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The reliable prediction in probabilistic terms of the consequences of aeolian events related to sand trans-
port phenomena is a key element for human activities in arid regions. Threshold shear velocity generating
sand lifting is a key component of such a prediction. It suffers from the effect of uncertainties of different
origin, such as those related to the physical phenomena, measurement procedures, and modelling. Semi
empirical models are often fitted to a small amount of data, while recent probabilistic models needs the
probability distribution of several random variables. Triggered by this motivation, this paper proposes a
purely statistical approach to fluid threshold shear velocity for sand saltation, treated as a single compre-
hensive random variable. A data set is derived from previously published studies. Estimates of condi-
tional probability distributions of threshold shear velocity for given grain diameters are given. The
obtained statistical moments are critically compared to some deterministic semi empirical models refit-
ted to the same collected data. The proposed statistical approach allows to obtain high order statistics
useful for practical purposes.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Aeolian sand transport is a complex process that is induced by
the interaction between subfields such as wind, air suspended par-
ticles and bed-particles. It contributes to soil erosion and landform
evolution. Understanding and modelling its features is of funda-
mental interest in many research fields. Beside the importance of
windblown sand and dust in Earth sciences (Kok et al., 2012), from
the engineering perspective, simulating windblown sand phenom-
ena is relevant because of the interaction with a number of human
activities and related infrastructures in arid environments (e.g.
Middleton and Sternberg, 2013; Rizvi, 1989; Alghamdi and Al-
Kahtani, 2005; Zhang et al., 2007; Cheng and Xue, 2014). In the
infrastructure design perspective and within a probabilistic
approach to design, the engineer is interested in relating a sand
erosion or transport condition to a given, preferably low enough,
probability of exceedance, i.e. in defining a high percentile sand
transport rate.

Among the transport mechanisms responsible of sand trans-
port, saltation largely prevails in terms of sand mass. The evalua-
tion of the involved sand flux is usually given in terms of sand
transport rate by several laws, revised for example in Dong et al.
(2003), Kok et al. (2012) and Sherman and Li (2012). Most of such
laws require the definition and evaluation of an erosion threshold,
i.e. the minimum value of the wind shear stress at which saltation
occurs. Usually, such a threshold is given in terms of threshold val-
ues of the shear velocity and depends on a number of parameters
belonging to both the wind and the sand. Since the seminal work of
Bagnold (1941), two threshold shear velocities have been recog-
nized: the fluid or static threshold, defined as the minimum wind
speed for initiation of sediment transport without antecedent
transport, and the dynamic or impact threshold, i.e. the minimum
wind speed for sustaining sediment transport with the presence of
transport. Most studies proposing transport laws in steady satu-
rated flow refer to the impact threshold (Kok et al., 2012). Hence
fundamental studies (e.g. Andreotti, 2004; Pahtz et al., 2012;
Kok, 2010) recently proposed models of the impact threshold in
light of a few number of experimental measures, e.g. Bagnold
(1937), Chepil (1945), Tsoar et al. (1994) and Li et al. (2014).
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However, the impact threshold shear velocity is approximated for
application purposes as equal about %80 of the fluid threshold one
(e.g.Bagnold, 1937; Pye and Tsoar, 2009; Zheng, 2009; Kok et al.,
2012). Reference to the fluid threshold shear velocity is motivated
by the long-standing and wide literature reviewed by Shao (2008),
Pye and Tsoar (2009), Merrison (2012) and Kok et al. (2012) and
summarized in the following. In the rest of the paper, we address
to the fluid threshold shear velocity as ‘‘threshold shear velocity”
u�t for the sake of compactness.

Systematic experimental measurements of u�t versus the grain
diameter were carried out by Bagnold (1937), Chepil (1945),
Zingg (1953), Fletcher (1976) and Iversen et al. (1976) amongst
others. These measurements constitute the consolidated literature
data base. They are reported in Fig. 1 versus the equivalent particle
diameter deq (Chepil, 1951; Kok et al., 2012). A significant scatter
among data can be observed notably at low values of the particle
diameter. However, two general trends can be observed, divided
by a local minimum at about 75–100 lm (Kok et al., 2012).

A number of deterministic models of the threshold shear velocity
have been proposed in literature so far. They can be categorized in
two classes with respect to both modelling scale and goal. Micro-
scopic models discuss the equilibrium of the moments of the forces
acting on the single particle resting on a bed of other particles
(Shao, 2008). They aim at pointing out the physical phenomena
underlying each force and at modelling it. In a general framework,
entraining aerodynamic forces (drag and lift ones) induce saltation,
while stabilizing forces (gravitational and the interparticle ones)
counteract them (Greeley and Iversen, 1985; Shao and Lu, 2000).
On one hand, the effective gravitational force including buoyancy,
and the drag force correspond to well known phenomena and their
modelling is widely accepted, see e.g. Greeley and Iversen (1985)
and the cited reviews. On the other hand, the same does not hold
for the other forces: the resultant lift force results form the Saff-
man one (Saffman, 1965) and the lift induced by vortical struc-
tures; the overall interparticle force results from several kinds of
forces, including van der Waals forces, water adsorption forces
and electrostatic forces. Although interparticle forces are expected
to scale with the soil particle size (e.g. Shao and Lu, 2000), their
modelling for aspherical and rough sand and dust remains poorly
understood (Kok et al., 2012). In particular, such forces depend
upon a number of parameters such as surface cleanliness, surface
roughness at micro/nano meter scale, air and grain humidity, min-
eralogy and surface contaminants affecting hydrophilicity
(Merrison, 2012). Semi-empirical macroscopic models aim at
approximating the threshold shear velocity trend versus the parti-
cle diameter. Some of them are compared to the experimental data
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Fig. 1. Threshold friction velocity: experimental data (symbols) compared with semi-em
model by Duan et al. (2013) (b).
in Fig. 1(a). Because of the above modelling difficulties, they do not
analytically include the contribution of lift and interparticle forces
while they explicitly retain the gravitational and drag ones. Any
other contribution is accounted for in a semi empirical approach
by introducing one or more free parameter(s), and the value of
the latter obtained by fitting experimental data. The pioneering
model by Bagnold (1941) involves a single dimensionless constant
AB, resulting independent from the grain diameter or, in other
terms, from Reynolds number. Then, it gives rise to a monotonic
increasing trend of u�tðdÞ. The model by Iversen and White
(1982) defines the same parameter AðRe�tÞ as a piece-wise empir-
ical function of the friction Reynolds number Re�t to mimic the
effects of lift and interparticle forces: the resulting u�tðdÞ law is
no longer monotonic and qualitatively reflect the trend of the
experimental data. The model by Shao and Lu (2000) is more com-
pact than the previous one. It neglects the Re�t dependency, and at
the same time generalizes the Bagnold one by introducing a novel
correction term to account for the interparticle forces. A second
dimensional constant free parameter c [N/m] is included in the
correction term. More recently, McKenna (2003) has considered
the effect of soil moisture on the interparticle cohesive force by
defining cðDP; dÞ as a function of the capillary-suction pressure def-
icit and of the grain diameter. Other laws of u�t have been proposed
for natural surfaces: they account for the effects of soil texture, soil
moisture, salt concentration, surface crust, vegetation and/or peb-
bles on the surface. The review of such models is out of the scopes
of the present paper. Interested readers can refer to Shao (2008)
and Webb and Strong (2011).

Although the deterministic approach largely prevails in aeolian
literature, the view that the threshold velocity should be regarded
as a statistical phenomenon may be dated back to the pioneering
studies by Chepil (1945). The probabilistic modelling approach is
motivated by the scatter of the experimental data at low values
of d even for a common nominal setup condition (Fig. 1-a), and
by the difficulties experienced by the deterministic approach, i.e.
the challenge of parameterizing threshold variability and relating
this variability to its different sources.

The randomness of bed grain geometry and of the turbulent wind
flow have been early recognized as sources of threshold variability
in the experimental studies of Nickling (1988) and Williams et al.
(1990, ?), respectively. In particular, the wind tunnel tests by
Nickling (1988) first showed that measured fluid and impact
thresholds could not be reproduced, presumably because it is
impossible to replicate grain positioning between each test. In fact,
most sediment is composed of a range of grain sizes and shapes.
Thus, for a given surface, variability is expected due to the
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positioning of sediment grains. Since the positioning of grains
affects their susceptibility to entrainment, the fluid or impact
threshold for a given surface is not easily described by a single
value (Lancaster and Nickling, 1994). Values of u�t were found to
span an unexpectedly wide range for each grain fraction during
the wind tunnel tests by Williams et al. (1990, 1994). Such a vari-
ability was conjectured to be due to the effects of turbulent flow
regimes changing in space and time. They obtained approxima-
tions of the probability density function for u�t required for future
stochastic treatment of the threshold condition. More recently,
both the randomness of bed grain geometry and of the turbulent
wind flow have been included in the probabilistic models proposed
by Wu and Chou (2003) and Zhen-shan et al. (2008). Conceptually,
both studies agree that the initial movement of sand grains should
be regarded as a random phenomenon and probabilistic models of
entrainment could provide better understanding of it. Technically,
both probabilistic models are microscopic ones, limited to ideal
spherical particles, and do not consider random interparticle
forces. However, the studies differ in their results and conclusions:
Zhen-shan et al. (2008) propose a probabilistic reading of the con-
ventional threshold friction velocity, while Wu and Chou (2003)
separately derive the probability of entrainment in the rolling
and lifting mode, and call into question the consistency embedded
in the conventional definition of the critical shear stress for incip-
ient motion, following the remarks by other authors (see review by
McEwan and Heald, 2001).

The randomness of the interparticle forces and their effects of the
threshold variability have been first recognized by Zimon (1982).
He suggested to treat cohesive forces acting upon dust particles
as random variables (r.v.s). He argued from experimental data that
their probability distribution can be approximated by a lognormal
one. Following Zimon’s findings, Shao (2008) has recently assumed
that also the threshold shear velocity of dust particles is a log-
normally distributed r.v. It is worth pointing out that such an
assumption looks questionable from an analytical point of view
even by assuming that the cohesive force is the sole random vari-
able among the grain acting forces. In fact, u�t does not result from
a simple rescaling of the cohesive force. The smaller the grain size
is, the bigger the role of the interparticle forces is, the higher the
expected effect of the their uncertainties on the threshold shear
velocity is. Having this qualitative dependency in mind, Shao
(2008) conjectured that the obtained results do not hold for
sand-sized particles, for which threshold shear velocity can be still
defined as a deterministic quantity. It is worth pointing out that
the discontinuous switch from a probabilistic model for dust to a
deterministic one for sand seems questionable having in mind that
the diameter is a continuous quantity and the relative effects of
interparticle forces are expected to be continuously decreasing
with it.

Even more recently, the effects of the random nature of the soil
surface microstructure and of the irregular shape of the particles have
been included in a probabilistic model for threshold shear velocity
by Duan et al. (2013). The proposed microscopic model describes
the moments induced bygravitational, electrostatic, cohesion, and
drag forces as functions of four microscopic r.v.s. The threshold
shear velocity is then expressed as a function of these random
quantities, some of them independent, some dependent. Its proba-
bility density function is then evaluated through a statistical esti-
mation of the distributions of the predictors. Subsequently, the
mean value and standard deviation of the threshold shear velocity
are fitted as functions of d. The obtained results (Fig. 1-b) are not
entirely convincing. First, the standard deviation rðu�tÞ is mono-
tonically increasing for d P 100 lm and asymptotically tends to
0.132, while the scatter of experimental data clearly decreases
for increasing d. Second, the mean lðu�tÞ is a linear function of d
for d > 100 lm, while its deterministic counterpart, i.e. the nomi-
nal values obtained by semi-empirical macroscopic models, is not.
In our opinion, such critical features can be ascribed to both mod-
elling and technical difficulties. Among the former ones, the chal-
lenging task in writing a microscopic model inclusive of all the r.
v.s affecting the sand grain acting forces. Among the latter ones,
the difficulties in obtaining probability distribution for each micro-
scopic r.v. from measurements and in handling mutually depen-
dent r.v.s.

In the conclusion of their paper Wu and Chou (2003) rise the
issue of not yet investigated effects of other random factors on
the probabilities of sediment entrainment. To our best knowledge,
a comprehensive categorization of such random factors is not
given in Aeolian Research. However, sources of uncertainty have
been conceptually introduced (e.g. in Halpern, 2003; Zio and
Pedroni, 2013) and systematically reviewed in related disciplines,
including Environmental Modelling (Refsgaard et al., 2007;
Uusitalo et al., 2015), Physical Geography (Foley, 2010), Ecology
(Regan et al., 2002), Wind Energy (Yan et al., 2015). Having in mind
that erosion belongs to the general class of environmental prob-
lems (Uusitalo et al., 2015), in the following the uncertainty classi-
fication proposed for the latter is applied to the former.

Uncertainty is defined as the lack of exact knowledge, regard-
less of what is the cause of this deficiency (Refsgaard et al.,
2007). Uncertainty stems from various sources. Overlapping
uncertainty classifications can be found in literature, the typology
varying remarkably depending on the context and scope (see the
reviews cited above). Nevertheless, every taxonomy reflects a
common general classification (Zio and Pedroni, 2013) that dis-
tinguishes between aleatory and epistemic uncertainty. The for-
mer refers to inherent randomness of natural phenomena. The
latter is associated with the lack of knowledge about the proper-
ties and conditions of the phenomena to be modeled. In the fol-
lowing, published papers dealing with threshold shear velocity
uncertainties are briefly reviewed accordingly to this general
classification.

� Aleatory uncertainty. To the Authors’ best knowledge, the scien-
tific literature in Aeolian Research is primarily focused on alea-
tory uncertainties. They can be further divided referring to the
sand and wind subsystems:
– Sand uncertainties. Beside the grain shape, its surface

microstructure (Duan et al., 2013), and its relative position
with respect to the other bed particles (Nickling, 1988),
other uncertainties at the grain scale affect the grain miner-
alogy and its surface cleanliness (Merrison, 2012). At the
macroscopic scale, the grain size distribution is traditionally
recognized in literature as an important sand feature affect-
ing u�t (e.g. Edwards and Namikas, 2015and included refer-
ences), beside the mean diameter. In fact, smaller particles
interspersed among the large particles provide additional
cohesive forces in natural sands, resulting in higher thresh-
old conditions (Roney and White, 2004). The early studies
on u�t (e.g. Bagnold, 1937) usually assume nominally uni-
form sand, but this restriction clearly does not hold in a
probabilistic framework;

– Wind uncertainties. Beside the ones due to the turbulent flow
(Williams et al., 1994), other uncertainties follows from the
inborn variability and/or partially uncontrolled environmen-
tal conditions even in wind tunnel facilities, e.g. air tempera-
ture and air relative humidity (e.g. Greeley and Iversen,
1985; Jones et al., 2002);

� Epistemic uncertainty. To the Authors’ best knowledge, such a
class of uncertainties is explicitly addressed less often in the
Aeolian Research literature. It can be further refined as follows:



Table 1
Collected studies: Reference, number of samples, reference diameter.

# d [mm]

Bagnold (1937) 6 0:05 6 d � 0:92
Chepil (1945) 11 0:02 6 d � 1:57
Kawamura (1951) 2 0.25, 0.31
Zingg (1953) 5 0:20 6 d � 0:72
Chepil (1959) 5 0:20 6 d � 0:72
Belly (1964) 1 0.44
Kadib (1964) 1 0.15
Lyles and Krauss (1971) 3 0:24 6 d � 0:72
Fletcher (1976) 7 0:01 6 d � 0:31
Iversen et al. (1976) 33 0:01 6 d � 3:09
Logie (1981) 4 0:15 6 d � 0:43
Logie (1982) 1 0.24
Horikawa et al. (1983) 1 0.28
Tian (1988) 3 0:11 6 d � 0:55
McKenna Neuman (1989) 3 0:19 6 d � 0:51
Darwish (1991) 5 0:22 6 d � 1:3
Nalpanis et al. (1993) 2 0.12, 0.19
Nicking and McKenna Neuman (1997) 1 0.20
Dong et al. (2002) 9 0:13 6 d � 0:90
Dong et al. (2003) 9 0:13 6 d � 0:90
Niño et al. (2003) 5 0:038 6 d � 0:53
Cornelis and Gabriels (2004) 3 0:16 6 d � 0:36
McKenna Neuman (2004) 1 0.27
Roney and White (2004) 12 0:31 6 d � 0:39
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– Model uncertainties, that is uncertainty in the necessarily
simplified representation of the behaviour of the natural sys-
tem, in terms of uncertainty in the identification and defini-
tion of the variables, hypotheses assumed, interactions left
out, and shapes of the functions. With regard to u�t models,
first a single quantitative definition of the same ‘‘fluid
threshold” is not shared in aeolian community. The lack of
a shared definition is highlighted by e.g. Shao (2008),
Swann et al. (2015) and Burr et al. (2015). Early qualitative
definitions suffered the fact that grain motion initiates inter-
mittently in time and not uniformly in space: Bagnold
(1941) refers to the ‘‘complete bed motion”; Iversen et al.
(1976) refers to ‘‘the lowest . . .speed at which the majority
of exposed particles . . .are set in motion” and ‘‘general
motion of the exposed particles”; Greeley et al. (1976) to
‘‘movement of particles over the entire bed”; Iversen and
White (1982) to ‘‘continuous motion throughout the bed”;
Lyles and Krauss (1971) establish four velocity thresholds
respectively related to the motion of the first grain, or of
few grains moving intermittently, gusts moving intermit-
tently or general bed motion. Quantitatively, u�t is com-
monly set to the value at which a small percentage of
grains start to move. According to Shao (2008) ‘‘inevitably,
the practical estimation of u�t involves a certain degree of
subjectivity in deciding what is a small percentage”. For
instance, in Dong et al. (2003) ‘‘the wind is considered to
reach the initiation threshold when more than 5 particles
were stuck on the sticky tape”. Burr et al. (2015) observe
‘‘five stages of grain motion, namely first motion, flurries,
patches, motion of � 50% of the longitudinally central por-
tion of the bed, and motion of � 100% of the bed” and finally
define threshold as 50% of the bed in motion. The ensemble
of the above qualitative and subjective estimates results in
an overall source of uncertainty. Second, microscopic models
proposed in literature differ in the interparticle cohesive
forces accounted for (e.g. van der Waals, electrostatic, capil-
lary, chemical binding, Coulomb forces; Shao, 2008) and in
their dependency on particle diameter, linear in theory

according to Shao (2008), but scaling with d4=3 according to
Claudin and Andreotti (2006).

– Measurement uncertainties, due to measurements errors and/
or to different kind ofmeasurements procedures. Such uncer-
tainties affects both the measurement procedures and tech-
niques adopted to evaluate the bulk granulometry (Blott
and Pye, 2006; Zhang et al., 2014), and/or the threshold shear
velocity itself(Barchyn and Hugenholtz, 2011; Poortinga
et al., 2014). In fact, the sediment transport can be measured
by visual observation (Bagnold, 1941), camera monitoring
equipment (Williams et al., 1994), impact sensors (Ravi
et al., 2004), laser based detection systems (Nickling, 1988),
or bimodal slope method (Gillette et al., 1998). Results from
these methods are not directly comparable and are signifi-
cantly scattered (e.g. in Roney and White, 2004);

– Parameter uncertainties in the (fixed but poorly known) val-
ues of the parameters of a model. For instance, the value of
the single parameter of Bagnold (1941) model of fluid
threshold friction velocity slightly varies among authors for
the same nominal conditions (air flow, nearly uniform sand
grains of diameters greater or equal to 0.2 mm): A ¼ 0:10
in Bagnold (1937), 0:09 6 A 6 0:11 in Chepil (1945),
A � 0:12 in Zingg (1953), 0:17 6 A 6 0:20 in Lyles and
Krauss (1971).

In our opinion, four main questions rise from the state of art
briefly reviewed above: i. How to describe the threshold shear
velocity by accounting for the sources of uncertainties introduced
above? ii. How can such a description meet the practical engineer-
ing need of accurate definition of extreme percentiles of u�t?
iii. How many information about the variability of u�t does the
deterministic approach neglect? iv. How to overcome the difficul-
ties encountered by probabilistic mechanical models of u�t in han-
dling a number of microscopic r.v.s?

The present study aims at contributing to shed some light on
such issues. The deterministic approach is critically reconsidered
in the light of a huge collection of experimental measurements.
Then, a purely statistical approach to threshold shear velocity is
proposed, where the effects of all kinds of uncertainty sources
are comprehensively included and merged. Finally, the two
approaches are compared.

The paper develops according to the above objectives through
the following sections. In Section 2 the collected measurements
and the resulting ensemble of selected data are described. In Sec-
tion 3 some semi-empirical macroscopic models are refitted to
the ensemble by means of non-linear regression. In Section 4 the
statistical description of the threshold shear velocity is given by
referring to copula-based quantile regression. The deterministic
and statistical approach are critically compared in Section 5, while
conclusions and research perspectives are outlined in Section 6.
2. Data collection and ensemble setting

The data already collected in Fig. 1 are complemented by addi-
tional experimental measures collected from review papers (Kok
et al., 2012; Edwards and Namikas, 2015), and studies addressed
to the evaluation of sand transport rate for single particle diame-
ters. Table 1 lists in chronological order the considered studies.
For each of them, the number # of the tested samples is given:
an overall collection of 133 setups follows. All studies test nomi-
nally dry granular matters. For each setup, the cited papers provide
the grain mean, or median, diameter. Except for Fletcher (1976)
and Iversen et al. (1976), granular matter is sand and/or dust
grains. In order to account for the effect of different densities q
of the grain constitutive material, the equivalent particle diameter
deq ¼ dq=qs (Chepil, 1951; Kok et al., 2012) is evaluated, where qs
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is the density of the quartz sand. In Table 1 and in the following the
equivalent reference diameter is noted as d for the sake of
conciseness.

The complete ensemble of retained sand experimental mea-
surements of u�t is plotted in Fig. 2 versus d.On the one hand, the
dependency of u�t on d is qualitatively confirmed over the ensem-
ble. On the other hand, a significant dispersion of the data can be
easily observed, notably for small and medium sand diameters.
In other terms, u�t takes different values at the same d. This feature
suggests that setup uncertain/uncontrolled/not detailed parame-
ters other than d affect u�t . As anticipated in Section 1, such uncer-
tainties belong to both aleatory uncertainty of the physical setup
and epistemic uncertainty. They are detailed in the following for
the considered studies.

� In the selected setups the grain size distribution is often qualita-
tively described, e.g. ‘‘as uniform as possible” in Bagnold (1937),
‘‘very well and poorly sorted” in Belly (1964), ‘‘naturally graded”
in Kawamura (1951). Such a qualitative description is usually
complemented by the nominal size-range of grains (e.g.
Bagnold, 1937; Dong et al., 2003), while in some papers the
cumulative grain size distribution is plotted (e.g. Belly, 1964;
Nalpanis et al., 1993; Kawamura, 1951; Nicking and McKenna
Neuman, 1997; Roney and White, 2004). Recently, Edwards
and Namikas (2015) have made an effort to evaluate a measure
of the diameter variability by evaluating the sorting coefficient
for a number of studies. In spite of some difficulties in obtaining
such a measure from nominal size-range, it is worth recalling
that non negligible variability (e.g. sorting � 0:05, coefficient
of variation c:o:v : � 0:12 in Chepil (1959)) results also from
sieving addressed to obtain sands as uniform as possible. Even
greater variability characterizes natural sands (e.g. sorting
� 0:65; c:o:v : � 0:35 in Kawamura (1951)). Other randomness
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Fig. 2. Threshold shear velocity measurements collected in
of the grain features (e.g. grain shape, surface microstructure,
grain position relative to the other bed particles, grain mineral-
ogy) are not specified in the collected studies.

� Air humidity during wind tunnel tests is given and systemati-
cally addressed only by Kadib (1964) to our best knowledge.

� The quantitative definition of the threshold shear velocity is not
commonly adopted in all the studies. Only Lyles and Krauss
(1971) provide several u�t values from visual observations
depending on the kind of grain motion.

� Analogously, u�t measurements and post processing techniques
are heterogeneous among the studies (Blott and Pye, 2006;
Zhang et al., 2014). Only Roney and White (2004) prove their
effects on threshold shear velocity by adopting three different
techniques.

The present paper is devoted to the characterization of thresh-
old shear velocity of sand only. Hence, setups adopting dust, i.e.
having d < 0:063 mm according to ISO14688 (2002), are discarded
(empty light grey markers in Fig. 2). It is worth noting that ‘‘very
coarse” sand (d > 1:2 mm) as defined by Friedman and Sanders
(1978) is not included in the sand ensemble because of the scarce-
ness of available experimental data. An overall sand ensemble hav-
ing # ¼ 109 results.
3. Deterministic approach: non-linear regression

Prior to the statistical analysis of the ensemble above, non-
linear regression is applied to the collected data in order to refit
some of the semi-empirical macroscopic models available in liter-
ature. The refitting objective is twofold: on the one hand, the field
of application is limited to sands, i.e. on a physics of entrainment
relatively simpler than that governing dusts; on the other hand,
model parameters are fitted to a number of data higher than that
McKenna & Nickling (1989)
McKenna (2004)
Logie (1981)
Logie (1982)
Horikawa et al (1983)
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originally adopted by the authors of the models. The models by
Bagnold (1941) (Eq. (1)) and Shao and Lu (2000) (Eq. (2)) are
selected because of their compactness, i.e. their dependence from
a small number of empirical parameters (Ab;As and c). The two
semi-empirical models are

u�t ¼ Ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qp � qa

qa
gd

s
; ð1Þ

u�t ¼ As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qp � qa

qa
gdþ c

qad

s
: ð2Þ

where qp and qa are particle and air density, respectively, and g is
gravitational acceleration. Beside the single-valued estimates of a
goodness-of-fit, for each model the prediction Confidence Intervals
(CIs) are evaluated at 5th and 95th percentiles, i.e. the interval
within which the true mean value is expected to lie. Fig. 3 compares
the refitted laws to the original ones, while the corresponding
model parameters are summarized in Table 2. The following
remarks can be outlined:

� for both fittings R2 � 0:75. On the one hand, this relatively high
value confirms grain size is the primary control of u�t . On the
other hand, the value is by far lower than unit: hence, u�t cannot
be approximated as a deterministic function of d. In other
words, the deterministic approach is not able to completely
capture the threshold variability.

� both refitted laws pretty agree for d > 0:2 mm, i.e. they share
both the asymptotic trend due to the common dependency of

u�t on
ffiffiffi
d

p
, and the intercept, i.e. Ab ¼ 0:127 � As ¼ 0:124. This
d [m

u
 [m

/s
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Fig. 3. Non-linear regression and CIs for Ba
finding is in the spirit of the Shao’s model, whose corrective
term c=qad is conceived to modify Bagnold’s model at low d
only;

� generally speaking, the refitted laws predict higher values of u�t
for given d. It is worth pointing out that the ensemble includes a
number of poorly sorted and natural sands, while the ensemble
originally adopted by Bagnold (1941) and Shao and Lu (2000)
were limited to sand as uniform as possible. Hence, interspersed
small particles provide additional cohesive forces also for med-
ium and coarse natural sands (Roney and White, 2004);

� Regarding the model by Shao and Lu (2000) at small d, the refit-
ted law predicts u�t values lower than the original law, because
fitting is restricted to sands and exclude dusts. In other words,
the refitted Shao’s law mimics herein only the sand physics,
and its trend at low d is not driven by the dust physics, and
notably by the very high values u�t � 0:5 m/s provided by
Iversen et al. (1976) at d ¼ 0:023;0:034; 0:041 mm and
u�t > 1 m/s provided by Fletcher (1976) at d ¼ 0:008;
0:009 mm. A lower value of c for the refitted law follows;

� CI of the Bagnold fitting is quite narrow (being the model easily
reducible to a linear regression model). Conversely, the lower d
is, the wider CI in Shao’s model is, because of the statistical
uncertainty on the parameter c (Eq. 2), which has its main
effects for small d.

4. Statistical approach: copula-based quantile regression

In the following a statistical approach is proposed, having in
mind both the number of uncertainty sources and the limitations
of the deterministic approach.
m]

Refitting sand experimental data
Dust experimental data

aw
I
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Table 2
Original and refitted model parameters

Original parameters Refitted parameters

Bagnold (1941) Shao and Lu (2000) Bagnold (1941) Shao and Lu (2000)

A [–] 0.100 0.111 0.127 0.124
c [N/m] – 2:9� 10�4 – 1:12� 10�4

R2 – – 0.74 0.75
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Each source of uncertainty and related microscopic parent r.v.
are not separately described in statistical terms. Conversely, the
threshold shear velocity is modeled as a single, comprehensive,
bulk random variable that reflects the effects of all the sources of
uncertainty. A continuous dependance of such a random variable
on the reference diameter is clearly observed in. terms of mean
by the deterministic approach. The adopted statistical method is
intended to:

� recognize and describe, if any, the dependence of u�t on d not
only in terms of mean value but also with reference to higher
statistical moments and percentiles;

� discard bias eventually due to the relatively low cardinality of
the learning data set and to the non uniform distribution of
the reference diameters within it. In fact, the reference diameter
that happened to be employed in each original study is not a
random variable but a deterministic setup feature. However,
the ensemble of sand diameters tested in existing literature
does not result from a deterministic research plan.

In order to reach the goals above, it is useful to consider the
ensemble of the reference diameter collected from literature as a
set of realizations of a random variable. This allows to quantita-
tively describe in proper statistical terms the structure of depen-
dence between the random variable of interest u�t and the sand
diameter d by means of the copula modelling. In conceptual terms,
the copula modelling allows to express the dependence of two ran-
dom variables (e.g. u�t and d in this case) through subdivision of
their joint distribution into two contributions: the marginal distri-
butions of the individual r.v.s and their interdependency, described
by the copula (Venter, 2002). From the joint distribution, one can
derive the distributions of u�t conditioned to given values of d,
and any corresponding percentiles of interests.

4.1. Adopted method

In the following the copula modelling is briefly outlined, having
in mind that only recently it has been introduced in some engi-
neering fields (see e.g. Genest and Favre, 2007 in hydrology) and
physical sciences (see e.g. Schölzel and Friederichs, 2008 in geo-
physics). For the sake of generality, in this Section the r.v.s of our
interest, d and u�t , are replaced by two general r.v.s, X and Y,
respectively. Given the joint cumulative distribution function
Fðx; yÞ of a pair of random variables ðX; YÞ, under suitable assump-
tions of continuity (Nelsen, 2007), it can be also written as

Fðx; yÞ ¼ C FXðxÞ; FYðyÞf g; x; y 2 R ð3Þ
where FX and FY are the cumulative marginal distributions of X and

Y, respectively, while C : ½0;1�2 ! ½0;1� is the copula of the pair
ðX;YÞ.

The copula C, which is the cumulative joint distribution of a pair
ðU;VÞ of variables uniformly distributed over ½0;1�, entirely
expresses the dependence structure between X and Y, removing
the effects of marginal distributions, and letting immediately
observable its main characteristic, like, e.g., positive or negative
concordance. Using copulas in estimation of joint distributions,
or estimation of relationships among random variables, marginal
distributions are firstly evaluated and then a specific copula is fit-
ted with respect to the empirical one available by experimental
measurements, i.e. the learning data set. Having removed the effect
of marginal behaviours, the copula selection is independent of the
marginal distribution choice (Trivedi and Zimmer, 2005). Several
copulas are reported in literature (Nelsen, 2007). For instance,
inverted Clayton copula, also known as Heavy Right Tail copula
or Burr copula (see, e.g. Venter, 2002; de Waal and van Gelder,
2005), is reported below being the employed copula in
Section 4.2.2.

Cðu; vÞ ¼ uþ v � 1þ 1� uð Þ�1=a þ 1� vð Þ�1=a � 1
h i�a

;

u;v 2 ½0;1�;a > 0 ð4Þ
where a is a fitting parameter. Once the copula is fitted according to
available measurements, a sample of any cardinality can be gener-
ated. Thus, Cðu;vÞ can be transformed back into the original units
using the marginal distributions. In fact, the resulting pairs
ðx; yÞ ¼ ðF�1

X ðuÞ; F�1
Y ðvÞÞ can be deduced by inverting the cumulative

distribution functions (see Genest and Favre, 2007 for further
details). From the copula generated sample one can derive condi-
tional probability density functions of Y given X. In turn, point wise
percentiles psðyÞ of Y can be deduced from the conditional probabil-
ity density functions. In fact, given the joint cumulative distribution
function Fðx; yÞ, it can be first derived the joint density (Eq. 5) and
the conditional density (Eq. 5) and

f ðx; yÞ ¼ @2Fðx; yÞ
@x@y

ð5Þ

f ðyjxÞ ¼ f ðx; yÞ
f XðxÞ

ð6Þ

from which, any percentile can be obtained as

psðyÞ ¼ QY jXðsÞ ð7Þ
where QYjXðsÞ is the sth quantile of Y given X. Alternatively, the cop-
ula modelling allows to directly evaluate high order statistics and
perform a quantile regression to obtain any percentile of Y as a
function of X. From Bouyé and Salmon (2009), fixing the conditional
probability of Y given X ¼ x at some quantile s, so that
@Cðu;vÞ=@u ¼ s, and solving for v, we have (Koenker, 2005):

psðvÞ ¼ QV jU sjuð Þ ð8Þ
and consequently,

psðyÞ ¼ F�1
Y QV jFðXÞ sjFðxÞð Þ� � ð9Þ

is defined the quantile regression function conditional on X. Hence,
in function of s, one can define any quantile curve of the random
variable Y.

4.2. Results

In the following the results are presented and discussed by
retracing the main methodological steps previously outlined. In
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Section 4.2.1, the marginal distributions FðdÞ and Fðu�tÞ are fitted.
In Section 4.2.2, a specific copula is fitted with respect to the learn-
ing data set. Finally in Section 4.2.3, the bivariate joint density
f ðd; u�tÞ is recovered and the conditional probability density func-
tions f ðu�t jdÞ are obtained.

4.2.1. Fitting the marginal distributions
Since the marginal distributions of FðdÞ and Fðu�tÞ are a priori

unknown, we first aim at assessing which distributions for the
diameter and for the threshold shear velocity fit the collected data
set. Several guess parametric distributions are considered, such as
lognormal, loglogistic, gamma, Weibull. In order to assess the
goodness of the fit, Anderson and Darling (1952) test is used
because of the high weight placed on observations in the tails of
distribution. The null hypothesis is not rejected for any tested
parametric distribution, being the resulting p-values always
greater than its threshold value pt ¼ 0:05. Among tested paramet-
ric distributions, lognormal and gamma ones resulted in the high-
est p-values. In particular, lognormal distribution is highly scored
(p � 0:87) for d, while for u�t the gamma distribution obtains the
largest p-value (p � 0:71). Fig. 4 collects the empirical cumulative
distributions functions and the best fitting parametric ones (log-
normal and gamma). For the sake of generality, also non-
parametric distributions based on kernel method are considered.
Gaussian kernels are adopted. Their supports are bounded to pos-
itive values having in mind the physical meaning of the r.v.s. In
particular, the lower bound of d is not forced to be equal to the con-
ventional limit diameter between dust and sand. Indeed, this
deterministic nominal value does not comply with the adopted
statistical approach. The kernel cumulative distributions functions
for d and u�t are also plotted in Fig. 4. Both parametric and non
parametric distributions fit well the empirical one at the lower tail
but depart at the upper tail, probably not resolved enough by the
available data. The kernel distribution s best fit around the median
values of d and u�t . In the following the non parametric distribution
is retained for the sake of generality and because of its goodness-
of-fit.

4.2.2. Copula fitting
The original learning data set is plotted in terms of d-u�t pairs in

Fig. 5-a, -a, together with the empirical and non parametric mar-
ginal distributions. Hence, it is reduced to the copula scale and
shown in terms of scatter plot of the FðdÞ-Fðu�tÞ pairs in Fig. 5(b).
From Fig. 5(b) one can observe that the transformed learning data
set is strongly correlated with only upper tail dependence. In other
words, the points are concentrated in the upper right corner and
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Fig. 4. Marginal distributions fitting: sand diam
they open approaching the lower left corner. This empirical quali-
tative evidence drives the choice of the copula family to be adopted
for fitting (Schölzel and Friederichs, 2008; Genest and Favre, 2007).
On the one hand, elliptical copulas, i.e. Gaussian or Student-t cop-
ula, are expected to be inappropriate to describe such a depen-
dence because of their symmetric tail behaviour. On the other
hand, Archimedean copulas, e.g. Frank, or Clayton copula, being
in principle asymmetric, allow for simulating different tail beha-
viour. Because of their flexibility, Archimedean copulas have been
previously applied to others physical problems such as in
geoscience (Schölzel and Friederichs, 2008). For real world,
low-cardinality learning data set the choice of the copula can be
performed a posteriori by comparing the FðdÞ-Fðu�tÞ scatter plot
of the observed data set to an artificial data set generated from
the fitted copula (Genest and Nešlehová, 2014). Such graphical
diagnostics of goodness-of-fit is performed for several guess copu-
las. The cardinality of the artificial data is set equal to # ¼ 2000 for
the sake of clarity in visualization. Results about the copulas not
further retained are shown in Fig. 6, while the inverted Clayton
best fitting copula is assessed in Fig. 5(c). Observed data set is high-
lighted using black marks, while grey marks are used for the arti-
ficial data set. Elliptical copulas (t-student and Gaussian ones,
Fig. 6-a,-b, -a,-b, respectively) predict high and equal dependence
at both upper tail, i.e. close to ð1;1Þ, and lower tail, i.e. around
ð0;0Þ, in line with the theory. Frank copula (Fig. 6-c) shows no tail
dependencies and Clayton copula (Fig. 6-d) shows lower tail
dependence only: both are not suited to replicate the observed
dependence. Conversely, the inverted Clayton copula (Fig. 5-c)
replicates the heavy concentration of probability in the upper tail,
and lower dependence in the lower tail. Only a light discrepancy
can be observed by the fact that the scatter plot of learning data
set is slightly asymmetric with respect to the bisector, while the
inverted Clayton copula is not. The inverted Clayton best fit results
in copula parameter a ¼ 3:7 and Kendall’s rank correlation
s ¼ 0:65. The convergence of the copula parameter a is checked
for increasing number n of the learning data included in the set,
being n 6 109. a itself as well as its weighted residual error
ares;n ¼ an � an�1ð Þ=anj j are evaluated for growing sizes n and aver-
aged over 1000 random permutation of the order of the learning
data set. The convergences versus n are plotted in Fig. 7. The con-
vergence of a (Fig. 7-a) shows an overall monotonic trend and the
convergence rate at complete learning data set (n ¼ # ¼ 109) is
very low. The weighted residual error ares;n � 10�3 at n ¼ # ¼ 109
is low enough for practical applications (Fig. 7-b). In spite of such
an encouraging overall convergence, higher accuracy would need
higher cardinality of the learning data set. Finally, in Fig. 5(d),
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the pairs FðdÞ � Fðu�tÞ are resized back to the original scale of the
data calculating the inverted kernel cumulative distribution. The
corresponding marginal distributions are plotted in the same Fig-
ure. Both d� u�t pairs and marginal distributions well agree with
the ones related to the observed original data.
4.2.3. Joint and conditional distributions
In the following the cardinality of the artificial sample is

increased from # ¼ 2:000 to # ¼ 10:000:000 in order to further
proceed in the post processing of the joint and conditional proba-
bility density functions. The joint probability density function
f ðd;u�tÞ of the two random variables d and u�t is recovered by eval-
uating expression (5). It is plotted in Fig. 8, where the learning data
set is superimposed. Hence, the conditional probability density
functions of the threshold shear velocity f ðu�t jdÞ for given values
of the diameter d are obtained according to Eq. (6). In Fig. 9(a), sev-
eral f ðu�t jdÞ are plotted for some selected values of d in the range
0:063 6 d � 1:2. The coefficient of variation c:o:v . and the skew-
ness sk of the conditional probability density functions are plotted
versus the diameter in Figs. 9(a) and (b). The following remarks can
be outlined:

� the higher the diameter is, the higher the mean value of the
threshold shear velocity and the lower its variance are;

� the monotonic decrease of the coefficient of variation for grow-
ing reference diameter properly reflects the expected decreas-
ing role played by interparticle forces and related
uncertainties. The coefficient of variation attains values in the
range 0:05 6 c:o:v : 6 0:25, i.e. moderate but not negligible val-
ues with respect to other in situ environmental r.v.s (e.g. turbu-
lent wind velocity). We conjecture this is due to the fact that
wind tunnel setup conditions are more controlled than in situ
ones;

� the skewness values indicate that the conditional probability
functions are not fully symmetric, except around d � 0:22mm
where sk � 0. Skewness is weakly positive (up to sk ¼ 0:6) for
fine sands (0:063 6 d < 0:22mm), that is the probability density
function is right tailed or, in other terms, not negligible proba-
bility density occurs at u�t values quite higher than the mode.
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The Authors conjecture that cohesive resisting force is the main
physical cause of such positive skewness. Conversely, skewness
is moderately negative (up to sk � �1) for medium and coarse
sands (0:22 < d 6 1:2mm). In such an interval, sk trend versus
d is no longer monotonic and increases for diameters higher
than about 0:7mm (coarse sand). The Authors conjecture that
Saffman lift force is the main physical cause of such negative
skewness (Saffman, 1965). In turn, the lift force is expected to
be affected by the uncertain grain relative position with respect
to other bed particles.

Any other statistical moment or percentiles can be evaluated for
each conditional probability functions. For instance, Fig. 9(d) plots
the 5th percentile - mean value ratio versus the sand diameter. The
quasi-monotonically increasing trend is qualitatively opposite to
the decreasing of c:o:v .. The values vary in the range
0:6 6 p5=l 6 0:94, i.e. the 5th percentile is around 0.65 times the
mean value for fine sands and it reaches almost 0.94 times the
mean value for coarse sands.
5. Comparison between deterministic and statistical approach

Finally, the main findings of the proposed statistical approach
are critically compared to the results of the deterministic approach.
Fig. 10 collects the original learning data set, the refitted determin-
istic laws of u�tðdÞ and some statistics obtained from the condi-
tional probability density distributions f ðu�t jdÞ: the mean value
lðu�tÞ, the 1st, 5th, 25th, 75th, 95th and 99th percentiles.

It is worth pointing out that:

� the mean value lðu�tÞ overall agrees with the refitted law pro-
posed by Shao and Lu (2000), even if they result from com-
pletely different approaches. Generally speaking, the statistical
approach provides consistent results in mean terms with the
traditional and most established deterministic laws: this out-
come is expected because of the common learning data set,
but is not for granted;

� in addition, the proposed statistical approach enriches substan-
tially the description of u�t versus d. Indeed, for a given diameter
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any value of the threshold shear velocity is associated to a prob-
ability of not-exceedance;

� in lieu of adopting the nominal value of u�t , a given safety level
can be set in engineering practice, and the corresponding value
of the threshold shear velocity adopted in the estimation of the
sand transport rate.

6. Conclusions

The present study critically compares deterministic and statisti-
cal approaches to threshold shear velocity on the basis of the
collection of a huge amount of experimental measurements. Since
the description of each random variable affecting u�t is hard to be
practically tractable, each source of uncertainty (aleatory and epis-
temic) is merged within the bulk random variables u�t . The present
study does not aim at ascertaining which source of uncertainty
among aleatory and epistemic ones mostly affects the variability
of the fluid threshold velocity, and the proposed statistical
approach is not able to deal with this goal. In the case epistemic
uncertainties are predominantly responsible for the overall uncer-
tainties, recently proposed generalized approaches for uncertainty
quantification would be more suitable (Beer and Ferson, 2013;
Beer and Patelli, 2015 and references therein).
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The deterministic approach is updated thanks to the amount of
collected data: in spite of a satisfying fitting of the u�tðdÞ nominal
law, the lack of information about u�t variability remains a short-
coming of the approach.

The proposed statistical approach allows to enrich the threshold
shear velocity description providing measures of its variance and
high order statistics, notably extreme percentiles. The proper defi-
nition of u�t values associated with given not-exceedance probabil-
ities allows to predict aeolian events magnitude in probabilistic
terms and to assess related risk in a number of fields of application,
such as geomorphology, environmental protection or infrastruc-
ture engineering.

In the light of the obtained results, we suggest two research
perspectives. First, a high cardinality of the dataset would allow
a better copula fitting: the authors hope that further independent
experimental studies will enrich the learning data set. Second, it
would be worth investigating the uncertainty propagation from
threshold shear velocity to sand transport rate.
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