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Abstract Groundwater always has been considered as one of
the major sources of drinking and agricultural water supply,
especially in arid and semi-arid zones. Thus, there is a need to
simulate (i.e., forecast) groundwater levels with an acceptable
accuracy. In this paper, we present two applications of intelli-
gent optimization algorithms for simulations of monthly
groundwater levels in an unconfined coastal aquifer sited in
the Shabestar plain, Iran. First, the backpropagation neural
network (ANN-BP) with seven neurons in its hidden layer is
utilized to reproduce groundwater-level variations using the
external input variables including the following: rainfall, av-
erage discharge, temperature, evaporation, and annual time
series. In the next application, ant colony optimization is used
to optimize and find initial connection weights and biases of a
BP algorithm during the training phase (ACOR-BP). The re-
sults were found to be acceptable in terms of accuracy and
demonstrated that a hybrid ACOR-BP model is a much more
rigorous fitting prediction tool for groundwater-level forecast-
ing. This study has shown that such a hybrid network can be
used as viable alternative to physical-based models for simu-
lating the reactions of the aquifer under conceivable future
scenarios. In addition, it may be useful for reconstructing long

periods of missing historical observations of the influencing
variables.
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Introduction

Estimation of groundwater level has a high importance for
hydrogeology studies, aquifer management, and agriculture
groundwater quality. In many cases, groundwater-level fluc-
tuations have caused irreparable damage on engineering struc-
tures. By better understanding the quantities of fluctuations,
appropriate decisions can be accessible in terms of water qual-
ity, hydrogeology, and management purposes. Although con-
ceptual and physically based models are the main tools for
understanding hydrological processes in a basin, these models
have some limitations including their requirement of a great
quality and quantity of data and their time-consuming process-
es for simulation. For these reasons, it is very desirable to
develop faster and more economical methods for aquifer sim-
ulation which can also provide an acceptable accuracy. In
order to achieve this goal, many researchers have been using
intelligent systems such as artificial neural networks. Among
the significant researchs can be mentioned to Coulibaly et al.
2001b, 2001c; Lallahem and Mania 2003a, 2003b;
Daliakopoulos et al. 2005; Lallahem et al. 2005; Dogan
et al. 2008; Nourani et al. 2008; Tsanis et al. 2008; Yang
et al. 2009; Sreekanth et al. 2009 and Boucher et al. 2009,
which used artificial neural networks for aquifer modeling in
diverse basins. A more detailed review of artificial neural
network (ANN) applications can be found in Maier and
Dandy (2000) and Maier et al. (2010). They reviewed 43
papers which used neural network models for prediction of
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water resources variables. Some of the studies focused on
prediction of groundwater levels by stochastic algorithms
method (Chebud and Melesse 2011; Mirzavand and Ghazavi
2014). Moreover, a number of studies compared two or three
artificial intelligence methods to find an optimal method for
estimation of groundwater levels (Kholghi and Hosseini 2009;
Behzad et al. 2010; Shiri and Kisi 2011; Jalalkamali et al.
2011; Shiri et al. 2013; Sahoo and Jha 2013; Fallah-
Mehdipour et al. 2013; Maiti and Tiwari 2014; Ying et al.
2014). However, none of the artificial intelligence (AI)
methods can dominate other AI methods. In fact, using a hy-
brid or a multiple AI models for prediction might achieve the
optimal performance toward the benefits of all models and
avoid bias to a single model (Nadiri et al. 2013).

Giustolisi and Simeone (2006) presented a multi-
objective strategy for the optimal design of ANNs when
dealing with a nonlinear modeling time series. Moreover,
Giustolisi et al. (2008) introduced a modeling approach
aimed at the management of groundwater resources based
on a hybr id mul t i -ob j ec t ive pa rad igm, named
Evolutionary Polynomial Regression (EPR). Wang and
Zhao (2010) proposed an improved wavelet network mod-
el (WNM) which was combined with genetic algorithm
(GA) to forecast groundwater level. By comparing it to
WNM, their results showed that the GA-WNM predictor
can reduce significantly both relative mean errors and
root-mean-squared errors of predicted groundwater levels.
Chen et al. (2011) and Nourani et al. (2012) evaluated the
combination of the backpropagation algorithm and the
sel f -organizing map (SOM) for forecas t ing the
groundwater-level data. According to their study, the
SOM-backpropagation (BP) method achieved the highest
accuracy. Nourani et al. (2011) used the hybrid of the
ANN and geostatistical method for spatiotemporal
prediction of groundwater level in a coastal aquifer
system. Dash et al . (2010) and Jalalkamali and
Jalalkamali (2011) employed a hybrid model of the artifi-
cial neural network and genetic algorithm (ANN-GA) for
forecasting groundwater level in an individual well. The
hybrid ANN-GA was designed to finding an optimal num-
ber of neutrons for hidden layer. Furthermore, Hosseini
and Nakhaei (2015) presented an application of the hybrid
GA-BP model for estimation of groundwater level. The
GA has been designed to adjust initial weights of neuron
connections and biases for the BP algorithm. The
consequences of these researchers admit ted the
superiority of a hybrid model in the prediction of
groundwater level. Adamowski and Chan (2011) pro-
posed a wavelet neural network (WA-ANN) models that
provided more accurate forecasts compared to ANN and
autoreggresive integrated moving average (ARIMA)
models. Moreover, a method combined with discrete
wavelet transform method with different mother wavelets

and ANN (WANN) was proposed by Nakhaei and Saberi
Naser (2012) for prediction of groundwater-level fluctua-
tions in Qurve plain, Iran. In addition, a hybrid model of
neuro-fuzzy inference system with wavelet (wavelet-
ANFIS) was proposed by Moosavi et al. (2013) for
groundwater-level forecasting in different prediction time
periods. These studies demonstrated that wavelet trans-
form can improve the accuracy of groundwater-level fore-
casting. Moosavi et al. (2014) determined the best struc-
tures of the wavelet-ANN and the wavelet-ANFIS models
for groundwater-level prediction. Their results confirmed
that the best wavelet-ANFIS model outperforms the best
wavelet-ANN model. Yang et al. (2014) investigated the
abilities of WA-ANN and integrated time-series (ITS)
techniques to predict the groundwater levels. Their re-
search showed that the WA-ANN computing techniques
have better performance than the ITS models. Behnia and
Rezaeian (2015) evaluated the coupling wavelet transform
with time series models to estimate groundwater levels in
two sub-basins in Mashhad plain, Iran. Their results
showed that wavelet-SARIMA hybrid model had the bet-
ter performance than the wavelet-ARMA and the wavelet-
ARIMA hybrid model. Raghavendra and Deka (2015)
demonstrated the capability of wavelet packet analysis in
improving the forecasting efficiency of support vector re-
gression (SVR) through the development of a novel hy-
brid wavelet packet-support vector regression (WP-SVR)
for forecasting monthly groundwater level in three shal-
low unconfined coastal aquifers located near Mangalore,
India. Mirzavand et al. (2015) compared the abilities of
two different data-driven methods including the SVR and
an adaptive neuro-fuzzy inference system (ANFIS). Their
research indicated that the ANFIS model performed better
than the optimal SVR model.

The estimation of groundwater-level fluctuation is com-
monly carried out by means of well-known numerical models
such as MODFLOW, USGS, which claim an appropriate syn-
thesis of the aquifer parameters to describe the spatial variabil-
ity of the subsurface. The required data for this model is hard
to obtain evenwith expensive site investigations and generally
results in extreme computational costs. Although, developing
a rigorous numerical model of the flow system is preferable,
as it entails a deeper understanding of the aquifer system dy-
namics (Taormina et al. 2012), but according to the results of
new hybrid intelligent optimization methods, there is an ap-
propriate method with an acceptable range of error as a good
alternative. Among the intelligent methods, ACOR is the
newest method that is used for high-performance modeling
in the field of hydrology. The study processes emphasize the
importance of using a hybrid AI model for groundwater-level
prediction rather than a single AI model. The background
review of this paper obviously showed the backpropagation
algorithm is the most popular in the domain of neural
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networks which is utilized in the most of the mentioned stud-
ies for aquifer simulation. The contribution of this study first
estimation of groundwater level would be illustrated using a
BP neural network that is called the ANN-BP. The BP is the
standard of gradient descent algorithm, and this method is
easily getting stuck in a local minimum and often needing
longer training time (Chau 2007). Hence, in the next method,
the stochastic optimization method (ACOR) is utilized to train
a feed-forward neural network; therefore, numerical weights
of neuron connections and biases represent the solution com-
ponents of the optimization problem. The ACOR is one type
of stochastic algorithms that are capable of solving multi-
dimensional complex problems especially non-smooth, non-
continuous, non-differentiable objective function to find the
global optimum, to escape the local optima and acquire a
global optimal solution.

ACOR in comparison to other stochastic algorithms has a
powerful memory that keeps a history of all iterations. So, its
probability distribution depends on each iteration and defines
by a Gaussian kernel function. The Gaussian kernel function
is as a weighted sum of several one-dimensional Gaussian
functions. It allows a reasonably easy sampling and yet pro-
vides a much-increased flexibility in the possible shape, in
comparison to a single Gaussian function. These properties
of the ACOR are causing better exploration and the more
acceptable results than other algorithms as API, CACO,
CACS, and CIAC (Socha 2008).

The combination of ACOR and BP would be an efficient
method of training neural networks, because it takes advan-
tage of the strengths of ant colony algorithm and
backpropagation (the fast initial convergence of stochastic al-
gorithms and the powerful local search of backpropagation),
and overcomes the weaknesses of the two methods (the weak

fine tuning capability of stochastic algorithms and a flat spot
in backpropagation). After the performance of a hybrid model
and an ANN-BP model, this study will present estimation of
groundwater level in an unconfined coastal aquifer.

Study area and data

The data used in this study are from the Shabestar plain
(Fig. 1) which is located in the northwest of Iran at East-
Azerbaijan province. It is between 45° 26′ and 46° 2′ north
latitude and 38° 3′ and 38° 23′ east longitude with arid and
cold climate. The plain area is about 1297 km2, and its main
river is Daryanchai. The headwaters of the river are situated in
height about 2982m of the MishoMountain, and it discharges
into Urmia Lake. According to statistical results of 40 recent
year’s data, average discharge of Daryanchai River has been
0.475 m3/s. The mean daily temperature varies from −19 °C in
January up to 42 °C in July with a yearly average of 11 °C, and
the average annual rainfall is about 250 mm (Nourani and
Ejlali 2012).

As showed in Fig. 1, the study area is a coastal aquifer
system. Coastal areas are very important for human set-
tlement and development (Datta et al. 2009). A lot of
populations are living in Urmia Lake basin, whose eco-
nomic irrigation is strongly dependent on the existing sur-
face and groundwater resources in the area. Accordingly,
the focus of the human population, the indiscriminate use,
and the recent drought have reduced the lake water level
and seasonal main river. Therefore, in recent years,
groundwater is a major source of drinking and agricultural
water supply.

Iran

Turkey

Iraq

Tabriz

Caspian Sea

Study area

Fig. 1 Study area in northwest of
Iran
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Geological and hydrogeological framework

The Shabestar plain in NWof Iran is composed of Quaternary
sediments. These sediments include conglomerate, sandstone,
clay, and limestone. Rarely in upper layers of the aquifer are
evaporite sediments besides marls as an interlayer. Clastic
sediments (conglomerate and sandstone) in this plain are well
sorted that resulted in porous aquifer. Geological map of the
plain and 15 selective piezometers in the aquifer are shown in
Fig. 2.

The elevation of the northern part of the aquifer is higher,
and the general slope of the plain is from north to south. The
northern part of the plain is composed of coarse and well-
sorted sediment with high permeability and low thickness,
and the southern part of the plain contains fine sediments
which are not suitable for groundwater storage. Moderately
sandstone grain with high thickness is in the southwest and
east part of the plain due to profitable (permeable) aquifer with
resistivity of about 20 to 60 Ω-meter.

The bedrock of the aquifer is Miocene marl and clayey
formations. These fine and clayey sediments are barriers ver-
sus salt water invasion from the lake. This aquifer in the most
sectors of the studied area is unconfined because of low thick-
ness of the impermeable layer, discontinuity, and low specific
resistance.

Figure 3 shows the groundwater-level distribution in 2009.
Groundwater flow direction in the Shabestar plain aquifer is
mainly from north to south. However, in some parts of the
plain because of the high number of pumping wells, flow
direction is locally out of the main flow trend in the plain
and changed to the closed water table contours.

Methods

Artificial neural network

Neural networks are basically composed of interconnected
simulated neurons. Nowadays, in hydrological engineering
application, widely using network is the feed-forward neural
network (FF-NN). This is largely due to its simplicity com-
pared to other networks and its ability to learn the implicit
governing relation between the inputs and outputs if sufficient
training data is supplied. The FF-NN is a network structure in
which the information or signals will propagate only in one
direction. The FF-NN typically consists of three layers includ-
ing input, hidden, and output layers, which are depicted in
Fig. 4. It is possible to have more than one hidden layer, but
a single layer is sufficient to approximate any function to a
desired degree of accuracy (Hornik et al. 1989). The number

Fig. 2 Geologic map and piezometer position in the Shabestar plain (base geological map: Asadian et al. 2007)
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of neurons in the input and output layers is normally deter-
mined by the special problem. As well for most cases, the best
way to determine the optimal number of neurons in the hidden
layer is done by systemic trial-and-error method. In fact, the
inputs are fed through the input layer and, after being multi-
plied by synaptic weights, are delivered to the hidden layer. In
the hidden neurons, the weighted sum of inputs is transformed
by a nonlinear activation function, which is usually chosen as
the logistic or the hyperbolic tangent. The same process earn-
ings place in each of the following hidden layers, until the
outcomes reach the output neuron. Meanwhile, the linear ac-
tivation function is most commonly applied to output layer
(Triana et al. 2010).

BP algorithms are the most popular training algorithms that
are widely used due to their simplicity and the application for
training FF-NN (Kulluk 2013). In the FF-BP networks, which
are considered in this study, output error is reported back, and
in this way, a more desirable output is acquired through
updating weighting coefficient matrix. This action is carried
out until the error between the target data and output data
derived from the weighing matrix is insignificant, and conse-
quently, a value of the objective function is minimized. For

further details on the FF-NNs, the reader is referred to the
bibliography (ASCE Task Committee on Application of
Artificial Neural Networks in Hydrology 2000) and Dawson
and Wilby (2001).

Hybrid ACOR-BP model

The combination of ACOR and BP algorithms can lead to an
increase in speed and accuracy of presenting the most opti-
mum results because the ACOR algorithm, considering its
exploratory characteristics, is applied for training a neural net-
work which itself is capable of extracting solutions. Therefore,
the primary adjustment of weighting coefficients of neuron
connections is done by ACOR and the final optimization is
done by neural network itself. In other words, the ACOR-BP
model (Socha and Blum 2007) which is designed in this study
is a hybrid optimization algorithm that uses ACOR in the
training phase of a feed-forward BP neural network.

In recent years, a combination of ACOR and BP is designed
for optimization of different problems. Some of these algo-
rithms are used in oil and gas engineering modeling (Ashena
and Moghadasi 2011; Tabatabaei et al. 2015; Safarvand et al.
2015; Kia et al. 2015). Also, this algorithm is applied for
pattern classification (Mavrovouniotis and Yang 2014), ther-
mal anomaly detection prior to earthquakes (Choubsaz et al.
2015), and automobile automatic transmission shift control
(Chen and Yu 2012). This research particularly shows a com-
bination of BP and ACOR in groundwater-level forecasting
and water resource management.

ACOR algorithm is one of the ACO categories that were
presented for its compatibility with continuous search space
without substantial change in its main algorithm (Socha and
Dorigo 2008). The ACOR algorithm holds k best solutions in a
matrix Tk × n that called solution archive (n is the dimension of
the optimization problem). The main goal of creation this
matrix is to define a probability distribution over the search

Fig. 3 Groundwater level and
flow direction of study area
(June 2009)

Fig. 4 Typical feed-forward neural networks
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domain. On the other hand, each solution represents the center
of a different Gaussian PDF (probability density function). In
the first step of implementation of the algorithm, all points in
the search space have an equal probability of being selected by
using a uniform distribution probability. For each dimension,
a Gaussian kernel as a weighted sum of several one-
dimensional Gaussian functions (gl

i) was defined and it is giv-
en by Eq. 1:

Gi xð Þ ¼
Xk

l¼1

wlg
i
l xð Þ ¼

Xk

l¼1

wl
1

σi
l

ffiffiffiffiffiffi
2π

p e
−

x−xi
lð Þ2

2σi
l
2 ð1Þ

where l∈ {1, … , k} , i∈ {1, … ,n} and n is the problem di-
mension and k is the number of the best solutions in solution
archive. xil is the lth solution of ith dimension in solution
archive.

wl is the weight that is assigned to each solution based on
its rank (from best to worst). wl is calculated according to
Eq. 2:

wl ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πqk

p e
− rl−1ð Þ2
q2k2 ð2Þ

The value of (rl = 1,2,…, k) is the rank of solutions in the
solution archive. The lower and upper limits of wl are changes
with q parameter. When q is small, the best-ranked solutions
are strongly preferred (Socha and Dorigo 2008). The elements
of the weight vector x are computed by Eq. 3. Then, the sam-
pling is completed in two phases. The first phase consists of
choosing one of the Gaussian functions that composes the
Gaussian kernel PDF. The probability of choosing the lth
Gaussian function is given by the following:

pl ¼
wl

l

∑k
r¼1wr

r
ð3Þ

The second phase consists of sampling the chosen
Gaussian function. This may be done by using a random num-
ber generator that is able to generate random numbers accord-
ing to a parameterized normal distribution.

Sigma is the standard deviation of normal distribution PDF,
which is calculated in Eq. 4:

σi
l ¼ max

max xi1;…;k

� �
−min xi1;…;k

� �
u:wl:

ffiffi
t

p ; ε

8<
:

9=
; ð4Þ

where t represents the iteration and k is the number of the
solution in solution archive. u is a parameter for adjusting

the speed of convergence. The lower limit is considered for
the value of σ by using ε.

In each iteration, the ACOR algorithm refines and regener-
ates the solution archive by adding m new solutions (k→ k +
m) and then eliminates worst m solutions (k + m→ k) in order
to keep the size of the solution archive constant (negative and
positive update). As results of the change in solutions stored in
the solution archive, each iteration pheromone is increased in
optimized paths that have not an improvement in the objective
function. In this way, the best solution for the problem is found
through the ACOR algorithm. After that, this procedure is
completed by applying a BP training algorithm on ACOR

established initial connection weights and biases (Fig. 5).

Application to the Shabestar plain

Observed data

The predictive ability of intelligent systems depends heavily
on the choice of the input set, which should ideally contain
only variables with explanatory potential. This issue is partic-
ularly critical when employing hybrid or individual FNNs for
time series applications since time-lagged autoregressive and
exogenous inputs must be explicitly provided to explain the
behavior of dynamical systems (Maier and Dandy 2000).
According to the result of the recent researches (Coulibaly
et al. 2001a; Lallahem et al. 2005; Nourani et al. 2008), effec-
tive factors that are in fluctuation of groundwater level are
temperature, rainfall, and an average discharge of basin. But,
typical hydrology and hydrogeology of every basin are

Fig. 5 ACOR-BP flow chart (Tabatabaei et al. 2015)
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Fig. 6 Cross-plots showing relationship between groundwater level and annual time series in six piezometers
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different. Therefore, input data trending should be considered
in an aquifer modeling. The groundwater level in Shabestar
plain aquifer was decreasing in all piezometers. Undoubtedly,
evaporation also is an important factor in groundwater-level
depletion. Therefore, the evaporation data were added to the
input parameters. Similarly in another case study, evaporation
factor is used for estimation of groundwater level in other
coastal aquifer sited in Italy (Taormina et al. 2012). These four
input data (temperature, rainfall, average discharge, and evap-
oration) reflect monthly fluctuations in the groundwater level
since piezometer groundwater-level decrease with constant
gradient annually; annual time series are also included for
the present study.

The annual time series has entered with the number of the
year and statistically has a good linear relation with the
groundwater level. Derived regressions show more than 80
% of the correlation coefficient in six piezometers (Fig. 6).
Therefore, checking this parameter in aquifers which annually
have decreased or increased in groundwater level can be use-
ful in designing simulating network.

For this purpose, the data were collected for 9 years
(from October, 2000, to September, 2009) with 1-month
time interval. The monthly data utilized consist of the
following categories:

1. Observed groundwater level at 15 piezometers (m)
The statistical analysis of the observed groundwater levels

i s shown in Tab le 1 fo r se l ec t ed p iezomete r s .
Correspondingly, Fig. 2 shows positions of the piezometers
located within the Shabestar plain. The chosen piezometers
were selected based on the uniform distribution in the plain,
completeness of the data category, and far enough distance
from the coastal line.

2. Rainfall (mm/month) in Sharafkhaneh station
3. Average discharge of Daryanchai river (m3/s) in Daryan

station
4. Evaporation (mm/month) in Sharafkhaneh station
5. Temperature (°C) in Sharafkhaneh station
6. Annual time series (year)
Rainfall value ranged is from 3 to 110.2 mm/month (aver-

age 20.39), average discharge value is from 0.03 to 2.658 m3/s
(average 0.41), temperature value is from −6.7 to 27 °C (av-
erage 13.41), and evaporation value is from 0 to 265.9 mm/
month (average 87.39).

Toward the achieving better assessment of the results,
all input and output data were normalized using intro-
duced method by Larose in data mining and statistical
analysis (Larose 2005). Normalization is performed ac-
cording to Eq. 5 in the typical range of 0 (L) and 1 (H)
by using the maximum and minimum values:

X* ¼ mXi−b ð5Þ

m ¼ H−L
Max Xð Þ−Min Xð Þ ð6Þ

b ¼ Max Xð ÞLþMin Xð ÞH
Max Xð Þ−Min Xð Þ ð7Þ

where X* is the normalized variable and Xi is the main
variable.

Table 1 Statistical analysis of observed groundwater in 15 piezometers

Piez. no. X (UTM) (m) Y (UTM) (m) Mean (m) Min (m) Max (m) Variance Standard
deviation(m)

Skewness
coefficient

P1 576,150 4,232,500 1412.45 1408.31 1415.95 2.274615 1.508182 −0.047228
P2 579,250 4,235,500 1363.58 1362.74 1365.67 0.407335 0.638228 0.778455

P3 561,550 4,225,050 1334.10 1331.19 1357.68 7.269294 2.696162 6.299276

P4 572,350 4,225,900 1329.07 1322.81 1336.86 25.60608 5.060245 0.168759

P5 577,850 4,228,700 1311.56 1304.93 1318.91 12.27430 3.503471 0.880152

P6 577,600 4,222,950 1298.84 1292.96 1300.16 0.632857 0.795523 −3.637452
P7 573,100 4,222,550 1294.82 1292.31 1296.01 0.547359 0.739837 −0.491028
P8 554,550 4,220,050 1283.90 1282.23 1286.22 0.871312 0.933441 0.152471

P9 546,600 4,223,900 1279.37 1269.56 1282.44 3.421868 1.849829 −1.393301
P10 564,200 4,222,000 1272.48 1265.55 1278.54 5.590902 2.364509 0.170974

P11 569,900 4,223,500 1266.02 1259.51 1274.08 8.643071 2.939910 0.276150

P12 559,350 4,220,800 1260.85 1257.32 1266.72 3.440292 1.854802 0.284084

P13 551,800 4,220,150 1262.46 1256.44 1270.23 14.251235 3.775080 0.246874

P14 555,200 4,224,100 1254.83 1250.83 1264.02 7.935692 2.817036 1.230776

P15 583,700 4,234,500 1329.79 1328.99 1331.91 0.270965 0.520543 1.158132
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Applied artificial neural network structure

The structure of the ANN-BP was designed (5:7:1) for both
models, consisting of three layers including an input layer, a
hidden layer, and an output layer as shown in Fig. 7. The
architecture of feed-forward BP neural network consists of
five input variables, seven hidden neurons with logistic func-
tion and one output variable with linear activation function
transforming the sum of all the weighted inputs into an output
signal. By using a trial-and-error method, it was realized that a
structure with seven neurons in the hidden layer (5:7:1 struc-
ture) gives the best results.

The trial-and-error method was examined with the great
scale of the neuron for both ANN and ACOR networks. The
experimental results indicate that with increasing the number
of neurons in the hidden layer, the function of ACOR in dis-
covering the primary coefficients will slowdown. Besides, the
conclusions of the hybrid network were similar for the vast
range of neurons which makes it too difficult for selecting the
number of neurons through the ACOR-BP. As a result, the
decision to choose the number of neurons is taken only based
on the results of ANN-BP in the range of 3 to 12 neurons
which the best result in most of the piezometers was seven
neurons in the hidden layer.

Optimization of weight connections using hybrid
ACOR-BP

In this study, the hybrid model of ACOR-BP is designed in
comparison with the ANN-BP for estimation of groundwater
level. For this purpose, the weight adjustment is done by min-
imizing the objective function which is normally defined as
root-mean-squared error (RMSE) which calculates according
to the following formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
�
N∑

N

i¼1 WLobserved−WLpredicted
� �2r

ð8Þ

In this equation, RMSE is the root-mean-squared error,N is
the number of training samples, WLobseved is the amount of
observed groundwater level for each piezometer, and
WLpredicted is the predicted amount of groundwater level using
ANN-BP or ACOR-BP.

Fig. 7 Typical architecture of
feed-forward BP neural network
with seven neurons in hidden
layer by comparing produced
groundwater level (WLproduced)
and observed groundwater level
(WLobserved) during the training
phase; errors propagate backward
to the connections in the previous
layers

Table 2 Parameters used in construction of ACOR-BP model

ACOR-BP properties Properties

Probability density function Gaussian kernel
PDF (Eq. 1)

m 200

k 10

u 10

q 0.5

ε 0.0005

ACOR maximum of iterations 50

Type of neural network FF-BP

Number of layer in neural network 3

Number of neurons in hidden layer 7

Transfer function from layer 1 to 2 LOGSIG

Transfer function from layer 2 to 3 PURELIN

BP maximum of epoch 100
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The coding model is done in MATLAB software (version
2014) environment.Table2 represents that theparameterswere
used in the construction of the ACOR-BP model. The detailed
algorithm of hybrid neural network-ACOR designed in this
study to find weights and biases is as follows. Consideration
of groundwater level is estimated from predefined inputs by
using Eq. (9).

WLpredicted1�1 ¼ LW 1�7 � Tansig IW 7�5 � P5�1 þ b7�1ð Þ
þ d1�1 ð9Þ

In Eq. (9), LW and IW are unknown weight matrices
and b and d are unknown biases that should be com-
puted. For seven neurons in hidden layer, the total num-
ber of unknown variable is n = (1 × 7) + (7 × 5) +
(7 × 1) + (1 × 1) = 50. The detailed algorithm of
ACOR to find weights and biases is as follows:

1. Read input data P5 × 1 for N sample.
2. Select S, the number of neurons in hidden layer (S = 7).
3. Compute n, the number of unknown weight and bias

values (according to Eq. (9), n = S × (length(p) + 2) +
1 = 50).

4. Select k, the number of the solutions is stored in solution
archive matrix. Tk × n (each row in the solution archive
matrix corresponds to a found solution).

5. Initialize solution archive matrix (Tk × n) with k random
solutions.

For i = 1 to max_iter do

1. Compute WLpredicted, according to Eq. (9).
2. For each solution xl in the solution archive matrix, the

value of the objective function f(xl) = RMSE(xl) Eq. (8)
is calculated according to Fig. 5.

3. Sort the solutions in the solution archive matrix according
to their objective value (f(x1)< f(x2) <… < f(xk)), where k
is the number of rows (solutions)

4. Calculate the weight of w, which is w1 > w2 > … > wk.

according to Eq. (2),
5. Compute the probability of the roulette wheel pi, accord-

ing to Eq. (3)
6. Repeat the following steps, m times to generate m new

solutions: produce a new value repeatedly for each
variable of a new solution by employing the normal

distribution
2

2

2

)(

2

1
)(

i
l

i
lxx

i

l

i
l exg where xl

i is a

value selected from the ith value (variable) of the ith

solution in the solution archive matrix by the proba-
bility of pi, and σl

i is defined as Eq.(4).
7. Adding these m new solutions (k → k + m) to the

solution archive matrix and then eliminate worst m
solutions (k + m → k) in order to keep the size of
the solution archive constant (positive and negative
update).

8. The first row of the solution archive matrix is the best
weights and biases that are found by ACOR.

Fig. 8 Validation results from simulation of groundwater level by 30 times model run
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Fig. 9 Graphical comparison of estimated versus observed groundwater level at piezometer P5 using ACOR-BP and ANN-BP in training step

Table 3 The results of models for estimation of normal groundwater level

Piez. no. ACOR-BP ANN-BP

Training Test Validation Training Test Validation

RMSE (cm) R2 (%) RMSE (cm) R2 (%) RMSE (cm) R2 (%) RMSE (cm) R2 (%) RMSE (cm) R2 (%) RMSE (cm)

P1 11.7 98.1 12.1 91.6 11.8 91.8 16.6 97.1 18.7 82.3 19.1

P2 7.6 98.9 8 90.7 9.1 84.8 9.5 97.5 12.1 75.4 12.9

P3 9.5 99.3 10.3 89.8 14.7 79.7 12.9 98.3 15.4 47.6 14.8

P4 10.9 99.2 11.5 97.5 12.4 92.8 15.4 97.4 17.6 88.1 18.6

P5 11.2 99.5 11.4 91.2 11.6 96.3 13.9 97.6 17.7 68.9 15.3

P6 12.8 98.7 13.7 90.1 13.9 90.7 17.1 92.6 19.4 76.8 20.2

P7 10.4 98.1 12.4 92.5 14 91.2 16.9 95.9 19.2 79.1 18.7

P8 9.2 98.9 10.5 92.9 10.1 91.6 13.9 97.3 16.5 84.8 15.4

P9 8.7 99.2 9.8 91.7 10.3 90.4 14.1 98 19.3 84.2 18.1

P10 10.3 98.5 12.2 89.6 11.8 93.4 12.3 95.7 15.8 78.2 17.5

P11 12.9 99.1 13.5 91.3 13.7 90.6 16.3 96.9 18.9 87.1 20

P12 11.1 98.3 11.6 97.5 12.4 96.2 15.4 94.3 17.4 92.6 17.3

P13 10.6 99.4 10.9 96.1 10.6 95.9 12.8 98.7 14.1 92.1 14.3

P14 12.1 98.2 12.9 92.6 13.2 91.2 16.1 95.4 22.3 83.3 20.1

P15 7.1 97.3 8.6 89.7 7.9 87.8 10 95.2 10.6 67.4 11.4

Arab J Geosci  (2016) 9:436 Page 11 of 16  436 



Results and discussion

To approach an appropriate comparison between the different
intelligent optimization methods, the same set of input/output
data and training, testing, and validation set were used.
Meanwhile, it is tried to use the same parameter setting for
the individual and hybrid model. The total dataset includes 84
training data for each piezometer (October 2000 to September
2007), 12 testing data (October 2007 to September 2008), and
12 validation data (October 2008 to September 2009) used for
validation. To validate the accuracy, RMSE and correlation
coefficients (R2) were calculated between observed and esti-
mated data.

For accurate evaluation, two methods (ANN-BP and
ACOR-BP) for estimation of groundwater level were run for
30 times. The results of each run time of the models and
comparison of the minimum, mean, and maximum correlation
coefficients are shown in Fig. 8. The diversity of results to
some extent of 15 piezometers shows that single neural net-
work has higher scattering than hybrid model.

In overall, an R2 value greater than 90 % indicates a very
satisfactory model performance, while an R2 value in the
range of 80–90 % signifies a good performance, and the value
less than 80 % indicates an unsatisfactory model performance
(Coulibaly and Baldwin 2005). Thus, the hybrid net (ACOR-
BP) indicates the better results in the validation. Table 3 shows

the most optimal results from models in each step of training,
test, and validation. At results, the table is gain from the esti-
mation of groundwater level that in each run of the hybrid
model achieved a lower data distribution and better results
of the most optimal model in each data class.

According to Table 3, ACOR-BP has the best performance
in training step and has achieved the best results for test and
validation data. The average R2 of testing and validation for
ACOR-BP model set has been more than 90 %. Also, this
model is faster than the ANN-BP model. The results of the
Table 3 indicate that the individual neuron network with the
past 7-year training has no flexibility to the new changes in the
last 2 years. This network only works out well for the two
piezometers of 12 or 13 because the monthly data tests and
the validation trend are similar to the training one in piezom-
eters. For instance, continuously in 6 years from September to
October, the water table was 1261 m; it means that the change
was not that considerable. Overall, for the half of the piezom-
eters (P2, P3, P5, P6, P7, P10, P15), the neural network indi-
vidually shows less than 0.8 correlation coefficient in testing
stage and validation, which the function is not appropriate in
the present research and the training network does not have
the flexibility to predict the necessary changes. Using of
ACOR algorithm for escaping the local optimization and train-
ing accurately, the neural network causes to explore the hybrid
network of ACOR-BP with the better quality or flexibility for

Fig. 10 Graphical comparison of estimated versus observed groundwater level at piezometer P8 using ACOR-BP and ANN-BP in training step
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predicting the extrapolation issues. This systemworks the best
in most piezometers, and the correlation coefficient in data test
and validation is more than 0.9. On the other hand, according
to the results of Table 3, the hybrid network in piezometers P2,
P3, and P15 also does not indicate a very good performance.

Although hybrid net in piezometer 3 has higher perfor-
mance than the individual neural network, both nets concor-
dant in the estimation of test and validation correlation coef-
ficient are lower than 0.8. In the piezometer 3, a difference of
groundwater level in 7 years of training data is 26.49 m while,
in the last 2 years, it was 1.77m. Probably, a high difference of
groundwater level in training data against the test and valida-
tion data is the most cause of reducing the c in the hybrid
ACOR-BP. Moreover, Fig. 2 shows that piezometer 3 is near
Shabestar city. In fact, high pumping area near the city is
causing greater groundwater-level reduction.

In the piezometers P2 and P15, groundwater levels
have been changed only 2 cm from January to
June 2009. Fixation of groundwater level in six consecu-
tive months with consideration to frequent changes in in-
put variables, such as precipitation, has been the main
reason for low correlation coefficient in validation stage.
Probably, observation groundwater level was not mea-
sured accurately for piezometers P2 and P15 in 2009.
Therefore, the validation result of these two piezometers
cannot determine the reliability of network accuracy. In
the testing stage, the correlation coefficient is calculated
about 90 % for these two piezometers. So, without con-
sidering validation data, it can realize that hybrid ACOR-
BP was appropriated in these two piezometers. The results
of network training with error value for piezometers P5
and P8 are shown in Figs. 9 and 10.

Fig. 11 Graphical comparison of estimated versus observed groundwater level at two selected piezometers using ACOR-BP and ANN-BP in test step
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The results of prediction at two piezometers (P5 and
P8) were illustrated by perfect comparison between the
performances of ANN-BP and ACOR-BP models which
are presented in Figs. 11 and 12. These image plots have
shown a graphical comparison between observed ground-
water level and estimated data by using two intelligent
models for testing and validation data. As is seen clearly
from results, the ACOR-BP model is more successful
among the individual models designed (ANN-BP) in this
study. This model is faster than ACO stochastic models
(Socha 2008). Subsequently, ACOR-BP can be a high
prominence in the estimation of groundwater level.

Conclusion

The study designed an ACOR-BP model to better predict the
groundwater level in the complex, heterogeneous, and

unconfined aquifer underlying the Shabestar plain, Iran. For
this propose, the monthly average of 9-year data including
rainfall, temperature, river discharge, annual time series, and
evaporation was used as inputs and groundwater levels were
considered as the output of the models. The finding and future
works are summarized as follows:

1. Because of complex hydrogeological characteristics in
the mixing zone, not all AI models are able to accurately
predict groundwater levels. In this study, results showed that
the ACOR-BP model had better performance than ACOR and
ANN-BP models individually. The simulation results of
ACOR-BP model for all piezometers showed that average
RMSEs for testing and validation data are 11.29 and
11.83 cm, respectively. Moreover, the average R2 of testing
and validation set was more than 90 % for the ACOR-BP
model. In the interim, R2 value from test and validation of
sum of 15 piezometers for the individual neural network is
less than 80 %.

Fig. 12 Graphical comparison of estimated versus observed groundwater level at two selected piezometers using ACOR-BP and ANN-BP in validation
step
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2. The ACOR-BP algorithm can reduce overtraining. This
was shown by the difference between training-testing and
evaluation being smaller for ACOR-BP than ANN-BP. So,
ACOR-BP results are acceptable and ANN-BP results are
not suitable for further use of the network in simulation of
groundwater level from a coastal aquifer.

3. The results from 30 runs of the models showed that
hybrid net has lower distribution in the optimal result.
Nevertheless, distributions of results in the piezometers that
have high water level changes in each of the two models are
considerable.

4. Since most real aquifer systems are heterogeneous and
complex, the hybrid ACOR-BPmethod has a good potential to
predict other hydrogeological or hydrochemical parameters.
Therefore, in water resources management projects, it can
reduce the costs and time required for additional piezometer
drilling. Moreover, uncertainty analysis using the ACOR-BP
model is also a crucial subject for future research.
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