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Abstract The present study designed to monitor and predict
land cover change (LCC) in addition to characterizing LCC
and its dynamics over Al-Baha region, Kingdom of Saudi
Arabia, by utilizing remote sensing and GIS-cellular automata
model (Markov-CA). Moreover, to determine the effect of
rainwater storage reservoirs as a driver to the expansion of
irrigated cropland. Eight Landsat 5/7 TM/ETM images from
1975 to 2010 were analyzed and ultimately utilized in catego-
rizing LC. The LC maps classified into four main classes: bare
soil, sparsely vegetated, forest and shrub land, and irrigated
cropland. The quantification of LCC for the analyzed catego-
ries showed that bare soil and sparsely vegetated was the larg-
est classes throughout the study period, followed by forest,
shrubland, and irrigated cropland. The processes of LCC in
the study area were not constant, and varied from one class
to another. There were two stages in bare soil change, an in-
crease stage (1975–1995) and decline stage (1995–2010), and
the construction of 25 rainwater-harvesting dams in the region
was the turning point in bare soil change. The greatest increase
was observed in irrigated cropland after 1995 in the expense of
the other three categories as an effect of extensive rainwater
harvesting practices. Losses were evident in forest and shrub-
land and sparsely vegetated land during the first stage (1975–
1995) with 5.4 and 25.6 % of total area in 1995, while in 1975,
they covered more than 13.8 and 32.7 % of total area. During
the second stage (1995–2010), forest and shrubland witnessed
a significant increase from 1569.17 km2 in 1975 to

1840.87 km2 in 2010. Irrigated cropland underwent the
greatest growth (from 422.766 km2 in 1975 to 1819.931 km2

in 2010) during the entire study period, and this agriculture
expansion reached its zenith in the 2000s. Markov-CA simu-
lation in 2050 predicts a continuing upward trend in irrigated
cropland and forest and shrubland areas, as well as a down-
ward trend in bare soil and sparsely vegetated areas; the spatial
distribution prediction indicates that irrigated cropland will ex-
pand around reservoirs and the mountain areas. The validation
result showed that the model successfully identified the state of
land cover in 2010 with 97 % agreement between the actual
and projected cover. The output of this study would be useful
for decision makers and LC/land use planners in Saudi Arabia
and similar arid regions.
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Introduction

Land cover changes describe differences in the area occupied
by cover types through time. Both losses and gains are includ-
ed. Land cover change (LCC) analyses and projection are one
of the main tools to evaluate ecosystem change and resultant
environmental implications at various temporal and spatial
scales (Lambin 1997; Zhang et al. 2011; Tong et al. 2012).
Despite its relevance, quantitative data describing where,
when, and how changes occurs are incomplete or inexact
(Turner et al. 1993). Thus, research on this subject is important
in order to understand patterns of LCC change in relation to
human activities and natural processes at different spatial and
temporal scales. Land cover changes especially those caused
by human activities are one of the most important components
of global environmental change with impacts possibly greater
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than the other types of global changes (Turner et al. 1994;
Jensen 2005).

Recently, the issue of LCC has become a core component
of research in many international and interdisciplinary studies
(Turner et al. 1994, 2007; Jensen 2005; Li et al. 2008, 2009;
Petropoulos et al. 2010; Roy et al. 2014). Changes in land use
and land cover have been directly linked to biodiversity loss,
transborder migration, environmental refuge, food security,
urbanization, soil quality and runoff, and sedimentation rates,
among other processes (López et al. 2001; Dunjó et al. 2003;
Heistermann et al. 2006; Milesi et al. 2005; Wang et al. 2009;
Wilson and Weng 2011; Shoyama et al. 2014). The balance
between human activities and natural processes could decide
future conservation planning over large areas of the planet.
Therefore, it is important to quantify the effect of human-
driven conversion of natural processes into disturbed or
human-dominated environments (Satake and Rudel 2007;
Clement et al. 2009; Redo et al. 2009; Marey-Pérez and
Rodríguez-Vicente 2009; Kashaigili and Majaliwa 2010).

Remote sensing and geographic information systems (GIS)
have been widely applied to identify and analyze land use,
LCC, and multitemporal data that used to quantify the type,
amount, and location of LCC (Eastman and Fulk 1993;
Longley 2005; Lu et al. 2004; Long et al . 2007;
Haregeweyn et al. 2012). Various change detection techniques
have been developed to identify the extent and locations of
land use and cover changes, such as principal component
analysis (PCA), band differencing, band ratioing, and
postclassification comparison (Lu et al. 2004; Ridd and Liu
1998; Petropoulos et al. 2011; Petropoulos et al. 2012;
Srivastava et al. 2012; Petrosillo et al. 2013; Borrelli et al.
2013; Teferi et al. 2013; Elatawneh et al. 2014). A historically
common method of predicting the change among various cat-
egorical states is the application of Markov modeling (Pontius
and Malanson 2005).

The combination of cellular automata (CA) with Markov
modeling is themost commonmethods to present assessments
of LUCC (Zhang et al. 2009). As CAmodels not only offers a
newway of thinking for dynamic process modeling, but it also
provides a laboratory for testing the decision-making process-
es. CA is one of the most commonmethods of predicting LCC
due to its capabilities to address the complex problems based
on simple transition rules in comparison with traditional ap-
proaches based on differential or difference equations (Baker
1989). In addition, CA is the preferred model for many re-
searchers due to its computational efficiency (White et al.
1997), because it has the ability to perform spatial dynamics,
and time explicitly (Wagner 1997).

CA is well suited to represent geographic processes due to
the similarities between a two-dimensional lattice and a raster
grid (Longley and Batty 1996; Clarke and Gaydos 1998;
Clarke et al. 1997; Torrens 2003). CA has been used inten-
sively in modeling land use/cover change and prediction

(Brown et al. 2000; Myint and Wang 2006; Marshall and
Randhir 2008; Kamusoko et al. 2009; Mitsova et al. 2011;
Guan et al. 2011; Nouri et al. 2011; Huishi et al. 2012; Al-
Sharif and Pradhan 2013; Liu et al. 2014; Huang et al. 2014;
Yagoub and Al-Bizreh 2014).

Myint and Wang (2006) used an integration of Markov
chain analysis and a CA approach to predict land use/land
cover change in Norman, OK, USA. This study revealed that
the combination ofMarkov and CAwas effective in projecting
future land use/land cover, since the overall accuracy was
86 %, which is higher than the standard acceptable accuracy
of 85 % (Anderson et al. 1976; Townshend 1981). More re-
cently, Kashaigili and Majaliwa (2010) conducted a study to
investigate long-term and seasonal changes that have occurred
in the Malagarasi River watershed in Tanzania, Africa,
through human activities from 1984 and 2001. These authors
reported that there was a significant change in land use and
cover within the 18-year period. The principal drivers for the
changes were found to include fire, cultivation along rivers
and lakeshores, overgrazing, poor law enforcement, insuffi-
cient knowledge of environmental issues, increasing poverty,
deforestation, and population growth. Another study conduct-
ed by Shoyama et al. (2014) in Japan revealed that if no con-
servation measures were implemented and even if the timber
and agricultural industries remained small until 2060,
supporting and provisioning services would decline due to
less land management. Mitsova et al. (2011) developed
Markov-CA model to integrate protection of environmentally
sensitive areas into urban growth projections at a regional
scale. The modeling approach applies CA, Markov
probabilities, and multicriteria evaluation to simulate five
land cover classes simultaneously. Similarly, Nouri et al.
(2011) explored the potential of CA in planning support tools
for analysis of temporal changes and spatial distribution of ur-
ban land uses in Anzali-Iran and discussed its ability to simulate
future land use. Huishi et al. (2012) investigated the LCC in
Hulun Buir Grassland of China by integrating the Markov pro-
cess into the CA mode. These authors reported that in compar-
ison with GIS and statistical methods, theMarkov-CAmodel is
fast, accurate, and real-time (Guan et al. 2011; Huang et al.
2014). In addition, the Markov-CA model is relatively easy to
use. Yagoub and Al-Bizreh (2014) coupled remotely sensed
imagery with CA models to predict LC in Al Ain City,
Emirate of Abu Dhabi. This study demonstrates that integrating
remote sensing with CA models is useful, where there is no
available data for decision makers or planners.

The present study is the first analysis and estimation of
LCC in Kingdom of Saudi Arabia (KSA) caused by human
activities and natural processes at different spatial and tempo-
ral scales. The study of LCC in KSA is gaining importance in
the last years for several reasons. First, the KSA government
wants to decrease pressures on natural resources, particularly
forests and to assess the effectiveness of current conservation
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projects, including water harvesting and recharge structure in
order to provide recommendations for future conservation
plans. Second, the study of LCC dynamics could help deci-
sion makers to launch the balance between LCC and conser-
vation policies that consider both economic development and
environmental management.

The main objective of the present study was to monitor and
predict LCC over Al-Baha region, KSA, in addition to char-
acterizing LCC and its dynamics by utilizing remote sensing,
GIS techniques, and determine the effect of rainwater storage
reservoirs as a driver to the expansion of irrigated cropland.
By assessing LCC within the study period, we can observe
how environmental policies affect land management in KSA.
The subobjectives in this study included the following:

& To identify LCC at eight periods between 1975 and 2010
using remotely sensed data and Markov model

& To quantify LCC through transition matrices and to pre-
dict LCC in 2050 and its environmental impacts using CA
and a Markov model

& To identify the impact of human activities on the ecosys-
tem services

Material and methods

Study area

Al-Baha Province is situated in Hejaz, western part of the
KSA (41° 42 E, 19° 20 N) between Makah and Asser
(Fig. 1). This province is the smallest in KSA including 12,

000 km2. Al-Baha Province was selected to implement this
study due to its considerable divergence in its topography and
climate. The study periods selected was selected based on
environmental problems and concerns indicated in the study
area such as reservoir construction and deforestation. The cli-
mate, in general, falls in the arid zone classification. Relative
humidity varies between 52 and 67%with temperatures rang-
ing between 12 and of 23 °C as minimum and maximum,
respectively. Rainfall is much higher than KSA average, yet
it ranges between 200 and 600 mm/year (Mahmoud et al.
2014a, b, c; Mahmoud 2014).

Land cover classification and accuracy assessment

Eight Landsat 5/7 TM/ETM images were obtained for the
years 1975, 1980, 1985, 1990, 1995, 2000, 2005, and 2010
(Table 1). These images were selected based on phenology
and scene quality (cloudiness and haze); optimal time periods
for discriminating land cover types were also identified for
each Landsat path-row footprint, and each proposed land cov-
er mapping zone. Then, the selected images were radiometri-
cally and geometrically calibrated and smoothed using a
weighted multiple regression technique. Finally, these images
were incorporated with filed survey data from the specified
region and ultimately utilized in categorizing land cover (LC).
Erdass Imagine software 2013 was used to mosaic the collect-
ed satellite images. After geometric corrections, Iso Cluster
unsupervised classification and maximum likelihood classifi-
cation method (Richards 1999) were used for the unsuper-
vised and supervised classification. These methods combine
the functionalities of the Iso Cluster and maximum likelihood
classification tools. It outputs a signature file. The resulting

Fig. 1 Location map of the study area
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signature file from this tool can be used as the input for an-
other classification tool, such as maximum likelihood classi-
fication, for greater control over the classification parameters.
The maximum likelihood classification has been widely used
in many class i f ica t ion appl ica t ions (Vorovenci i
and Muntean 2012). The method is based on the likelihood
that each pixel belongs to a particular class. The basic theory
assumes that these likelihoods are equal for all classes and that
input bands are evenly distributed. In the present study, train-
ing samples collected during field survey to create spectral
signatures (i.e., reflectance values) for the supervised classifi-
cation to identify what the cluster represents (e.g., water, bare
earth, dry soil, etc.). Spatiotemporal mapping includes quan-
titative time series analysis and transformation of LC classes
using remotely sensed images for each timestamp. In addition,
the classification accuracy of the classified images was deter-
mined by simple random patterns. The simple random pattern
is the most common approach and provides an equivalent
probability of sampling over the entire study area with no

operator bias. A detailed flowchart for the methodology used
in this study is presented in Fig. 2.

Modeling land cover changes and dynamics

Change detection is the process of identifying differences in
LC and land use, among multiple remotely sensed data of an
area. From previous studies, various change detection tech-
niques have been developed and used with satellite imagery,
for example, principal component analysis, image differenc-
ing, spectral vector analysis, and postclassification
(Abuelgasim et al. 1999; Jensen 2005). Land Change
Modeler for ecological sustainability are into integrated soft-
ware developed by IDRISI Selva for analyzing LCCs. LCC
model tools support the analysis of the land use changes. Use
of such and the support needed for planning and policy-mak-
ing. In this study, LCC and dynamics were determined using
the Land Change Modeler (LCM) in IDRISI 17 (Selva
Edition). The results were evaluated using a change detection

Table 1 Remote sensing data
used for the study Images used for the study Resolution (m) Date of acquisition Product type (cloud cover %)

Landsat 5 TM BBand 1–7^ 30 23 June1975 L1Ta (0 %)

Landsat 5 TM BBand 1–7^ 30 11 August 1980 L1Ta (0 %)

Landsat 5 TM BBand 1–7^ 30 2 August 1985 L1Ta (0 %)

Landsat 5 TM BBand 1–7^ 30 9 November 1990 L1Ta (0 %)

Landsat 5 TM BBand 1–7^ 30 2 August 1995 L1Ta (0 %)

Landsat 7 ETM+ BBand 1–8^ 30 27 May 2000 L1Ta (0 %)

Landsat 7 ETM+ BBand 1–8^ 30 5 March 2005 L1Ta (0 %)

Landsat 7 ETM+ BBand 1–8^ 15 7 July 2010 L1Ta (0 %)

a Level 1T (L1T) (precision and terrain corrected data) provides systematic radiometric accuracy, geometric
accuracy by incorporating ground control points, while also employing a digital elevation model (DEM) for
topographic accuracy

Fig. 2 Flowchart of the methodology used in this study
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matrix, with detailed Bfrom-to^ information then extracted
from the matrix. The area percentages of three classified im-
ages were first plotted by category to observe the trends in
LCC. Then, the earlier and later classified images in the LCM
change analysis panel were used. This panel provided gain
and loss graphs and net change graphs for each temporal pe-
riod by category for calculation of the area and percentage of
change. Next, the additional from-to information was comput-
ed using the crosstab module, which provided a cross-
classification image showing the locations of the categories
in the earlier image that were the same as those in the second
image, and vice versa. Finally, the earlier classified images
and cross-classification images for each period were used to
determine the relative frequency of the different land cover
categories occurring in areas of transition. Transition proba-
bility and the quantity of future changes were modeled
throughMarkov chain analysis. The output from the transition
prediction was the LC transition probability in 2050.

Markov-cellular automata model

This study employs a coupled Markov-CA model that inte-
grates GIS software to model LCCs and spatial distribution in
the future. A Markovian process is one in which the state of a
system at time t2 can be predicted by the state of the system at
time t1 given a matrix of transition probabilities from each
land cover class to every other cover class. Markov-CA is a
combined CA/Markov change land cover prediction proce-
dure that adds an element of spatial contiguity as well as
knowledge of the likely spatial distribution of transitions to
Markov change analysis. One of the basic spatial elements
that underly the dynamics of many change events is proxim-
ity: areas will have a higher tendency to change to a class
when they are near existing areas of the same class. These
can be very effectively modeled using CA. A cellular autom-
aton is a cellular entity that independently varies its state based
on its previous state and that of its immediate neighbors ac-
cording to a specific rule. Clearly, there is a similarity here to a
Markovian process. The only difference is the application of a
transition rule that depends not only upon the previous state
but also upon the state of the local neighborhood. In this study,
Markov module was used to create a transition probability
matrix for each subperiod. The output of the Markov chain
analysis is the following output:

1. A transition probability matrix. This expresses the likeli-
hood that a pixel of a given class will change to any other
class or stay the same in the next time period.

2. A transition areas matrix. This expresses the total area
expected to change in the next time-period.

3. A set of conditional probability images (transition
maps)—one for each land cover class. These maps

express the probability that each pixel will belong to the
designated class in the next time period.

Computation of the transition probability matrix/transition
potential areas

The Markov chain analysis was used to compute transition
probabilities based on the Landsat derived land cover maps
for 1975, 1980, 1985, 1990, 1995, 2000, 2005, and 2010.
Seven transition matrices were constructed from the cross-
tabulation of the land cover maps. The time intervals used
for calibration were 5 years for each transition matrix.
Consequently, transition probabilities were normalized to an-
nual time steps as demonstrated by Pastor et al. (1993) in order
to take account of differences in the lengths of the two time
periods. The original transition probability matrices for each
land cover type need to be defined prior toMarkov process. Its
mathematical expression is as follows:

P ¼ Pij

� � ¼
P11 P12⋯… P1n

P21 P22⋯… P2n

Pn1

⋯
Pn2⋯… Pnn

2

64

3

75 ð1Þ

In the above matrix, Pij is the transformation probability of
the ith type land into the jth type land from prophase to telo-
phase and n is the land cover type of studied area. Pij should
meet the following conditions:

0≤Pij≤ i; jð Þ ¼ 1; 2; 3; 4; ::; nð Þ ð1:1Þ
X n

i¼1
Pij ¼ 1 i; j ¼ 1; 2; 3; 4; ::; nð Þ ð1:2Þ

According to the non-after effect of Markov process and
probability formulae of Bayes condition, forecast model of
Markov is obtained:

Pn ¼ P n−1ð ÞPij ð2Þ

Pn is the state probability of any times, and P(n - 1) is the pre-
liminary state probability.

Map algebra applied to land cover map to calculate transi-
tion probability values in the period between each two maps.
Successively, transition matrices of land cover types in each
period were obtained by using a Markov model as shown in
Table 2. The potential power of transition was determined
which LC classes were the major drivers of LC dynamics in
the study area for each temporal period. After the major tran-
sitions was created, the earlier classified images and cross-
classification images of each period were used to determine
the relative frequency of different LC categories that occurred
within the areas of transitions.
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Future scenarios

In order to predict future LC in the study area, an analysis was
conducted based on the annualized transition matrices, assum-
ing that the LCC follows a Markovian dynamic—i.e., future
scenarios are explored using Markovian transition models,

considering trends observed in land cover changes within
the study area. The transition probability matrix and the tran-
sition areas record the number of cells, or pixels that are
expected to change from each land cover class to each
other land cover class over the next time period. This matrix
was generated by multiplication of each column in the

Table 2 Land cover transitional
probabilities of each subperiod
and the full period 1975–2010

1975–1980 Markov matrixa

Code Land cover class Bare soil Sparsely vegetated Forest and shrubland Irrigated cropland

1 Bare soil 0.1814 0.1062 0.0382 0.009

2 Sparsely vegetated 0.0465 0.0396 0.0132 0.0032

3 Forest and shrubland 0.0285 0.0255 0.0159 0.0032

4 Irrigated cropland 0.018 0.0089 0.0085 0.0051

1980–1985 Markov matrixa

Code Land cover class Bare soil Sparsely vegetated Forest and shrubland Irrigated cropland

1 Bare soil 0.2602 0.0345 0.0134 0.0031

2 Sparsely vegetated 0.0459 0.0349 0.0164 0.0029

3 Forest and shrubland 0.0219 0.0241 0.0238 0.0088

4 Irrigated cropland 0.0069 0.0090 0.0195 0.0257

1985–1990 Markov matrixa

Code Land cover class Bare soil Sparsely vegetated Forest and shrubland Irrigated cropland

1 Bare soil 0.2511 0.0704 0.0426 0.0137

2 Sparsely vegetated 0.0472 0.0237 0.0260 0.0205

3 Forest and shrubland 0.0111 0.0051 0.0085 0.0196

4 Irrigated cropland 0.0017 0.0009 0.0016 0.0072

1990–1995 Markov matrixa

Code Land cover class Bare soil Sparsely vegetated Forest and shrubland Irrigated cropland

1 Bare soil 0.3040 0.0521 0.0057 0.0007

2 Sparsely vegetated 0.0655 0.0516 0.0209 0.0033

3 Forest and shrubland 0.0060 0.0095 0.0107 0.0033

4 Irrigated cropland 0.0024 0.0041 0.0070 0.0041

1995–2000 Markov matrixa

Code Land cover class Bare soil Sparsely vegetated Forest and shrubland Irrigated cropland

1 Bare soil 0.2915 0.0770 0.0077 0.0034

2 Sparsely vegetated 0.0623 0.0422 0.0097 0.0049

3 Forest and shrubland 0.0068 0.0163 0.0077 0.0053

4 Irrigated cropland 0.0020 0.0056 0.0044 0.0041

2000–2005 Markov matrixa

Code Land cover class Bare soil Sparsely vegetated Forest and shrubland Irrigated cropland

1 Bare soil 0.2908 0.0288 0.0029 0.0009

2 Sparsely vegetated 0.0497 0.0246 0.0019 0.0002

3 Forest and shrubland 0.0306 0.0384 0.0061 0.0008

4 Irrigated cropland 0.0087 0.0273 0.0252 0.0141

2005–2010 Markov matrixa

Code Land cover class Bare soil Sparsely vegetated Forest and shrubland Irrigated cropland

1 Bare soil 0.2368 0.0275 0.0126 0.0033

2 Sparsely vegetated 0.0444 0.0242 0.0201 0.0052

3 Forest and shrubland 0.0262 0.0182 0.0284 0.0160

4 Irrigated cropland 0.0160 0.0064 0.0148 0.0508

aValues are probabilities of transition
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transition probability matrix by the number of cells of corre-
sponding land cover in the later image. Afterward, the
Markov-CA model was applied to predict future LCCs using
the following steps:

1. Construction of CA filter: The module uses a 5 × 5 mean
filter to achieve this contiguity constraint. By filtering a
Boolean mask of the each land cover class, the mean filter
yields a value of 1 when it is entirely within the existing
class and 0 when it is entirely outside it. This filter has a
remarkable influence on the change in the cellular state
(Eastman 2001). This result is then multiplied by the suit-
ability image for that class, thereby progressively
downweighting the suitability as one moves away from
existing instances of that class, and this step is repeated for
each class being in the land cover map.

2. Determination of start time and iteration number:
Identifying iteration number and time starting point of
CA, the Markov-CA model was implemented using a
different iteration number starting from one iteration until
ten iterations. Based on the land cover pattern in 1975,
1990, and 2000, the CA cycle number is chosen, and the
land cover pattern of 2000 and 2010 is simulated to test
the simulation accuracy.

3. After validating the model capability to predict the state of
land cover in 2000 and 2010, the year 2010 was used as
starting point to predict the LCC in 2050.

Model validation

IDRISI Selva supplies a pair of modules to assist in the vali-
dation process; these modules were used in the present study
to validate the process of LCC. The first is called VALIDATE
and provides a comparative analysis based on the kappa index
of agreement (Eastman 2001). In addition, overall accuracies
and producer’s and user’s accuracy values for each land cover
derived from the error matrix are given in Table 3. Producer’s
accuracy is calculated by dividing the number of correctly
classified pixels in each category by the number of training
set pixels used for that category. User’s accuracy is computed
by dividing the number of correctly classified pixels in each
category by the total number of pixels classified in that cate-
gory. Producer’s and user’s accuracies in Table 3 indicate how
well training set pixels of a given cover type are classified, and
the probability that a pixel classified into a given category
actually represents that category on the ground, respectively.
Kappa is essentially a statement of proportional accuracy, ad-
justed for chance agreement. However, unlike the traditional
kappa statistic, VALIDATE breaks the validation down into
several components, each with a special form of kappa or
associated statistic (based on the work of Pontius (2000)). T
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With such a breakdown, for example, it is possible to assess
the success with which one is able to specify the location of
change versus the quantity of change. The other validation
procedure is the relative operating characteristic (ROC). It is
used to compare any statement about the probability of an
occurrence against a Boolean map, which shows the actual
occurrences. It can be useful, for example, in validating mod-
ifications to the conditional probability map output from
Markov. Note that LOGISTICREG incorporates ROC directly
in its output.

Result and discussion

Analysis of LCC and its impacts on ecosystem services

Monitoring of the locations and distributions of LCC consti-
tutes an important step toward establishing links between the
policy decisions, regulatory actions, and subsequent LC activ-
ities that could result in sustainable management of the envi-
ronment and highlight risks for future generations. In this
study, LC maps for 1975, 1980, 1985, 1990, 1995, 2000,
2005, and 2010 were derived from cloud-free satellite images
using ERDAS Imagine 13 software and ArcGIS 10.1 Spatial
Analyst. The overall accuracy of the land cover maps for
1975, 1980, 1985, 1990, 1995, 2000, 2005, and 2010 was
determined to be 86.52, 88.33, 87.17, 85.9, 89.2, 90.3, 89.5,
and 93 %, respectively, where kappa indices for these maps
were 0.86, 0.865, 0.87, 0.88, 0.85, 0.89, 0.87, and 0.91, re-
spectively. Table 3 shows a continuous increase to the overall
classification accuracy from the images of 1975 to the images
of 2010 due to the spatial resolution of various satellite sensors
ranges. Furthermore, high-resolution EO data are very helpful
for visual interpretation and supervised classification, which
allow correcting the misclassified pixels in the Landsat image.
These findings are in good agreement with result obtained by
Roy et al. (2014).

Arid and semiarid or subhumid zones are characterized by
low erratic rainfall, periodic droughts, and different associa-
tions of vegetative cover and soils. Vegetation cover is sparse
to almost nonexistent. In Arabia, a number of land cover pat-
terns can be observed, and examples are given here for differ-
ent areas in the Arabian Peninsula. In addition, specific land
cover is defined as the observed physical layer including natu-
ral and planted vegetation and human constructions, which
cover most of the area; however, the major part of the of
Saudi Arabia is made up of arid environment, and only a very
small portion of the area is covered by vegetation (Hereher
et al. 2012; Madugundu et al. 2014; Alqurashi and Kumar
2014). In the present study, land cover classification showed
similar pattern with only four main classes: bare soil, sparsely
vegetated land, forest and shrubland, and irrigated cropland.
The images suggest that LCC have had significant effect on

forest and shrubland, which may have affected the ecosystem
and natural balance of the study area throughout the entire
study period (Fig. 3). The results of LCC analysis identified
an increase of irrigated croplands after 1995. The quantifica-
tion of LCC in the analyzed categories showed that bare soil
and sparsely vegetated were the largest classes throughout the
study period followed by forest, shrubland, and irrigated crop-
land. The processes of LCC in the study area were not constant
and varied from one class to another. There were two stages in
the bare soil change, an increase stage (1975–1995) and de-
cline stage (1995–2010), and the construction of 25 rainwater
reservoirs in the region were the transition point of bare soil
change. The greatest increase was observed in irrigated crop-
land after 1995 at the expense of the other three categories as an
effect of extensive irrigation from these reservoirs.

The extent of the land cover distribution throughout the
study period (1975–2010) is presented in Table 4. There were
two stages in the bare soil change, an increase stage (1975–
1995) and decline stage (1995–2010). A continued increase in
bare soil was observed during the first stage, increasing from
5684 km2 in 1975 to 7859 km2 in 2000; the second stage
showed a decline in areas occupied by bare soil from more
than 7859 km2 in 2000 to less than 5804 km2 in 2010—more
than 200 km2 decline. Similarly, there was a general decline
trend in forest and shrubland, which declined from 1569 km2

in 1975 to 747 km2 in 2000, followed by an increase to
1840 km2 in 2010 because of conservation efforts. Sparsely
vegetated land followed a three-stage trend, a decline stage,
declining from 3731 km2 in 1975 to 2071 km2 in 1985,
followed by an increase in area occupied by sparsely vegetat-
ed land increasing to 2924 km2 in 1995. The third stage
showed a significant decline in sparsely vegetated land from
2924 km2 in 1995 to 1942 km2 in 2010. However, this period
also showed a substantial increase in irrigated cropland rela-
tive to 1995 (1819 km2 vs 364 km2). Table 5 indicates LCC in
the study area for each subperiod and the full period 1975–
2050 in percentage terms.

Twenty-five reservoirs were constructed within the study
area during the period of analyses, 70 % of which were con-
structed to recharge groundwater supplies. Construction of
these reservoirs were initiated to restore groundwater re-
sources had been depleted. Groundwater depletion over the
years has reduced regional agricultural production because
groundwater wells are the main source of water. The surveys
revealed that only 4 % of the reservoirs are used for irrigation
and other uses and 12% for flood control. In addition, 14% of
the dams were established for drinking purposes in areas in
which desalinated water is difficult to obtain. In general, the
main purpose of the existing dams in the study area is to
recharge groundwater supplies in support of the agricultural
sector, as groundwater is the main source of water for irriga-
tion in KSA (Mahmoud and Alazba 2014). The change in
natural drainage patterns by the construction of reservoirs
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affecting the land cover in the study area during the research
period is clearly evident in Fig. 4. In 1990, there was limited
human interaction with the environment and forest cover
dominated the area. However, conditions changed substantial-
ly thereafter, and following the reservoir construction, no wa-
ter drained into the streams or forestland, impacting native
vegetation cover. Overall, the effects of LCC on the hydrology
of the study area can be summarized as follows: (1) substan-
tially changing the area’s ecosystems, as human alteration of
land cover from natural vegetation to other uses typically

results in loss, degradation, and fragmentation, all of which
usually have devastating effects on the biodiversity of the
region (such impacts reflect on the Afrotropical biodiversity
of the region; (2) loss of forest cover; and (3) decreased sur-
face runoff values, as the change in drainage due construction
of rainwater retention dams affected the land cover type in the
study area. These findings are in good agreement with result
obtained by Li et al. (2009).

The LCC map (from-to) in this study (Figs. 5 and 6)
were produced using the combined approach and revealed

A B

C D

Fig. 3 Classification and dynamics of land cover changes in the study region based on time series EO images from 1975, 1980, 1985, 1990, 1995, 2000,
2005, and 2010
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extensive increases in irrigated cropland at the expense of
forest, shrubland, and grassland, and bare soil. Based on
from-to images, losses were evident in forest and shrub-
land and sparsely vegetated land during the first stage
(1975–1995) with 5.4 and 25.6 % of the total area in
1995, whereas in 1975, these LC were 13.8 and 32.7 %
of the total area. During the second stage (1995–2010),
forest and shrubland witnessed a significant increase from
1569.17 km2 in 1975 to 1840.87 km2 in 2010 (an increase
of 16.1 % of the total area in 2010). Irrigated cropland
underwent the greatest growth (from 422.766 km2 in

1975 to 1819.931 km2 in 2010) during the entire study
period and this agriculture expansion reached its peak in
the 2000s.

The effects of changing LC patterns on water resources
and environment create social and political tensions at the
local and national levels worldwide (YAO et al. 2014). In
the Al-Baha region of KSA, for example, the shift toward
agriculture has generated a number of changes in the struc-
ture and function of ecosystems, resulting in an overall
degradation of the ecological services provided by region’s
natural ecosystems. In addition, the forests of the Al-Baha

A B

C D

Fig. 3 (continued)
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Mountains were largely removed and the remnants are fur-
ther threatened by agricultural encroachment.

The environmental impacts of human activities induced
LCC in arid regions has stimulated increased research in the

1975-1980 1980-1985 

1985-1990 1990-1995 

Fig. 5 Average change in land cover between each two time periods from 1975 to 1995
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past few years due to the effects on water resources, climate,
and ecosystem services. In the present study, the period and
area selected were based on environmental concerns resulting
from establishment of reservoirs and decreasing forest area.
The analysis of LCC has revealed significant effects on the
functioning of socioeconomic and environmental systems and
important benefits for sustainability. This remarkable rate of
LCC (forest and shrubland to irrigated cropland) raises many
questions about environmental management and policy, driv-
ing forces of the agriculture growth process, ecosystem,

forestry, land use and management policies followed, and sus-
tainable environmental regulation implemented in the study
area. This agricultural expansion occurred as a result of rapid
increases in population and human activity and the establish-
ment of large-scale water projects such as construction of
dams and flood control infrastructures. Additionally, limited
resource management resulted in the overexploitation of nat-
ural resources, with adverse effects on sustainable develop-
ment. Land cover conversion has resulted in land degradation,
interfered with biodiversity and the ecosystem, and caused

1995-2000 2000-2005 

2005-2010 

Fig. 6 Average change in land cover between each two time periods from 1995 to 2010
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water stress in forest areas, thus depriving the region’s wild
animals of a much-needed source of water. Consequently,
many wild animals have migrated to cities and villages in
search of water and are fighting for their very survival, which
may put human health and life at risk (Mahmoud and Alazba
2015).

Markov transition probability

The LC transition probabilities and transition area matrix for
each two periods are calculated using Markov chain analysis
as shown in Table 2. The diagonal of the transition probability
represents the self-replacement probabilities, which is the
probability of a LC class remaining the same or the probability
of a change occurring from one LC class to another. The
transition probabilities between 2000 and 2005 were used as
input in the Markov-CA model. Markov chain analysis pro-
vided the capability of assembling transitions into a group of
submodels and examining the potential power of explanatory
variables. The projects from the change analysis were used to
create the major transitions from areas that had more than
5 km2. The earlier classified images and cross-classification
images of each period were used to determine the relative
frequency of different LC categories that occurred within the
areas of transitions. The relative frequency and the distance
from major transitions were used to test the driver variables,
which were the different LC categories. Cramer’s V was used
to indicate the association between the variables and the major
transitions. It is a Bstatistic measuring the strength of associa-
tion or dependency between two (nominal) categorical
variables^ (Woo 2003). Variables that had Cramer’s V of 0.4
or higher are good indicators of the major drivers of land

transitions (Eastman 2006). The overall Cramer’s V for the
four classes ranged from 0.5 to 0.69, the highest values ob-
served for bare soil and sparsely vegetated land as the main
drivers for LCC.

Model validation and future land cover changes

TheMarkov-CAmodel was used to simulate the state of LC in
2000 and 2010 based on classified land cover maps in 1975,
1990, 2000, and 2005. The validation performed by the com-
parison of the mapped and simulated land cover categories for
2010 (Fig. 7). The validation result (Fig. 8) showed that the
model successfully identified the state of land cover in 2000
and 2010 with 89.7 and 97 % agreement between the actual
and projected cover, respectively. The model validation re-
vealed that Markov-CA model successfully simulated bare
soil, and forest and shrubland. These two categories obtained
the best agreement between the simulated and actual areas,
followed by sparsely vegetated land and irrigated cropland.
Table 6 shows the extent of each land cover class in the sim-
ulatedmap and the actual map. For instance, in the actual map,
bare soil was 5804 km2 and the corresponding simulated cat-
egory was 5728 km2. Similarly, the measured area of forest
and shrubland was 1840 km2 and the simulated value was
1803 km2. In general, Markov-CA model was able to predict
land cover in 2010 (see Fig. 8).

Based on the success of the Markov-CA model to predict
LC in 2010 using the 2000 and 2005 land cover. Markov-CA
model was used to forecast the future land cover changes
during the period of 2010–2050. The CA simulation predicts
a continuing upward trend in irrigated cropland and forest and
shrubland areas, as well as a downward trend in bare soil and

Fig. 7 Actual land cover map in 2010 (a) and predicted land cover in 2010 (b)
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sparsely vegetated areas; the spatial distribution prediction
indicates that irrigated cropland will expand around reservoirs
and mountain areas. The projected land cover in 2050 (Fig. 9)
shows a continued increase in irrigated cropland at the ex-
pense of forest and shrubland, which has significant environ-
mental implications for the study area. The anticipated land
cover distribution in 2050 is presented in Table 4 and Fig. 9.
The projections show a dramatic drop in bare soil, from

5804 km2 in 2010 to 2203 km2 in 2050, and a similarly dra-
matic drop in sparsely vegetated land, which is predicted to
decline from 1942 km2 in 2010 to 988 km2 in 2050. In con-
trast, forest and shrubland are likely to face a significant in-
crease—a recovery caused by conservation plans, increasing
from 840 km2 in 2010 tomore than 1547 km2 in 2050—which
is close to its value in 1975. Irrigated cropland is also slated to
expand dramatically by 2050, being predicted to occupy an

Fig. 8 Validation of predicted land cover in 2010
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area of 6668 km2 instead of the 1819-km2 area it occupied in
2010, a rise of 300 %. The results could encourage local gov-
ernments, local residents, and farmers to address environmen-
tal problems in their regions. Further research can use this
study to support an explanation of the linkages of land chang-
es between water availability, human activities, and biophys-
ical systems.

Due to the practical value of the results, the data and
information generated during the analysis will be made
available to local authorities. The output of this study

would certainly be useful for decision makers and LC/
land use planners in Saudi Arabia and similar arid regions
to make appropriate planning and management of LC pol-
icies and its impact on the total environment in future.
Land cover conversion in the studied area has resulted in
land degradation, interfered with biodiversity and the eco-
system, and caused water stress in forest areas, thus depriv-
ing the region’s wild animals of a much-needed source of
water. Consequently, many wild animals have migrated to
cities and villages in search of water and food creating
substantial conflicts (Mahmoud and Alazba 2015). To
avoid this, smart growth, which requires compact and en-
vironmentally friendly development, is encouraged for fu-
ture land cover planning in Al-Baha region, KSA.
Furthermore, the output of this study has the potential to
help decision makers in arid areas to develop several im-
portant policies such as the following:

& Agriculture, forestry, land use and management policies
& Ecosystem services and life cycle assessments
& Environmental management and policies
& Human health risk assessment and management due to the

imbalance caused by human activities

Table 6 Observed and predicted area (km2) per category of land cover

2010 (measured) 2010 (predicted)

Code Land cover class Area (km2) Area (km2)

1 Bare soil 5804.1 5728.4

2 Sparsely vegetated 1942.4 1710.5

3 Forest and shrubland 1840.9 1803.6

4 Irrigated cropland 1819.9 2164.9

Observed value was obtained from a GIS area calculation on the geomet-
rically corrected satellite image. Area was predicted using Markov-CA
chain analysis

Fig. 9 Land cover projection in
2050

Arab J Geosci  (2016) 9:419 Page 17 of 20  419 



Conclusions

This study attempted to monitor and predict LCC in Al-Baha
region, KSA, in addition to characterizing LCC and its dy-
namics by utilizing CA, remote sensing, and GIS techniques.
Eight Landsat 5/7 TM/ETM images obtained for the years
1975, 1980, 1985, 1990, 1995, 2000, 2005, and 2010. These
images incorporated with collected data from the specified
region, and ultimately utilized in categorizing land cover.
The LC maps are classified into four main classes: bare soil,
sparsely vegetated, forest and shrubland, and irrigated crop-
land. Land cover change was quantified for the last 35 years
within Al-Baha region, KSA, by the integration of Markov
model and GIS. LC changewas projected for the next 40 years
using Markov chains and cellular automata. The classified
images revealed four main classes: bare soil, sparsely vegetat-
ed land, forest and shrubland, and irrigated cropland. The
images suggest that LCC have had a significant effect on
forest and shrubland, which may have affected the ecosystem
and natural balance of the study area.

The construction of rainwater-filled reservoirs affected the
LC in the study area during the research period. In 1990, there
was limited human interaction with the environment, and forest
cover dominated the area. However, conditions changed signif-
icantly thereafter, and following reservoir construction, natural
drainages were disrupted impacting native vegetation. Irrigated
cropland underwent the greatest growth (from 422.8 km2 in
1975 to 1819.9 km2 in 2010) during the entire study period,
and this agriculture expansion reached its peak in the 2000s.

A Markov-CA model was used to forecast the future LCC
during the period of 2010–2050. The CA simulation predicts a
continuing upward trend in irrigated cropland and forest, and
shrubland areas, as well as a downward trend in bare soil and
sparsely vegetated areas; the spatial distribution prediction
indicates that irrigated cropland will expand around reservoirs
and the mountain areas. The projected land cover in 2050
shows a continued increase in irrigated cropland at the ex-
pense of forest and shrubland, which has significant environ-
mental implications for the study area. The projections show a
dramatic drop in bare soil, from 5804 km2 in 2010 to
2203 km2 in 2050, and a similarly dramatic drop in sparsely
vegetated land, which is predicted to decline from 1942 km2

in 2010 to 988 km2 in 2050. In contrast, forest and shrubland
are likely to face a significant increase—a recovery caused by
conservation plans, increasing from 840 km2 in 2010 to more
than 1547 km2 in 2050—which is close to its value in 1975.
Irrigated cropland is also planned to expand dramatically by
2050, being predicted to occupy an area of 6668 km2 instead
of the 1819 km2 area it occupied in 2010, a rise of 300 %.
Overall, the integration of CA and theMarkovmodel offered a
robust projection of land cover in 2050 and it is highly rec-
ommended to be used when prediction LCC with similar
characteristics.
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