as the electrical con-
ductivity is related linear to the cation exchange capacity (GLi)
and the hydraulic conductivity (ki) can be replaced by the elec-
trical conductivity (σi) or the resistivity (ρi) to calculate the
hydraulic resistance (C) which is called Integrated Electrical
Conductivity, IEC (Rottger et al. 2005) or a Geophysical
Based Protection Index, GPI (Casas et al. 2008). The IEC
can be used to assess the aquifer vulnerability by:

IEC ¼
X n

i¼1
hi:

1

ρi
ð3Þ

Then, function (3) can be rewritten as:

IEC ¼
X n

i¼1
hi:σi ð4Þ
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Where

σi ¼ 1

ρi
ð5Þ

The resistivity (ρi) and thickness (hi) of each layer above
the aquifer are obtained from the inversion of resistivity
sounding. The estimated IEC unit is ohm−1 (Ω−1) or
Siemens (S). In our studied area, vulnerability index or inte-
grated conductivity is calculated for all layers above the
groundwater table. Depth to water is one of themost important
natural factors because it determines the thickness of material
through which infiltrating water must travel before reaching
the saturated zone. Rottger et al. (2005) suggested two options
to set the depth level: a fixed distance in relation to ground
surface or a fixed depth related to sea level. In this case, a fixed
distance to the ground surface is recommended to show the
protection of deep aquifer. Thus, the aquifer potential protec-
tion increases with depth to water. In other words, the water
table is the first occurrence of groundwater. Above the water
table is the unsaturated zone, usually regarded as key factor
determining the vulnerability of an aquifer system (Thomas
and Leah 2001) and the first line of defense against pollution,
which describe conditions of the unsaturated zone that is often
found to be the most important single parameter (McLay et al.
2001; Herbst et al. 2005).

The unsaturated zone is very important in protecting the
underlying groundwater, especially where soils are thin and/
or poorly developed. An aquifer can be classified as well
protected if the percolation time through the unsaturated cov-
ering layers exceeds 10 years (Hölting et al. 1995). The char-
acter of the unsaturated zone and its potential attenuation ca-
pacity then determine the degree of groundwater vulnerability
(Migdad 2011).

Although in the literature vulnerability assessment is main-
ly restricted to the unsaturated layers above the first ground-
water horizon, for deeper aquifers like Continental Intercalaire
aquifer the entire sequence of covering layers should be taken
into account, if detailed underground information are avail-
able. The main unsaturated zone properties that are important
in vulnerability assessment are the thickness, lithology varia-
tions which determine the inaccessibility of the underlying
aquifer units (Wilson 1983) and vertical hydraulic

conductivity of the materials. The thickness depends on
the depth to the water table, which can vary significantly
due to local topography and fluctuates seasonally, and both
these have to be taken into account when determining
thickness. Lithology of the vadose zone controls
infiltrability and other various physicochemical processes
(Robins et al. 2007; Zhou et al. 2010). Besides, the vertical
hydraulic conductivity of unsaturated zone and its structure
are directly influence the transfer time of a contaminant
until reaches the water table.

Results and discussions

The quantitative treatment of the VES provided geoelectrical
information characterized by the values of resistivity and
thickness (layer parameters) of the various geoelectrical
layers. The layer parameters derived from the graphical curves
obtained are shown in Fig. 4 (VES A7 and J3). The curves of
electrical soundings allowed us to distinguish the succession
of layers informing about the heterogeneity of the terrain.

In order to correlate the geophysical surveys with the geol-
ogy of the study area, geological data were collected from the
surface and subsurface, and electric surveys of calibration
were developed close to the monitoring well (Fig. 5). The
geoelectrical model was determined as a function of the cali-
bration with the data from well and the resistivity contrast
between high and low values.

Typical forms of these curves are KHK, QHK, HAK,
HKQ, AKQ, and KQQ types. Most of sounding curves ob-
tained were of the KHK-type (ρ1 < ρ2 > ρ3 < ρ4 > ρ5), i.e., a
flattened appearance, highlighting a succession of area rela-
tively conductive and resistant to very resistant. Calibration of
electrical survey supported by a detailed analysis of the results
on the study area correlated with lithologic description logs
we can set the following resistivity scale presented in Table 1.
Examination of this scale can be defined the following se-
quence of layers with contrasted resistivities: A layer of resis-
tivity different they have the same age of formation: sandy
clay (30–90 Ωm) and (15–50 Ωm), clayey sand (100–380 Ω
m) and (50–120 Ωm) of Lower Cretaceous, clay sandstone
(5–52 Ωm) of Paleozoic. In addition, the resistivity of the

VES A7 VES J3 

Fig. 4 Typical VES curve and model description. ρi in Ωm, h and d in m
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sandstone formation has a very broad range of variation (270–
2400 Ωm) and (410–4800 Ωm), due to variations of the par-
ticle size of material, state of water saturation, degree of con-
solidation, nature of the cement (siliceous or carbonate), and
chemistry of the water imbibitions.

Depth to water table is a significant parameter of the IEC
controlling the ability of contaminants to reach the

groundwater or aquifer. The groundwater table is clearly de-
fined by resistivity values ranging from 15 to 120 Ωm.
Covered with sandstone formation, the resistivity contrast is
270–2400Ωm/15–120Ωm. The electrical conductivity values
in the saturated zone are much higher than the values in the
unsaturated zone (Rottger et al. 2005). Unsaturated zone can
be defined as that zone above the water table, which is discon-
tinuously saturated, lying between soil layer and water table
(Kabera and Zhaohui 2008). The vadose zone influences aqui-
fer potential contamination; it is essentially similar to that of

Fig. 5 Lithology of monitoring
well

Table 1 Scale of local resistivity

Formation Lithology Resistivity
(Ωm)

Lower
Cretaceous

Sandy clay, sandstone and clayey sand 30–90

Sandstone, slightly clayey sand 100–380

hard sandstone, sandstone and partially
saturated sand

270–2400

Hard sandstone, siliceous sandstone 410–4800

Sandstone and clayey sand 50–120

Clay, Sandy clay 15–50

Paleozoic Clay and clay sandstone 5–50

Table 2 Criteria of assessment the vulnerability with IEC method

Degree of vulnerability Vulnerability index (mS)

Extremely High <500

High 500–1000

Moderate 1000–2000

Low 2000–4000

Extremely low >4000
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aquifer media, depending on its permeability and on the atten-
uation characteristics of the media (Added and Hamza 2000).
If vadose zone is highly permeable, then this leads to a high
vulnerable (Corwin et al. 1997). The vadose zone has been
identified from available geological map and hydrogeological
cross-sections of the study area. The vadose zone is composed
of heterogeneous coarse materials presented essentially by
alluvium.

The concept of vulnerability assessment with IEC method
is similar to concepts of AVI method (Van Stempvoort et al.
1992) or SGD method (Hölting et al. 1995): as the electrical
conductivity is related linear to the cation exchange capacity,
the cation exchange capacity is replaced by the electrical con-
ductivity to form an integrated electrical conductivity IEC
(Kirsch et al. 2003). Therefore, the close relation of IEC and
SGD method attempts to use the criteria of vulnerability as-
sessment by the SGD method to assess the vulnerability by
IEC method (Table 2).

According to the IEC index, the aquifer vulnerability
ranges from 220 to 6000 mS (Table 3), the values were cate-
gorized into five classes. They are extremely low (>4000), low

(2000–4000), moderate (1000–2000), high (500–1000), and
extremely high (<500) groundwater vulnerability.

A vulnerability map is shown (Fig. 6) in which the electri-
cal conductivity index is calculated down to a depth of 102 m
below the surface. As the groundwater level is high, the con-
cept of the electrical conductivity index for the saturated zone
was extended. The electrical conductivity values in the satu-
rated zone are much higher than the values in the unsaturated
zone. As the conductivity of the saturated zone is high, the
influence on the electrical conductivity index is also low. If
one assumes an earth model consisting of 14 m of sandstone
and clayey sands (54Ωm = 18.52 mS/m), 14 m of unsaturated
sandstone and clayey sands (76 Ωm = 13.16 mS/m), the elec-
trical conductivity index is calculated of 259.26 mS compared
to an electrical conductivity index of 184.21mS for the case of
14 m of unsaturated sandstone and clayey sands.

Table 3 Summary statistics of IEC index

Minimum Maximum Average Standard deviation

IEC Index (mS) 222.42 5906.58 1737.33 985.98

Fig. 6 Vulnerability map based
on integrated electrical
conductivity

Table 4 Criteria of quantification the percolation time with
vulnerability index

Vulnerability index (mS) percolation time

<500 Several months

500–1000 Several months—3 years

1000–2000 3–10 years

2000–4000 10–25 years

>4000 >25 years
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Here, the class of extremely high vulnerability does not
exist in our study area. In general, the vulnerability map would
show not only the reflection of geological conditions but also
the influence of topography in the study area. The obtained
IEC value will have a maximum value when the thickness low
resistivity above the aquifer is increased. The extremely low
degree of vulnerability can be observed mainly at the central
and the south parts, where the connection between the land-
surface and the water table is consisted by clay sandstone. The
low degree of vulnerability can be noticed at the central part,
which is protected by sandstone, siliceous sandstones, and
sandy clays. The moderate degree of vulnerability can be ob-
served almost the study area, where the frequent lithology of
unsaturated zone is mainly sandstones. The high degree of
vulnerability is dominant at the west, northern, and southern
parts of the study area, which the unsaturated zone is consti-
tuted by sandy clay, sandstone, and sand partially saturated. A
vulnerability map is presented based on geophysical results.
To quantify the vulnerability of the aquifer, the geoelectrical
measurements can give an overview of the groundwater pro-
tection of the area (Kirsch 2009). Instance, Hölting et al.
(1995) used the results of the airborne EM survey, for the
calculation of protection index a depth of 30 m below the
surface.More recently, Christensen et al. (2002) used the same
principle in the area near to the city of Flensburg, for the
calculation of the integrated conductivity. Moraine areas with
high IEC and good aquifer protection can clearly be discrim-
inated from sandy outwash plains with low IEC and poor
aquifer protection. However, the realization of the vulnerabil-
ity map by the IEC-method necessitates the use of two param-
eters which reliability depends on the quality of data used.
One of difficulties of applying method of IEC is also the class
limits, which are therefore not absolute values, but rather rel-
ative values. These limits can then vary from study to another
study and from one region to another. As noted before, the
extension of the electrical conductivity index for the saturated
zone can also be controlled by percolation time of surface
water.

For example, vulnerability maps for The Netherlands show
the lateral distribution of depth to groundwater table, clay
content, cation exchange capacity, and percolation time of
surface water (RIVM 1987). Kalinski et al. (1993a) used the
electrical conductivity to estimate the time of travel for perco-
lating surface water. It must also be noted that the vertical
travel time of surface water in the upper unsaturated layers
can be related to the resistivity properties, which are based
on the geological materials and thickness of protective
layers. Kalinski et al. (1993a) and Rottger et al. (2005) have
discussed this issue in detail. Kirsch (2009) suggested using
vulnerability index to quantify percolation time (Table 4).

The moderate degree of vulnerability is dominant in this
area, it can be seen that the range of percolation time is be-
tween 3 and 10 years (see Table 4). Hölting et al. (1995)

classified an aquifer as well protected if the percolation time
through the unsaturated covering layers exceeds 10 years.

Conclusions

Vulnerability assessment based on hydraulic conductivity can
be backed by measured electrical conductivities. In a first
approach, the vulnerability map based on the electrical con-
ductivity have to make some assumptions about the distribu-
tion of different degree of vulnerability. While the most dom-
inant class is the moderate class, then the electrical calibration
curves identified resistivity intervals true characteristics for
each type of surficial encountered. The sandy inclusions in
clayey environment increased the aquifer vulnerability.

The concept of vulnerability is originally restricted to the
unsaturated zone covering the first groundwater layer.
However, as our main interest is to the deeper groundwater
layers actually in use for water supply, the concept of vulnera-
bility is extended to the saturated zone. The top of the ground-
water layer used for water supply then gives the reference depth
for the calculation of the electrical conductivity index.

A correction applied to the electrical conductivities of the
unsaturated zone to make it comparable to the electrical con-
ductivities of the saturated zone is necessary, because the low
conductivities of the unsaturated zone have major influence
on the calculated electrical conductivity index.

The vulnerability mapping and vulnerability indices based
on resistivity data provide a good tool to assess and quantify
the protection of the groundwater resources.
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