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Snowprovides a keywater source for streamflowand agricultural production acrosswestern North America and
drinking water for large populations in the Southwest. Accurate estimates of snow cover spatial distribution and
temporal dynamics are important at regional and local scales as snow cover is projected to decrease due to global
climate change. We examined regional-scale temporal trends in snow distribution across central and northern
Arizona using two tiles of 2928 daily images of MOD10 snow product. The analysis included the entire MODIS
archive time period, October 1, 2003–June 1, 2014, and a 245,041 km2 area of 51 HUC8 watersheds. We also ex-
amined the effects of a regional forest restoration effort, known as the Four Forest Restoration Initiative (4FRI),
aimed at enhancing snow accumulation and retention for increased groundwater recharge through forest thin-
ning and burning treatments. We analyzed 66 Landsat TM/ETM+ images spanning 26 years between 1988
and 2014 at five sites and one hyperspectral image from 2014 at two sites. The MOD10 snow product performs
well in estimating Arizona's thin and discontinuous snow distribution. Mann-Kendall time-series analysis indi-
cate significantly increasing trends in the annual number of snow cover days (SCD) over the 12-year period in
1.6% of the region at elevation transitions such as the Mogollon Rim in central Arizona, while significantly
decreasing trends are observed at a few locations of lower elevations leading to the desert margins in eastern
Arizona. The observed temporal trends are mostly consistent with ground-based SNOTEL snow measurements.
An Arizona specific, Landsat sensor-derived binary classification model, similar to the MOD10 product, was de-
veloped at a local scale. It performs better than commonly-used simple threshold-based approaches, but demon-
strates the continued challenges associatedwith Landsat sensor-derived snow classification in Arizona likely due
to its coarse temporal resolution. Landsat-derived multi-temporal Normalized Difference Snow Index (NDSI)
analysis indicate that treated (thinned and thinned-and-burned) forest sites had significantly greaterNDSI values
than untreated control sites. Snowpack at treated sites also appeared to persist longer into the spring seasonwith
potentially greater contributions to groundwater recharge in this semi-arid region. The high-resolution
hyperspectral data analysis indicate that sites treated to approximately 24% forest canopy cover appear to have
an optimum threshold for accumulating and maintaining snowpack. It balances canopy cover versus canopy
gap, which reduces snow interception and sublimation by canopy, while providing enough shade. These results
are encouraging for the 4FRI, the first and largest forest restoration effort in the US history, aimed at improving
watershed health and function in the face of changing climate.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Accurate estimates of seasonal snow cover distribution and tempo-
ral dynamics are crucial as snow provides a key water source for stream
flow (Cayan, 1996; Cayan et al., 1999), agricultural production, and
drinking water for much of the global population (Barnett et al., 2005;
Dietz et al., 2012). Snow cover in the Northern Hemisphere is one of
the key indicators of climate change (Brown, 2000; Intergovernmental
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).
Panel on Climate Change (IPCC), 2013). Both the spatial extent and tem-
poral duration of snow cover have been shown to have decreased in the
Northern Hemisphere due to warming temperatures and increased cli-
matic variability (Brown, 2000; Brown & Mote, 2009; Dye, 2002; Peng
et al., 2013), and are projected to decrease through the 21st century
(Adam, et al., 2009; Ashfaq et al., 2013; Brutel-Vuilmet et al., 2013;
Mastin et al., 2011). In snow-dominated watersheds of western North
America, regional-scale studies have similarly demonstrated decreases
in snow accumulation (Barnett et al., 2005; Hidalgo et al., 2009), shorter
duration of snow cover (Harpold et al., 2012), decreases in precipitation
falling as snow (Knowles et al., 2006), decreases in annual April 1 snow-
water equivalent (SWE) in snowpack (Brown, 2000; Mote, 2006),
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earlier snowmelt (Barnett et al., 2005; Clow, 2010), decreases in runoff
(Stahl et al., 2010), and decreased summer low flows (Stewart, 2009).
These effects will likely have an even greater impact on water supply
and ecosystem services in the coming decades (Adam et al., 2009;
Ashfaq et al., 2013; Intergovernmental Panel on Climate Change
(IPCC), 2013).

Winter and spring temperatures in the western US have increased
1 °C over the last 50 years and further 1–2 °C increase is projected by
the middle of the century (Intergovernmental Panel on Climate
Change (IPCC), 2013). Increasing temperatures are expected to further
accelerate the onset of spring and early snowmelt (Harpold et al.,
2012; Kapnick & Delworth, 2013; Mote et al., 2005) and decreases in
the percent of precipitation falling as snow, which has generated
much concern regarding future water supplies (Abatzoglou, 2011;
Knowles et al., 2006). In the desert Southwest, these impacts will be
coupled with an expected decrease in precipitation due to a northward
shift in the mid-latitude storm track (Christensen et al., 2004; Dettinger
et al., 1998). Consequently, reduced mountain snowpack will have sig-
nificant impacts on the Colorado River Reservoir system and the Salt-
Verde Watersheds with large implications for water supply and hydro-
electric power for southern California and central Arizonametropolitan
areas (Barnett et al., 2005) including large cities of Los Angeles and
Phoenix with populations of several millions of people. Spring snow-
melt, for example, provides approximately 85% of the annualwater sup-
ply to the Phoenix metropolitan area in central Arizona with a
population of 4 million growing at 2.7% per year and expected to
reach over 9 million by 2040 (Arizona Department of Water Resources
(ADWR), 2010). We examine the effects of regional forest restoration
efforts aimed at improved watershed function, which are expected to
have significant implications for these large urban populations.

Satellite remote sensing provides the most effective approach to
consistently estimating and monitoring spatial and temporal distribu-
tion of snow at regional and global scales (Hancock et al., 2013;
Rittger et al., 2013). The unique reflective and absorption properties of
snow in the visible, near infrared, and shortwave infrared wavelengths
make detection by satellite sensors feasible (Dozier, 1984). Satellite-
derived global snowproducts, however, have varying degrees of accura-
cies and errors (Hancock et al., 2013). Among them,MODIS snow prod-
ucts have been widely employed at a regional scale, with overall
accuracies between 90% and 95% (Besic et al., 2014; Hall & Riggs,
2007; Hall et al., 2001a; Huang et al., 2011; Pu et al., 2007; Stroeve
et al., 2005; Wang et al., 2008). MODIS (MOD10 Version 5), however,
suffers from several sources of snow classification error, including
cloud cover, snow cover of less than 10 cm depth, and complex topog-
raphy that vary substantially within a pixel (Gafurov & Bárdossy,
2009; Hall & Riggs, 2007; Marchane et al., 2015). While the agreement
betweenMODIS binary snow product and ground data is high, previous
research indicates it is not sufficient for monitoring snow cover during
transition periods (Rittger et al., 2013). More recently, MODIS fractional
snow cover products have been developed including MODSCAG
(Painter et al., 2009; Arsenault et al., 2012). Continued testing of both
the binary and fractional estimates of snow spatial and temporal dy-
namics are necessary for understanding snow during a time of climatic
transition and at spatial transitional zones for snow (Nolin, 2010; Dietz
et al., 2012). Of the two MODIS products, we examine here the MOD10
binary snow product in estimating Arizona's highly variable snow dis-
tribution. We intend to examine the MODIS fractional snow product in
our future studies in Arizona.

Snow cover in Arizona represents the southernmost extent of snow
distribution in western North America, where projected decreases in
seasonal snow extent are largest (Brutel-Vuilmet et al., 2013). Arizona
snow distribution is found at a transition from nearly continuous to
ephemeral-mountainous snow cover type with several distinct peaks
of accumulation followed by rapid snowmelt within eachwinter season
due to high solar radiation (Ffolliott et al., 1989; Harpold et al., 2012;
Molotch et al., 2005). Detection of ephemeral, thin, and discontinuous
snow cover is particularly challenging with coarse-resolution global
products such as MODIS (Marchane et al., 2015; Rittger et al., 2013).
The large spatial and temporal variability in snow cover across this spa-
tial transition area is further enhanced with a range of topographic, cli-
matic, and hydrological characteristics across central and northern
Arizona (Ffolliott et al., 1989). Taken together, the spatial and temporal
distribution of snow cover in Arizona provide a unique opportunity to
apply, test, and expand upon currently available global snow products
and methods.

The spatial and temporal snow dynamics at this transition zone in
Arizona are expected to be substantially altered over the coming de-
cades due to a regional-scale forest restoration initiative, known as the
Four Forest Restoration Initiative (4FRI), the first and largest restoration
effort in the US history to improve forest health (United States Depart-
ment of Agriculture (USDA), 2013). Through the 4FRI, the U.S. Forest
Service plans to conduct forest restoration treatments over a million
hectares of Ponderosa pine forest in northern Arizona over the next
20 years to reduce wildfire hazard and improve forest health. One of
the 4FRI's key objectives is to thin and burn the forests to create
within-stand openings that “promote snowpack accumulation and re-
tention which benefit groundwater recharge and watershed processes
at the fine (0.5–5 ha) scale” (United States Department of Agriculture
(USDA), 2013). Accurate estimates and monitoring of these expected
effects on snow cover are crucial in providing timely information for
regional water management and adaptive restoration objectives.
Currently lacking is a multi-scale and multi-temporal remote sensing
assessment to determine if snow accumulation indeed is greater in
treated forests compared to untreated sites and as a result snowpersists
longer into the spring season in restored forests (Ffolliott et al., 1989;
Harpold & Molotch, 2013).

Forest canopy cover substantially impacts snow accumulation by
intercepting up to 60% of annual snowfall and sublimating up to 40%
of the snowfall in the canopies (Andreadis et al., 2009). As forest cano-
pies aremechanically thinned or burned, much of this effect is expected
to be reduced (Varhola et al., 2010 and references therein) leading to in-
creased snow accumulation on the ground and changes in the timing of
snowmelt (Gottfried & Ffolliott, 1980). However, these effects are not
often quantified at watershed scales (Ffolliott et al., 1989) and integrat-
ed into land surface processmodels (Andreadis et al., 2009). Leveraging
three different image sources,we present here regional-scale analysis of
spatial and temporal variability of snow cover across central and north-
ern Arizona as well as local-scale, finer-resolution analysis of snowpack
and retention following forest restoration treatments. Our objectives
were to: 1) assess MODIS data product MOD10 Version 5 (500 m reso-
lution) in daily estimates of Arizona snow spatial variability at a regional
scale and evaluate the temporal trend in seasonal snow cover days over
the entire MODIS archive time period of 2003–2014, 2) assess multi-
temporal Landsat-derived (30 m resolution) snow indices at a local
scale to determine snow accumulation changes due to forest treatment
anddevelopanArizona-specific snowclassificationmodel, and3)deter-
mine the optimum ponderosa pine forest canopy cover for snow accu-
mulation and persistence into the spring season using a high-
resolution (25 cm resolution) hyperspectral data at forest stand scale
in northern Arizona.

2. Methods

2.1. Regional study area description

Our regional-scale analysis was performed across all of central and
northern Arizona, USA (Fig. 1). The study region encompasses an ap-
proximate area of 245,041 km2 of the Colorado Plateau and central
highlands of AZ spanning an elevation gradient from 450 m in central
AZ to 3850 m in northern AZ. The vegetation types along this elevation
gradient are chaparral shrublands, high desert grasslands, pinyon–
juniper woodlands, ponderosa pine forests, and mixed conifer forests.



Fig. 1. Study areas included in the regional (panel on the left) and local (panel of the right) scale analysis in AZ. The regional scale analysis included 243,913 km2 area in central and
northern AZ. Five study areas within the vicinity of Flagstaff in northern AZ are included in the local scale analysis (a green rectangle inside the Landsat image footprint). Each site has
three treatments: control, thin, and thin-and-burn, similar to those that will be conducted in the regional forest restoration effort known as the 4FRI.
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Average temperature across the study region ranges from 22 °C at low
elevations to 2 °C at high elevations. Average annual temperature in
this region is believed to have increased 1.5–2.3 °C over the last
~80 years (Jardine et al., 2013; Murphy & Ellis, 2014). Average annual
precipitation is ~440mmacross the regionwith bi-modal peaks inwin-
ter and summer.

A total of 51 US Geological Survey Hydrologic Unit Code (HUC8)
watersheds were included in this study mostly representing the
Upper and Lower Colorado hydrological regions (Table 1). Water-
sheds that are largely in AZ, but are partially in the neighboring
states of southern Utah, southern Nevada, southwestern Colorado,
and western New Mexico were also included. The watersheds in
Arizona covered 243,913 km2 of northern and central Arizona
comprising 73.3% of the study region, while the remaining water-
shed components covered 65,050 km2 or 26.6% of the entire study
region.

The study region also included a total of 21 microclimate Snow
Measurement Telemetry (SNOTEL) Stations established by the Natu-
ral Resources Conservation Service (NRCS), USDA. Of the 21 SNOTEL
sites, 16 are standard sensors and 5 are enhanced sensors. The stan-
dard sensors automatically record daily SWE, snow depth, daily
precipitation, and daily minimum, maximum, and average tempera-
ture, whereas the enhanced sensors also record soil moisture and
temperature at belowground depths of 10, 20, and 50 cm. This infor-
mation is freely available and reported multiple times a day in near
real time (NRCS, 2015). The daily SNOTEL records can be compared
to daily remote sensing data products such as the MODIS snow
cover map. Some of the sites in the NRCS SNOTEL network cover a
long time period dating back to 1978, while others were established
more recently. A total of 16 SNOTEL site records in the study region
date back as far as the initial date, 2003, of the MODIS time-series
used in this study (Table 2).
2.2. Local study area description

Our local-scale analysis focused on the high elevation ponderosa
pine forests in the vicinity of Flagstaff, AZ (Fig. 1). Five study sites
(Table 3), adjacent to each other, were chosen for more in-depth and
finer-resolution analysis (30 m and 20 cm) of snowpack changes due
to forest treatments. The five sites were part of small experimental
treatments, where ponderosa pine forest has been thinned and
thinned-and-burned to test ecosystem function responses to various
tree patterns and densities (Table 3) (Dore et al., 2010, 2012; Finkral &
Evans, 2008; Kolb et al., 2009; McDowell et al., 2006; Skov et al., 2004;
Sullivan et al., 2008). Each study site includes three different treatment
units: control, thin, and thin-and-burn (Table 3). The treatments are
similar to those that will be conducted in the regional restoration effort
4FRI (Fig. 1). The five study sites are located within 5 km of one another
and all represent ponderosa pine forests on similar soils and topography
under the same climatic conditions (Table 3). Due to the close vicinity,
they experience the same storm events and are found within a single
Landsat image footprint. All five sites were, therefore, simultaneously
examined in all 66 Landsat images.
2.3. MODIS and SNOTEL data analysis

MODIS/Terra Snow Cover Daily L3 Global 500 m Grid, Version 5
dataset MOD10A1 was primarily used for this study. Temporal gaps in
the winter season time series were filled with imagery from MODIS/
Aqua Snow Cover Daily L3 Global 500 m Grid, Version 5 dataset
MYD10A1 (Hall et al., 2006). Snow cover data fromboth sensors is proc-
essed similarly (Hall et al., 2006), although a different SWIR band from
each sensor is used. They are here collectively referred to as theMOD10
data product. MOD10, derived from the MODIS sensor aboard both the



Table 1
Watersheds included in the regional-scale analysis.

Watershed name HUC State Area (km2)

Upper Colorado
Lower San Juan — Four Corners 14,080,201 CO 5216
Middle San Juan 14,080,105 CO 5042
Chinle 14,080,204 NM 10,830
Chaco 14,080,106 NM 11,886
Paria 14,070,007 UT 3713
Lower Lake Powell 14,070,006 UT 7766
Lower San Juan 14,080,205 UT 6107

Lower Colorado
Marble Canyon 15,010,001 AZ 3769
Grand Canyon 15,010,002 AZ 6614
Moenkopi Wash 15,020,018 AZ 6854
Havasu Canyon 15,010,004 AZ 7699
Lower Little Colorado 15,020,016 AZ 6244
Hualapai Wash 15,010,007 AZ 4010
Dinnebito Wash 15,020,017 AZ 1933
Corn-Oraibi 15,020,012 AZ 2225
Polacca Wash 15,020,013 AZ 2818
Big Chino-Williamson Valley 15,060,201 AZ 5618
Cottonwood Wash 15,020,011 AZ 4183
Jadito Wash 15,020,014 AZ 2707
Big Sandy 15,030,201 AZ 5562
Middle Little Colorado 15,020,008 AZ 6431
Upper Verde 15,060,202 AZ 6495
Canyon Diablo 15,020,015 AZ 3136
Leroux Wash 15,020,009 AZ 2100
Burro 15,030,202 AZ 1855
Lower Puerco 15,020,007 AZ 2912
Santa Maria 15,030,203 AZ 3754
Chevelon Canyon 15,020,010 AZ 2199
Agua Fria 15,070,102 AZ 6351
Lower Verde 15,060,203 AZ 5092
Hassayampa 15,070,103 AZ 3806
Silver 15,020,005 AZ 2467
Tonto 15,060,105 AZ 2712
Upper Salt 15,060,103 AZ 5612
Carrizo 15,060,104 AZ 1833
White 15,060,102 AZ 1671
Black 15,060,101 AZ 3271
San Carlos 15,040,007 AZ 2760
Upper Gila — San Carlos Reservoir 15,040,005 AZ 7254
Upper Puerco 15,020,006 NM 4982
Zuni 15,020,004 NM 7172
Upper Little Colorado 15,020,002 NM 4200
Carrizo Wash 15,020,003 NM 5805
Little Colorado Headwaters 15,020,001 NM 2041
San Francisco 15,040,004 NM 7267
Upper Gila — Mangas 15,040,002 NM 5385
Lower Virgin 15,010,010 NV 5442
Grand Wash 15,010,006 NV 2426
Lake Mead 15,010,005 NV 7215
Kanab 15,010,003 UT 6160
Fort Pierce Wash 15,010,009 UT 4443
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Terra and Aqua satellites (Hall et al., 1995; Hall et al., 2006), includes
daily snow cover, snow albedo, and fractional snow cover at 500m res-
olution (Hall et al., 2006). Only the MOD10 daily, binary snow cover
product was used in this study. The MOD10 snow cover is determined
through several criteria: 1) Normalized Difference Snow Index (NDSI)
((λ0.6 − λ1.6) / (λ0.6 + λ1.6)) greater than 0.4, 2) MODIS band 2 reflec-
tance greater than 0.11, and 3) MODIS band 4 reflectance greater than
0.10 (Hall et al., 2001b). NDSI values less than 0.4 are further tested
against NDVI values to determine snow cover in forested areas (Riggs
et al., 2006). The MOD10 data product overall accuracy is assessed at
93% and the errors are commonly associated with discriminating
snow versus cloud. The MOD10 data product can be acquired in
1200 × 1200 tiles (National Snow and Ice Cover Data, 2015).

We acquired two tiles (H08V05 and H09V05) of daily MOD10 data
(http://nsidc.org/index.html) for a total of 2928 days between October
1, 2003 and June 1, 2014. The images were: 1) transformed to UTM
projected coordinate system (Zone 12) with NAD 83 datum,
2) mosaicked to combine the two tiles, 3) spatially subset to the study
region boundary, and 4) temporally subset to annual snow seasons
fromOctober 1 to June 1. This resulted in 12 complete annual snow sea-
son image stacks with 244 daily images per year. Within each annual
image stack, we summed the number of snow cover days (SCD) for
each pixel, which is equivalent to the number of days in a given year
when the pixel was classified as snow presence in the MOD10 product.
This created a single snow season “image”. Each snow season image had
a small number of missing snow pixels as the MOD10 product was
cloud-filtered and potentially excluded snow pixels, if they were classi-
fied as cloudy. We then correlated the MODIS-derived SCD to the
ground-based SNOTEL measurements of annual SCD (days with
SWE N 0) across the study region. We also stacked together the 12
snow season images to create a final time-series dataset.

AMann–Kendall rank correlation trend test (MK)was used to deter-
mine the existence and magnitude of monotonic trend in each pixel of
the final MODIS SCD time-series dataset as well as the winter season-
summed SNOTEL station SCD. The MK test is often used to understand
the direction and magnitude of trend, as well as the significance of
that trend in environmental data (Helsel & Hirsch, 2002; Neeti &
Eastman, 2011). The MK tau (τ) coefficient (Eastman et al., 2009;
Kendall, 1948; Mann, 1945) is a non-parametric hypothesis test for sta-
tistical dependence of observations from two random variables X and Y.
Applied to a time series, Y is the temporal component of the time-series
data and X in this case is the SCD estimated for each MODIS cell. MK τ
ranges from−1 to 1, where positive coefficients indicate an increasing
trend, while negative coefficients indicate a decreasing trend. A τ coef-
ficient near zero indicates absence of a trend. An associated two-tailed
p-value is an indicator of the trend significance. MODIS cells in which
there was no snow for at least half of the time series (6 years) were ex-
cluded from the analysis to identify trends in locations with consistent
seasonal snow cover. MK has been used frequently in recent years
(Czerwinski et al., 2014; de Jong et al., 2011; Gao et al., 2012; Li &
Guo, 2012). It is well suited for environmental data: it is resistant to out-
liers (Neeti & Eastman, 2011; Neeti et al., 2012), performs well with
small sample sizes (Yue &Wang, 2004), and does not assume a normal
distribution of data (Neeti & Eastman, 2011).

2.4. Landsat-derived binary snow map

We acquired a total of 66 Landsat ETM+ and TM images (US Geo-
logical Survey Earth Explorer) spanning a 26-year time period from
1988 to 2014. All images were: 1) corrected for atmospheric effects
using the FLAASHmodule in ENVI software (ENVI Version 4.8. ITT Visual
Information Solutions, 2010, Boulder, CO), and 2) projected in UTM
Zone 12 N, NAD 1983 projection and datum. Using each image, two in-
diceswere calculated and combined together: 1) NormalizedDifference
Vegetation Index (NDVI), and 2) Normalized Difference Snow Index
(NDSI). The NDSI was calculated using bands 2 (0.52–0.60 μm) and 5
(1.55–1.75 μm) with the following equation (Dozier, 1989):

NDSI ¼ ρgreen−ρSWIR

ρgreen þ ρSWIR
:

A threshold value of greater than 0.4 is typically used to distinguish
snow from cloud and bright soils and rocks, although NDSI values range
from −1 to 1 (Dozier, 1989). In our study area of thin snow cover, a
uniform NDSI threshold of 0.4 appeared to underclassify snow in some
areas. To produce a binary snow presence and absencemap, two differ-
ent NDSI thresholds were first tested: 0.4 and 0.0. Pixels with NDSI
values below the thresholds were classified as snow absence, while all
other pixels were classified as snow presence. Klein et al. (1998) modi-
fied the 0.4 NDSI threshold using an NDVI adjustment to take into ac-
count forest canopy effects on snow detection. This approach was
further improved with a spatial correction factor for eastern Canada

http://nsidc.org/index.html


Table 2
Characteristics of the SNOTEL sites included in the regional-scale analysis.

Site name Start date Latitude Longitude Elevation (m) County HUC8

Baker Butte Oct., 1978 34.46 −111.41 7300 Gila Pine Creek
Baldy Oct., 1978 33.98 −109.50 9125 Apache Hall Creek
Beaver Head May, 1994 33.69 −109.22 7990 Greenlee Upper Beaver Creek
Coronado Trail Dec., 1978 33.80 −109.15 8400 Apache Tsaile Creek–Tsaile Lake
Fort Valley June, 2008 35.27 −111.84 7350 Coconino Pitman Valley–Scholz Lake
Fry Oct., 1978 35.07 −111.84 7200 Coconino Fry Canyon
Hannagan Meadows Nov., 1978 33.65 −109.31 9020 Greenlee Upper Beaver Creek
Happy Jack June, 1999 34.75 −111.41 7630 Coconino Brady Canyon
Heber Aug., 1979 34.31 −110.75 7640 Coconino West Fork Black Canyon
Maverick Fork Oct., 1978 33.92 −109.46 9200 Apache Upper West Fork Black River
Mormon Mountain June, 2008 34.94 −111.52 7500 Coconino Mormon Lake
Promontory May, 1980 34.37 −111.01 7930 Coconino Upper Willow Creek
Snowslide Canyon Sep., 1997 35.34 −111.65 9730 Coconino Bear Jaw Canyon
White Horse Lake Oct., 1978 35.14 −112.15 7180 Coconino Upper Hell Canyon
Wildcat July, 1984 33.76 −109.48 7850 Greenlee Centerfire Creek
Workman Creek Oct., 1978 33.81 −110.92 6900 Gila Workman Creek
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(Chokmani et al., 2010) to increase snowdetection in forested areas due
to Landsat TM NDSI snow underestimates. The spatial correction factor
leverages regression relationships between the NDSI and NDVI bands
(Chokmani et al., 2010) to also take into account canopy impacts. To in-
crease our snow presence/absence classification accuracy, the spatial
correction factor was first tested at our study sites in AZ. The same re-
gression relationship as proposed by Chokmani et al. (2010) was ob-
served at our study area. However, the regression coefficients were
different at our study area.

We, therefore, developed an Arizona-specific spatial correction
factor as the NDSI-NDVI correlation was unique at our study sites com-
pared to the previously proposed models (Fig. 2). The Arizona-specific
model included three steps: 1) All pixels greater than or equal to a
NDSI value of 0.4 were classified as snow presence; 2) The relationship
betweenNDSI andNDVI estimateswas defined using a linear regression
approach (Fig. 2). The regression model was then fit to each of the 66
images. All pixels that fell below the regression line and had
NDSI b 0.4were classified as snowabsence,while all pixels above the re-
gression linewithNDSI b 0.4were classified as snowpresence. This step
added pixels that had NDSI b 0.4 into the snow presence class depend-
ing on the NDVI value; and 3) Pixels that were added in Step 2 as snow
presence were further filtered using the quadratic regression curve or
“the acceptance zone” established by Klein et al. (1998) for NDSI and
NDVI (Fig. 2). All pixels that fell below the quadratic regression curve
that were classified as snow in Steps 1 and 2 were classified as snow,
whereas all other pixels were classified as snow absence. The accuracy
of this model was assessed using daily measurements from SNOTEL
sites that matched the Landsat image dates.

2.5. Landsat-derived NDSI in assessing forest restoration effect

We correlated the Landsat-derived NDSI values to the SNOTEL snow
depth measurements including the Fort Valley SNOTEL station (signifi-
cance level p=0.05 at 95% confidence interval). As a surrogate estimate
Table 3
Characteristics of the five study sites included in the local-scale analysis. Site exposure index w
integrated with the steepness of the slope (Balice et al., 2000).

Treatments Total area
(ha)

Treatment
Year

Avg slope
(degree)

Site exposure
index

Gus Pearson Natural Area 3.53 1993 1.5 −0.2
Rudd's Tank 53.31 2003 2.0 0.8
Powerline 97.79 2003 2.1 0.8
Centennial Forest — B 71.04 2003 2.7 0.6
Centennial Forest — A 83.42 2006 3.6 1.7
of snow accumulation, the NDSI values from all 66 images were com-
pared among the restoration treatment units at all study sites via an
analysis of covariance (ANCOVA) test, in which treatments and sites
were used as factorial variables and image dates as a covariate. In addi-
tion, pre-treatment mean NDSI values were calculated for each pixel
across all pre-treatment years (Table 3) and examined using an analysis
of variance (ANOVA) with Tamhane's post hoc multiple comparisons.
To evaluate the forest restoration treatment effects, changes in NDSI
values were estimated by differencing the mean NDSI values from all
pre-treatment years versus all post-treatment years for each pixel
(Table 3) and compared using an ANOVA test. Similar analysis was per-
formed with Landsat-derived Normalized Difference Vegetation Index
(NDVI) using all 66 images. Pre-treatment mean NDVI values were
first analyzed to determine if differences in ponderosa pine forest condi-
tions existed prior to treatment.Mean changes in NDVI values following
treatment were then estimated and compared to determine if forest
restoration treatments further enhanced differences in ponderosa pine
forest conditions and achieved the stated goals of the regional restora-
tion efforts.

The NDSI values from 17 images at the end of the snow season from
March 1-April 1 were compared at the treated versus untreated control
sites to evaluate the effects of the forest restoration treatments on snow
retention and persistence into the spring season. In addition, NDSI
values from treated versus untreated control units from thewinter sea-
son of 2009–2010 were examined at a higher temporal resolution, be-
cause: 1) treatments at all sites were completed by this season
(Table 3), 2) a total of 13 cloud-free Landsat images were available
over this single season (Oct. 29, 2009; Nov. 30, 2009; Dec. 8, 2009;
Dec. 24, 2009; Jan. 9, 2010; Jan. 17, 2010; Jan. 25, 2010; Feb. 18, 2010;
Feb. 26, 2010; March 6, 2010; March 14, 2010, March 22, 2010, and
March 30, 2010), while all other seasons had b5 images/season, and
3) the last available image date of the season was March 30, 2010,
which closely matches to the commonly used April 1 date for annual
cumulative snowpack (Brown, 2000; Mote, 2006; Varhola et al., 2010).
as calculated using topographic slope and aspect to rescale aspect to a north–south axis

Elev.
(m)

Avg annual
precipitation (mm)

Avg annual
temp (C)

# images
pre-treatment

# images
post-treatment

2240 590 6.9 5 61
2270 590 6.9 28 38
2249 581 7 28 38
2254 571 7.1 28 38
2186 560 8 35 31



Fig. 2. Arizona-specific snow classification model using Landsat-derived NDSI and NDVI.
Pixels in the highlighted areas were classified as snow and met one of two criteria:
1) NDSI N 0.4; or 2) pixels above the linear regression line, but below the quadratic regres-
sion line. All other pixels were classified as snow absence.
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2.6. Hyperspectral image analysis

We analyzed a hyperspectral image to determine the optimum for-
est canopy cover which supported the most persistent snow retention
observed in the Landsat imagery into the spring season. The
hyperspectral image was acquired in October, 2014, in 272 spectral
bands (397–1002 nm) and 25 cm resolution using a Headwall Photonic
nano-hyperspectral sensor mounted on a Cessna Turbo 206 fixed-wing
aircraft. The image tiles were first orthorectified and mosaicked to fully
cover two of our study sites, Centennial Forest A and B, where snow ac-
cumulation in treated sites was found to be greatest in the multi-
temporal Landsat images across all years. The other sites were not in-
cluded in the hyperspectral image acquisition. Using spectral bands in
670 nm and 800 nm, we calculated NDVI. Using a threshold of
NDVI N 0.6 and a segmentation approach in ENVI, we delineated indi-
vidual tree canopies. A grid with 30 m cells were overlaid on the
resulting classification and used to estimate percent canopy cover and
tree density within each 30 m cell to correspond to the Landsat NDSI
pixels.
3. Results

3.1. MODIS

Approximately a 168,892 km2 area or 69.2% of the study region
(675,567 pixels) was analyzed for temporal trends in MOD10 snow
cover days (SCD) (Fig. 3). Within this area, a total of 2650 km2 area,
equivalent to 1.6% of the study region (10,600 pixels), had significant
trends (p b 0.05). Of these, 2544 km2 (10,176 pixels; 96% of the signifi-
cant trend area) showed significantly increasing trends, while 106 km2

(424 pixels; 4% of the significant trend area) had significantly decreas-
ing trends in the number of SCD over the 12-year study period. The sig-
nificantly increasing number of SCD areas overlapped with several
SNOTEL stations, which also indicated an increasing trend over the 12-
year study period (Fig. 4) with slope coefficients significantly different
from 0. The MODIS-derived number of SCD correlation coefficient (R)
with SNOTEL SCDwas 0.80 with a significant p-value of 0.001 (adjusted
R2=0.62) (Fig. 5), when all SNOTEL siteswere combined. The degree of
correlation varied across the SNOTEL sites, when 16 SNOTEL sites with
matching 12-year records were individually examined (Table 4). The
MODIS-estimated number of SCD was significantly correlated at all
SNOTEL sites except at Workman Creek and Snowslide Canyon sites
(p-values of 0.146 and 0.939, respectively) (Table 4).
3.2. Landsat-derived binary snow cover

A total of 10 SNOTEL site locations overlapped with the Landsat
scene footprint with a total of 459 matching daily measurements in
the 66 images. These measurements were converted into binary values
of snow presence and absence to assess the accuracy of the Landsat-
derived classification (Table 5). The commonly used NDSI thresholds
of 0.4 and 0.0 produced overall accuracies of 77% and 90%, respectively,
with low accuracies for snow absence. The Landsat-derived binary clas-
sification with the Arizona-specific model produced an overall classifi-
cation accuracy of 86% (Table 5). While producer's accuracy improved
for snow absence in this model, user's accuracy remained low. This ap-
peared to be due to several dates when traces of snow were monitored
at the SNOTEL stations after snowmelt following a storm, but no detect-
able snow was observed in the Landsat pixels. When the commonly
used b10 cm threshold (Marchane et al., 2015) snow dates were re-
moved, user's accuracy for snow presence remained at 96%, but user's
accuracy for snow absence improved to 67%. This model produced the
best overall accuracy of 91%.
3.3. Landsat-derived NDSI estimates and treatment effects

SNOTEL snow depth measurements from the 459matching dates to
the 66 Landsat image dates were significantly correlated to the Landsat-
derived NDSI values (p-value = 0.000; R = 0.48). The degree of corre-
lation varied across the ten SNOTEL sites when they were individually
examined (Table 6), although the relationshipwas always significant ex-
cept at the Chalender site (p-value = 0.126, Table 6). Particularly, at the
Fort Valley site, the SNOTEL snowdepthmeasurementswere significant-
ly correlatedwith the Landsat-derivedNDSI values (p-value b 0.001; R=
0.763).

Following treatment, previously existing NDVI differences were en-
hanced: NDVI decreases at all treated units were significantly greater
compared to the respective control units (all p-values b 0.001)
(Fig. 6). Furthermore, the mean NDVI decrease at thin-and-burn treat-
ment units were significantly greater than their thin treatment counter-
parts (all p-values b 0.01), except at the Gus Pearson National Area
(GPNA) and Rudd's Tank (p-values of 1.00) (Fig. 6).

NDSI comparisons indicated that forest treatments had significant
effects (p b 0.001), along with image dates (p b 0.001), on NDSI, but
site was not a significant variable (p = 0.247). Consistent with the
NDVI trends, the mean NDSI values were significantly different prior
to treatment at many of the sites. Landsat-derived NDSI values were al-
ready significantly greater in the thin treatment units of the Centennial
Forests A and B (both p-values b 0.000) compared to the control units.
NDSI values were also significantly greater within the thin-and-burn
treatment unit at Rudd's Tank site compared to its control and thin
treatment units (p-values b 0.001). However, no significant differences
were observed among the treatment units at the GPNA site prior to
treatment and NDSI values were significantly lower in the thin-and-
burn unit of the Powerline site and Centennial Forest B site.

Following treatment, significant increases inmeanNDSI valueswere
observed at all of the treated units. NDSI increases in thin and thin-and-
burn treatments were both significantly greater compared to the con-
trol treatment at all four sites (all p-values b 0.01) (Fig. 7). Furthermore,
NDSI increase at the thin-and-burn treatments were significantly great-
er compared to the thin treatment at the Rudd's Tank and Centennial
Forest B sites (both p-values b 0.001) (Fig. 7). The increased NDSI fol-
lowing treatment also appeared to persist longer into the spring season.
Mean NDSI values at the end of the winter season were significantly
greater (all p b 0.001) at all treated sites compared to the control sites
in all of the 17 image dates examined. Furthermore, over thewinter sea-
son 2009–2010, NDSI in control and treatment units similarly fluctuat-
ed, but treated units had consistently greater NDSI throughout the
season. More importantly, at the end of the winter season on March



Fig. 3. The trends observed in the MODIS-derived number of snow covered days (SCD) within each pixel across the study region in AZ over the 12-year study period (white areas show
pixels removed due to consistent snow absence). Locations where the observed trends were significant are highlighted in red (negative trend) and green (positive trend). The MODIS-
derived SCD are consistent with ground-based SNOTELmeasurements (blue circles) of SCD over the same period (degree of agreement indicated by the size of the circles) (Table 4). Sim-
ilar to the MODIS-derived SCD, the ground-based SNOTEL measurements indicate that SCD over the 12-year period is increasing at some locations in Arizona, although SCD shows gen-
erally decreasing trend over a longer time period of the last several decades (Fig. 4). SNOTEL locations shown in Fig. 4 are highlighted here with asterisks around the blue dot. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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30, 2010, treated units had consistently greater NDSI compared to their
control counterparts (Fig. 8) (p-values b 0.01).

In particular, the increased snow accumulation at the treated units of
Centennial Forest A and B sites persisted longer following the snow sea-
son of 2009–2010 (Fig. 8). Although NDSI similarly fluctuated at these
sites throughout the season, the treated units had consistently greater
NDSI at the end of the snow season by April 1, 2010 (all p b 0.001).

3.4. Hyperspectral image analysis

Forest canopy cover ranged 22–51% and tree density varied between
7 and 14 treeswithin the 30m cells across the entire area covered in the
hyperspectral data across the Centennial Forests A and B (Table 7). The
Centennial Forest A site had only two treatments: control and thin
(Fig. 8, Panel A). The control site had a mean canopy cover of 39.5%
and amean density of 14 trees/cell within the 30m cells. In comparison,
the thin treatment had a mean canopy cover of 22.7% and a mean den-
sity of 8 trees/cell within the 30m cells. The Centennial Forest B site had
three treatments: control, thin, and thin-and-burn (Fig. 8, Panel B). The
thin and control treatments at this site had 22.4% and 50.9% canopy
cover, respectively, and 6 trees/cell and 12 trees/cell tree density, re-
spectively. The thin-and-burn treatment at the Centennial Forest B site
had a mean forest canopy cover of 23.9% and a mean tree density of 7
trees/cell. Among the five units at these two sites, the mean Landsat-
derived NDSI was largest at the thin-and-burn site of the Centennial
Forest B, which might indicate that 24% forest canopy cover and 7
tree/cell tree density are optimum for snow retention.

4. Discussion

4.1. MODIS-derived snow estimates and trends

MODIS global snow product, MOD10, appears to performwell in Ar-
izona, where snow is thin and patchy with a large spatial and temporal
variability. OtherMOD10 studies have had to introduce complex correc-
tion factors due to cloud cover and snow detection thresholds of 10 cm
(Marchane et al., 2015). However, MOD10 generally correlated well
with most SNOTEL measurements in our study region. The MOD10-
derived number of snow cover days (SCD) underpredicted the
SNOTEL-measured SCD by only 2 days, on average, in our study region
as indicated by the intercept of the regression model. Other MODIS
studies documented large omission errors (60%) when comparing
MODIS data to finer-resolution snow estimates and other data sources
(Metsämäki et al., 2002; Rittger et al., 2013). In this study, we compare
MOD10 data with only SNOTEL stations in Arizona and as a result might
have missed potentially large omission errors documented in other
studies. The SNOTEL stations with the poorest correlation coefficients
and large underestimates of SCD of up to 40 days in our study were



Fig. 4. The temporal trends in the number of snow cover days (SCD) observed: a) across all SNOTEL stations dating back to 1980 (Panel A), where themulti-decadal trend is indicated by a
solid line and the trend of the 12-year study period is indicated by a dashed line, b) at the Baldy Mountain SNOTEL station (Panel B) over the study period, c) at the Baker Butte SNOTEL
station (Panel C) over the study period, and d) at the Promontory SNOTEL station (Panel D) over the study period.
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located in complex terrain where elevation, slope, and aspect were
highly variable within a MODIS pixel (500m), consistent with previous
conclusions (Marchane et al., 2015). Taken as a whole, our results ex-
tend to the Southwest previous observations of high accuracy of
MODIS-derived snow maps over large areas of non-forested, uniform
terrain (Hall & Riggs, 2007; Huang et al., 2011; Pu et al., 2007;
Salomonson & Appel, 2004), but demonstrated that complex terrain re-
mains to be a challenge (Hall et al., 2001a; Romanov & Tarpley, 2007;
Shreve et al., 2009). Future studies in the Southwest can test MODIS
fractional snow cover estimates in complex terrain to enhance
MOD10-derived snow maps.
Fig. 5. Relationship between the MODIS-derived and ground-based SNOTEL-derived
number of snow cover days (SCD) across our study region.
This study, to our knowledge, is the first spatially-explicit temporal
analysis of snowdynamics acrossArizona.Wefind that the daily tempo-
ral resolution of the regional-scale MOD10 product is ideal for Arizona,
where each snow seasonwithin a single year is characterized by several
distinct storm events with snow accumulation followed by rapid snow-
melt within a few days (Ffolliott et al., 1989). In the Southwest, MOD10
product further complements daily SNOTEL-based temporal analysis
(Harpold et al., 2012; Molotch et al., 2005) since SNOTEL stations only
represent point locations distributed sparsely across large areas. The
temporal trend agreement between SNOTEL andMOD10 snow product
observed in this study is encouraging for consistent snowmonitoring in
Table 4
Correlation coefficients in the MODIS-derived and SNOTEL-measured number of snow
cover days (SCD) annually over the 12-year study period. SNOTEL sites with fewer than
12-year records were not included. Significant trends in the SNOTEL data are indicated
with *.

SNOTEL sites Correlation
coefficient (R)

P-value Trend indicated
by Thielsen's
slope

Baker Butte 0.761 0.002 0.663*
Baldy Mountain 0.915 0.000 0.452*
Coronado Trail 0.688 0.007 −0.650
Hannagan Meadow 0.730 0.003 −2.292*
Fry 0.688 0.007 2.000
Happy Jack 0.836 0.000 2.307
Heber 0.707 0.005 0.913*
Maverick Fork 0.881 0.000 −0.041*
Mormon Mountain 0.707 0.005 1.812
Promontory 0.785 0.001 1.606*
White Horse Lake 0.724 0.003 −0.187
Wildcat 0.758 0.002 −0.583*
Beaverhead 0.600 0.023 −2.833
Workman Creek 0.410 0.146 −0.944
Snowslide Canyon 0.023 0.939 −2.467



Table 5
Accuracy assessment of the Landsat-derived binary classification of snowpresence and ab-
sence. The accuracies of each classification are highlighted in bold.

Classes Snow
absence

Snow
presence

Total

Snow absence (NDSI threshold N 0.4) 36 10 46
Snow presence (NDSI threshold N 0.4) 90 306 396
Total (NDSI threshold N 0.4) 126 317 442
Producer's accuracy 29% 96%
User's accuracy 78% 77%
Overall accuracy 77%

Snow absence (NDSI threshold N 0.0) 27 28 55
Snow presence (NDSI threshold N 0.0) 17 371 388
Total (NDSI threshold N 0.0) 44 399 442

Producer's accuracy 61% 93%
User's accuracy 49% 96%
Overall accuracy 90%

Snow absence (AZ-specific model) 29 40 69
Snow presence (AZ-specific model) 12 305 317
Total (AZ-specific model) 41 345 386

Producer's accuracy 70% 88%
User's accuracy 42% 96%
Overall accuracy 86%

Snow absence (AZ-specific model, 0.1 m) 39 39 58
Snow presence (AZ-specific model, 0.1 m) 11 280 291
Total (AZ-specific model, 0.1 m) 50 319 369

Producer's accuracy 78% 93%
User's accuracy 67% 96%
Overall accuracy 91%

Fig. 6. Post-treatment Normalized Difference Vegetation Index (NDVI) decrease at all
study areas. All treatment units had significantly greater NDVI decrease compared to the
control sites. Thinning treatments and thin-and burn treatments also resulted in signifi-
cantly different NDVI decreases. Only at Gus Pearson National Area (GPNA), there was
no significant difference between these two treatments (indicated by letters). Centennial
Forest A site (CF-A) had only control and thin treatment units.
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the future at Arizona's ephemeral zone that represents the continental
margins of snow distribution, which is most susceptible to global cli-
mate change (Brutel-Vuilmet et al., 2013). Trends observed at these
margins can inform patterns to be expected in the future throughout
the North American continent.

While the trends were spatially variable, MOD10-derived SCD
Mann-Kendall trends were predominantly increasing, when significant,
across the study region over the 12-year study period. The increasing
trends were observed at elevation transitions such as the Mogollon
Rim, while decreasing trends were found at lower elevations leading
to the desert margins in eastern Arizona (Fig. 3). Interestingly, both of
these patterns are found at the topographic transitions surrounding
the high elevation area of northern Arizona. A similar magnitude
trend of increasing SCD was observed in some of the SNOTEL measure-
ments over the same 12-year period (Fig. 4), consistent with Palmer
Drought Severity Index (PDSI) trends for Northern Arizona. Twelve
SNOTEL sites used in our study have records extending to the early
1980s, and exhibit trends of decreasing SCD over the multi-decadal
time period (Fig. 4), but increasing trends over the recent 12-year peri-
od atmost sites (Fig. 4). Similar trends still remain atmost of these sites
even if the anomalous year of 2006 is removed. Climaticmodes of Pacific
origin such as the El Niño Southern Oscillation (ENSO) and the Pacific
Decadal Oscillation (PDO) are strongly correlated with temperature
Table 6
Correlation coefficients in the Landsat-derived Normalized Difference Snow Index (NDSI)
and SNOTEL-measured snow depth at 10 sites that overlapped with the Landsat scene
footprint.

SNOTEL sites Correlation (R) P-value N of matching dates

Baker Butte 0.51 0.000 67
Baker Butte Summit 0.78 0.000 20
Chalender 0.36 0.126 19
Fort Valley 0.76 0.004 27
Fry 0.46 0.000 66
Happy Jack 0.51 0.000 50
Mormon Mountain 0.48 0.000 66
Mormon Mountain Summit 0.60 0.003 26
Snowslide Canyon 0.40 0.003 52
White Horse Lake 0.60 0.000 65
and precipitation variation across western North America (Barnett
et al., 2005; McCabe & Dettinger, 2002; Stoner et al., 2009; Svoma,
2011). The observed upward SCD trends over the 12-year time period
is likely driven by the climatic variability at the sub-decadal scales, espe-
cially ENSO (Svoma, 2011). Furthermore, it is likely that the contribu-
tion of extreme events to snowfall is increasing, replacing more
frequent low intensity storms with intermittent storms with greater
snowfall (Lute & Abatzoglou, 2014). While such shifts cannot be explic-
itly examined with the MOD10 product, future temporal trend analysis
Fig. 7. Post-treatment Normalized Difference Snow Index (NDSI) increase at all sites. All
treatment units had significantly greater NDSI increase compared to the control sites.
Thinning treatments and thin-and burn treatments also resulted in significantly different
NDSI increases at Rudd's Tank, Centennial Forest B (CF-B), and A (CF-A) sites. At Gus Pear-
sonNational Area (GPNA) and Powerline (PL) sites, therewas no significant difference be-
tween these two treatments (indicated by letters). Centennial Forest A site (CF-A) had
only control and thin treatment units.



Fig. 8.The two sites (Panels A andB)with consistently the largestNDSI among all sites andpost-treatment snow retention (Panels C andD) at control and treatedunits at the two sites over
the winter season of 2009–2010. A total of 13 cloud-free images were available over this season (Panels C and D) and the last image date of March 30, 2013 closely matched April 1, the
standardized date for comparison in North America. Thin and thin-and-burn treatments (N100 pixels) had greater NDSI persisting into the spring season at both sites (Panels C and D).
Centennial Forest B thin-and-burn site (Panel D) had the largest NDSI at the end of the season and likely represents optimum canopy cover for snow accumulation and retention. A high-
resolution (0.25m) airborne hyperspectral image (Panels A and B) indicates that the forest canopy cover at this site is 24%,which likely has reduced snow interception and sublimation by
the forest canopy following treatment, while providing enough shade on the ground.
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could address this question using other data sources. TheMOD10 time-
series data can, however, spatially demonstrate areas of AZ where ex-
treme SCDs are observed, regardless of whether they result from fre-
quent low intensity storms or few large events, over the study period
as potentially sensitive areas indicative of future trends. Fig. 9 illustrates
areas of very small versus large numbers of SCD across AZ using the
lower and upper five percent of the 12-year mean SCD distribution
(5th and 95th percentiles, respectively). The very small numbers of
SCD are commonly observed across central AZ along the Mogollon
Rim below 1800 m elevations including HUC8 watersheds of Big
Sandy, Big Chino-Willamson Valley, Lower Verde, Tonto, Upper Salt,
and San Francisco. In contrast, the very large numbers of SCD are ob-
served mostly at high elevations above 2300 m in the mountainous
northern portions of AZ including HUC8 watersheds of Lower
Colorado-Marble Canyon, Lower Little Colorado, Canyon Diablo, Middle
Little Colorado, Chevelon Canyon, and Little Colorado Headwaters.

4.2. Landsat-derived snow estimates and trends

The Landsat NDSI-derived binary snow presence/absence classifica-
tion performancewas generally lowwhen simpleNDSI thresholds of 0.4
Table 7
Hyperspectral image-derived mean and standard deviation (SD) of tree canopy cover and den

Study sites Canopy cover mean (% in cells) Canopy co

Centennial Forest A: control 39.5% 11.8%
Centennial Forest A: thin 22.7% 7.5%
Centennial Forest B: control 50.9% 9.9%
Centennial Forest B: thin 22.4% 9.6%
Centennial Forest B: thin-and-burn 23.9% 11%
(Hall et al., 1995) and 0.0were applied. The Arizona-specific regression-
based classification approach with a modified spatial correction factor
resulted in the most balanced producer's and user's accuracies for
snow presence and absence. This model was based on a NDSI–NDVI re-
lationship unique to our study area and an integrated concept proposed
by Klein et al. (1998) and Chokmani et al. (2010). Other studies have
similarly mapped snow with regional adjustments of Landsat NDSI
(Maher et al., 2012; Vogel, 2002). Even after integrating NDVI and can-
opy cover effects, the best performing Arizona-specific model tended to
underestimate thin snow cover and benefited from the commonly used
10 cm snow detection threshold (Marchane et al., 2015). Many loca-
tions in this semi-arid state can typically receive b10 cm snow, which
appears extremely challenging to map. Taken together, these results
suggest thatmapping thin snow cover remains a challengewith Landsat
imagery at Arizona's ephemeral snow transition zone. We attribute
much of this challenge to the high temporal variability in Arizona's
snow distribution in relation to the coarse temporal resolution of the
Landsat data. Over much of the study period, Landsat data were 16 or
more days apart. Snow cover in Arizona, however, typically lasts only
a few days and rapidly melts after each storm during a snow season.
Much of the snow cover is typically melted and snow distribution is
sity estimates within 30 m cells.

ver SD (% in cells) Density mean (# trees/cell) Density SD (# trees/cell)

14 4.7
8 2.9

12 2.9
6 2.7
7 3.5



Fig. 9. Spatial distribution of the 5th (red) and 95th (green) percentile of theMODIS-derived 12-yearmean SCD across elevation gradients of AZ as potentially sensitive areas indicative of
future trends. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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spatially patchy, when revisiting a site with Landsat sensors at 16 day
intervals. Higher spatial resolution data (Czyzowska-Wisniewski et al.,
2015) or higher temporal resolution data such as daily MOD10 better
address this aspect of the challenge.

We present here the first multi-temporal Landsat NDSI analysis of
snow accumulation following ponderosa pine restoration treatment ef-
forts in Arizona. Landsat NDSI performed well at our local study area
(R = 0.76; Table 6), where the SNOTEL station could be accurately
mapped within a 30 m pixel. Our results indicate that Landsat-derived
NDSI values were significantly different among treatment units and de-
pending on image date. In particular, NDSI values were significantly
greater following forest restoration treatments at both thin and thin-
and-burn treatments at each site. Furthermore, thin-and-burn treat-
ment units had significantly greater NDSI increase compared to their
thin treatment counterparts. The increased NDSI at the treated sites
were likely due to the lower vegetation canopy cover (Klein et al.,
1998; Lundberg et al., 2004). Forest canopy can significantly impact
snow accumulation on the ground (Lundberg et al., 2004; Nakai,
1996; Varhola et al., 2010) by intercepting and sublimating up to 40%
of snowfall (Lundberg & Halldin, 2001). Previous ground-based studies
in other forest types and management treatments have demonstrated
that thinned forest canopy cover and density can result in less snow
intercepted and, consequently, greater snow accumulation on the
ground, snow retention, and snow water equivalent (SWE) (Ffolliott &
Baker, 2000; Ffolliott et al., 1989; Hedstrom & Pomeroy, 1998;
López-Moreno et al., 2008; Teti, 2008; Varhola et al., 2010; Woods et
al., 2006), although very few studies have focused on forest restoration
treatments in the Southwest (Heffelfinger, 2012; Varhola et al., 2010). It
is encouraging for the regional forest restoration effort 4FRI that such ef-
fects are observed via satellite remote sensing, especially considering its
key objective is to increase snow accumulation and retention to en-
hance groundwater recharge in Arizona. The application of satellite re-
mote sensing at similar scales to the 4FRI restoration effort is
especially important, because ground-based measurements such as
snow course data often represent small canopy openings that accumu-
late more snow and cannot be uniformly extrapolated to larger spatial
extents (Ffolliott et al., 1989; Varhola et al., 2010).

Forest managers and downstream water users are often concerned
with maximizing groundwater recharge at the end of the snowmelt pe-
riod in forested areas (Ffolliott et al., 1989). Our results indicate that the
increased NDSI following treatments also appeared to persist longer
into the spring season. Over thewinter season 2009–2010, NDSI in con-
trol and treatment units similarly fluctuated, likely due to temperature
variations. Treated units had consistently greater NDSI throughout the
winter season. Most importantly, at the end of the winter season by
April 1, 2010, treated units had consistently greater NDSI compared to
their control counterparts (Fig. 6). Persistent snow cover into the spring
season is important for Arizona and across western North America,
where decreases in annual April 1 snow-water equivalent (SWE) in
snowpack (Brown, 2000; Mote, 2006), earlier snowmelt (Barnett
et al., 2005; Clow, 2010), decreases in runoff (Stahl et al., 2010), and de-
creased summer low flows (Stewart, 2009) have been observed and are
expected to accelerate in the coming decades.

Snowmelt duration can be altered via forest management (Ffolliott
et al., 1989). The most persistent snow retention with the largest NDSI
by April 1 was observed at the Centennial Forest B thin-and-burn site
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with an average forest canopy cover of 24% and tree density of 7 trees/
cell. Among the entire range of canopy cover of 22–51% found in the
hyperspectral data, the canopy cover and forest structure at this site
might represent the optimum threshold that the regional restoration ef-
forts are seeking. Despite the adjacent proximity and similar key factors
that influence snow accumulation, including snowfall, wind, and topo-
graphic slope and aspect, (Varhola et al., 2010), the 24% canopy cover
site had the greatest NDSI value by April 1. Among many variables, for-
est canopy cover has been shown to be most highly correlated with
snow accumulation and snowmelt (Varhola et al., 2010) and canopy
cover decreases can lead up to 75–110% increase in snow accumulation
(Varhola et al., 2010). Similar to this estimated increase in metadata
analysis (Varhola et al., 2010), Fig. 8 indicates a significant increase in
NDSI from 0.36 at the control site to 0.74 at the treated site by April 1.
The optimum threshold is expected to create a balance between canopy
cover versus canopy gap that reduces snow interception and sublima-
tion by canopy, while providing enough shade. Much efforts are under-
way using ground-based investigations and process-based biophysical
models to identify this threshold. Remote sensing-based, landscape-
scale estimates complement such efforts.

5. Conclusion

Snow cover mapping in Arizona is a challenge due to the thin and
patchy snow distribution. We find firstly that MOD10 product works
well in estimating daily snow distribution and examining temporal
trends in the daily snow record. Complementary to the ground-based
snow measurements at SNOTEL point locations, the spatially-explicit
regional-scale MODIS data provides an ideal dataset for the dynamic
snow cover in Arizona that accumulates and rapidly melts within only
a few days. Landsat-derived binary classification of snow presence and
absence, however, does not perform well despite its higher spatial res-
olution, but likely due to its coarser temporal resolution. These findings
suggest that temporal resolution in satellite data might be more impor-
tant for future efforts inmapping snowdistribution in Arizona than spa-
tial resolution. Secondly, Landsat NDSI performs well at our local study
area and effectively estimates the forest management effects on snow
accumulation and retention, a previously undocumented trend with
satellite data. Thirdly, using fine-resolution hyperspectral data, we
find that optimum forest canopy cover can be achieved via forest resto-
ration for increased snow accumulation and retention.We demonstrate
that forest restoration efforts have significantly increased snow accu-
mulation and retention into the spring season potentially contributing
to improved water storage and harvest, while reducing catastrophic
wildfire hazards.
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