
Remote Sensing of Environment xxx (2015) xxx–xxx

RSE-09372; No of Pages 16

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
Advantages using the thermal infrared (TIR) to detect and quantify
semi-arid soil properties
Andreas Eisele a,⁎, Sabine Chabrillat a, Christoph Hecker b, Robert Hewson c, Ian C. Lau d, Christian Rogass a,
Karl Segl a, Thomas John Cudahy d, Thomas Udelhoven e, Patrick Hostert f, Hermann Kaufmann a

a Helmholtz Centre Potsdam, German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
b Department of Earth Systems Analysis, Faculty ofGeo-Information Science and Earth Observation (ITC), University of Twente, Hengelosestraat 99, P.O. Box 217, Enschede 7500AE, The Netherlands
c School of Mathematical and Geospatial Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
d CSIRO Mineral Resources Flagship, CSIRO, 26 Dick Perry Avenue, Kensington, WA 6151, Australia
e Environmental Remote Sensing and Geoinformatics Department, University of Trier, Behringstr. 15, D-54286 Trier, Germany
f Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
⁎ Corresponding author. Tel.: +49 331 288 28984; fax:
E-mail addresses: eisele@gfz-potsdam.de (A. Eisele), c

(S. Chabrillat), c.a.hecker@utwente.nl (C. Hecker), robert.h
(R. Hewson), Ian.Lau@csiro.au (I.C. Lau), rogass@gfz-potsd
segl@gfz-potsdam.de (K. Segl), Thomas.Cudahy@csiro.au
udelhoven@uni-trier.de (T. Udelhoven), patrick.hostert@g
hermann.kaufmann@gfz-potsdam.de (H. Kaufmann).

http://dx.doi.org/10.1016/j.rse.2015.04.001
0034-4257/© 2015 Elsevier Inc. All rights reserved.

Please cite this article as: Eisele, A., et al., Ad
Sensing of Environment (2015), http://dx.doi
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 9 October 2014
Received in revised form 28 March 2015
Accepted 3 April 2015
Available online xxxx

Keywords:
Thermal infrared (TIR)
Longwave infrared (LWIR)
Emission FTIR spectroscopy
Digital soil mapping (DSM)
Semi-arid soils
Soil properties
Soil grain coatings
Soil organic carbon (SOC)
Soil texture
Particle size
Topsoil coarsening
Monitoring soil surface dynamics in semi-arid agricultural landscapes becomes increasingly important due to the
vulnerability of these ecosystems to desertification processes. Observations using remote sensing via the tradi-
tionally used visible-near infrared (VNIR) and shortwave infrared (SWIR) wavelength regions can be limited
due to the special characteristics of such soils (e.g. rich in quartz, poor in clay minerals, coarse textured, and
grain coatings). In this laboratory-based work we demonstrate the capabilities of the thermal infrared between
8 and 14 μm (longwave infrared) to detect and quantify small ranges of the soil properties sand-, clay, and soil
organic carbon (SOC) content, as they appear in the semi-arid agricultural landscapes of the Mullewa region in
Western Australia. All of the three soil properties could be predicted using the longwave infrared (LWIR) spectra
with higher accuracy and precision than from the VNIR-SWIR wavelength region. The study revealed the com-
plex relationships between the soil properties and theVNIR-SWIR soil spectra, whichwere caused by the spectral
influence of the soils' grain coatings (based on iron and clay minerals). These difficulties could be handled more
appropriately by the predictionmodels based on the LWIR soil spectra. Our results indicate that in order to quan-
titatively monitor farming areas for such erosion-related soil properties; remote sensing using the LWIR wave-
length region would produce better estimates than using the wavelength ranges in the VNIR-SWIR.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Due to the rise in concerns of food security, there is a growing real-
ization for the need to utilize remote sensing for the monitoring of the
conditions of soils in agricultural regions. Fertile soils are the basis for
global food production, but their distribution is limited and they are in-
creasingly under pressure to produce higher yields. In this context dry-
land ecosystems have a particularly important role since these areas are
responsible for more than 40% of the worldwide food production and
are particularly suffering from desertification (UNCCD, 2011). Semi-
arid soils contain low content in clay minerals and organic carbon,
which generally assist processes of aggregate formation in a soil's
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matrix and increase surface stability (Brady & Weil, 2008). These soils
are particularly prone tomaximumwind erosional forces after crop har-
vesting, when bare soil surfaces are dry. Topsoil texture is closely related
to desertification and coarsening of topsoil is an indicator for this pro-
cess (Xiao, Shen, Tateishi, & Bayaer, 2006). Monitoring the surface dy-
namics of critical soil properties, such as grain size distribution and
organic carbon content, provides farmerswith the information to detect
soil vulnerable to erosion in its early stages in order to locally intervene.

The quantification of such soil properties through remote sensing
data has traditionally been undertaken using the solar reflective spectral
wavelength range (visible, VIS: 0.4–0.7 μm; near infrared, NIR: 0.7–
1.1 μm; shortwave infrared, SWIR: 1.1–2.5 μm). Remote sensing in the
VNIR-SWIR predominantly depends on reflected radiance of the object
with the sun as the energy source. In proximal reflectance spectroscopy
and imaging spectroscopy, the use of the VNIR-SWIR has already been
demonstrated to be beneficial for this purpose (Bartholomeus, Epema,
& Schaepman, 2007; Ben-Dor et al., 2008, 2009; Chabrillat, Goetz,
Krosley, & Olsen, 2002; Chang & Laird, 2002; Crouvi, Ben-Dor, Beyth,
Avigad, & Amit, 2006; Gomez, Viscarra Rossel, & McBratney, 2008;
frared (TIR) to detect and quantify semi-arid soil properties, Remote
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Stevens et al., 2008, 2010; Viscarra-Rossel, Walvoort, McBratney, Janik,
& Skjemstad, 2006). However, the VNIR-SWIR can reach its limits on
semi-arid soils due to their special spectral characteristics. Sandy soils
(coarse textured) are common among semi-arid areas and their grain
size distribution is crucially driven by the dominant mineral, quartz
(SiO2), which lacks any distinctive Si–O bond related spectral features
within the VNIR-SWIR (Hunt & Salisbury, 1970). Quartz is the main
mineral constituent of most soils on Earth. Furthermore, these soil
particles are often coated with iron-oxides and/or -oxyhydroxides (he-
matite and goethite),which reveal a strong spectral contrast in the VNIR
(Hunt, Salisbury, & Lenhoff, 1971) and thus, generally obscure any other
potential spectral features in this spectral region, such as from soil or-
ganics (Ben-Dor, Inbar, & Chen, 1997). Other specific spectral features
of semi-arid soils may occur from sparse vegetation and salts
(Mougenot, Pouget, & Epema, 1993), or from cyanobacteria coatings
(Karnieli, Kidron, Glaesser, & Ben-Dor, 1999).

In this context the thermal infrared (TIR) wavelength region within
the atmospheric window between 8 and 14 μm (longwave infrared)
shows good remote sensing potential to extend the scope of the VNIR-
SWIR. Longwave infrared (LWIR) remote sensing depends on emitted ra-
diance and the energy source is the object itself. Within the LWIR the
strong fundamental molecular vibrations of the Si–O stretching produces
reststrahlen bands with intense spectral contrast (Salisbury & D'Aria,
1992a). Diagnostic spectral features of typical clay minerals of soils (e.g.
kaolinite, illite, and montmorillonite) are offered within the LWIR. The
results from several studies have already indicated the prospects of the
LWIR in geological studies (Cudahy et al., 1999, 2012; Cudahy,
Whitbourn, Connor, Mason, & Phillips, 1999; Hecker, van der Meijde, &
van der Meer, 2010; Hecker, Dilles, van der Meijde, & van der Meer,
2012; Hewson, Cudahy, Mizuhiko, Ueda, & Mauger, 2005; Ninomiya, Fu,
& Cudahy, 2005; Notesco et al., 2014; Rowan & Mars, 2003; Whitbourn
et al., 1997; Yitagesu, van der Meer, van der Werff, & Hecker, 2011) and
for vegetation investigations (Elvidge, 1988; Ribeiro da Luz & Crowley,
2007; Schlerf et al., 2012; Ullah, Schlerf, Skidmore, & Hecker, 2012).

Previous soil science studies that utilize LWIR spectroscopy to quan-
tify soil properties predominantly use Diffuse Reflectance Infrared Fou-
rier Transform (DRIFT) Spectroscopy (Janik, Merry, & Skjemstad, 1998;
McCarty, Reeves, Reeves, Follett, & Kimble, 2002). However, DRIFT Spec-
troscopy does not comply with the requirements necessary for a quan-
titative comparisonwith emission spectra obtained via thermal infrared
remote sensing (Salisbury & D'Aria, 1992a; Salisbury, Walter, Vergo, &
D'Aria, 1991) as suchmeasurements donot adequately account for radi-
ation scattered in all directions (Nerry, Labed, & Stoll, 1990; Salisbury,
Wald, & D'Aria, 1994; Sobrino et al., 2009). Directional Hemispherical
Reflectance (DHR) as an active spectroscopic method or emission spec-
troscopy (passive mode) in combination with temperature emissivity
separation (TES) algorithms was found to be adequate to accurately re-
cover emissivity (Hecker et al., 2011).

Sobrino et al. (2009) demonstrated that DHRmeasurements of soils
exhibit spectral features of crucial soil minerals in the LWIR. From
ASTER-LWIR imagery data, soil properties (e.g. sand content) and soil
mineral composition (e.g. abundance of calcite, mica, smectite, kaolin-
ite) were successfully quantitatively derived by Breunig, Galvao, and
Formaggio (2009, 2008); Breunig, Galvao, Formaggio, and Couto
(2009) and Mulder, de Bruin, Weyermann, Kokaly, and Schaepman
(2013). Sobrino, Franch, Mattar, Jiménez-Muñoz, and Corbari (2012)
also estimated soil moisture from the LWIR via ASTER and AHS
(Airborne Hyperspectral Scanner) imagery data.

The aim of this study is to evaluate the potential of the LWIR wave-
length range for quantitative mapping of soil properties— especially for
semi-arid agricultural areas dealing with coarse textured soils. Our
laboratory-based analyses not only apply to the laboratory-scale, but
provide an important background for airborne and ultimately also for
future spaceborne monitoring concepts, as we simulated the spectral
resolution of air- and space-borne sensors. All parameters have been
chosen so they are still representative for remote sensing studies as
Please cite this article as: Eisele, A., et al., Advantages using the thermal i
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well. Measurements were collected with emission spectroscopy in the
8–14 μm LWIR atmospheric window as a proxy for air- and spaceborne
data. The purpose of this study was to investigate if these LWIR spectral
bands could overcome the limitations of the VNIR-SWIR for quantifying
soil properties and have the capabilities to detect and quantify small
ranges of the soil properties sand-, clay, and SOC content, as they appear
in the semi-arid agricultural landscapes of Mullewa in Western
Australia, at laboratory and remote sensing spectral resolution.

Preliminary findings of this study were published in Eisele et al.
(2012) focusing on the prediction of sand, clay, and SOC content at lab-
oratory scale from VNIR-SWIR and LWIR spectroscopy. We present in
this paper new research aiming at (1) a deeper understanding of the in-
teractions between the soil samples and their LWIR spectral signatures
through the use of different LWIR emission measurement techniques
and a more accurate characterization of the soil properties based on
mineralogical and geochemical analyses, and (2) we also present new
results on the predictions of the soil properties (sand-, clay, and SOC
content) and the soils' geochemical properties (SiO2 and Al2O3 content)
using spectrally-degraded VNIR-SWIR and LWIR data that simulate air-
borne (HyMap, TASI) and satellite (ASTER) conditions. In particular, a
more profound interpretation of the LWIR spectral signature is present-
ed, based on the consideration of new and improved LWIR emission
measurements (obtained via a MIDAC spectrometer) and a different
TES algorithm, which led to more accurate emissivity signatures. Also,
we focused the predictions of the soil texture properties (sand and
clay content) in this study on the predominant agricultural samples
sites, with more homogeneous texture characteristics in order to have
a more robust spectral modeling focused on coarse-texture soils.

2. Materials and methods

2.1. Investigation area, soil sampling, and sample analyses

The soil samples investigated in this study originated from the mar-
ginal edges of the Western Australian wheatbelt region. The semi-arid
area is located west of the township Mullewa (28°32′15″S, 115°30′25″
E) and is a test site of the Department of Agriculture and Food of West-
ern Australia (DAFWA), as the vulnerability of these soils to wind ero-
sion is regarded as to high and very high (Rogers, 1996). Thus, farmers
in this region mainly practice a conservation tillage system. The area is
dominated by an undulating sand plain system, which includes yellow
and red sands. An alluvial valley system includes relict red loams over
red-brown hardpans, respectively classified as Tenosols and Kandosols,
in the Australian Soil Classification (Isbell, 1996).

The soil sampling was carried out under dry conditions in accor-
dance with an airborne flight campaign in February 2010. Nine flight
lines have been recorded from two sectors (west and east) via the
hyperspectral SensorHyMapas shown in Fig. 1. Fromboth sectors circu-
lar sample plots with a diameter of 15 m have been selected within the
agricultural cropland (paddocks) and in the vicinity around the pad-
docks. Within these circular areas soil was scraped randomly from the
upper soil horizon (b20 mm depth) to fill a 500-gram sample bag. 137
soil sampleswere taken and subsequently air-dried and passed through
a 1 mm sieve.

From all 137 soil samples the mineralogy and geo-chemistry were
determined from X-ray diffraction (XRD) and X-ray fluorescence
(XRF) analyses. A few of the non-agricultural soil samples were classi-
fied as alkaline clays (Vertisols). These soils had much higher clay con-
tents (~60%) than the samples collected in the paddocks, and thus
stretched the range of soil characteristics of the dataset, which was
used in the quantification of the soils' geochemical properties (SiO2

and Al2O3 content).
For the analysis of the soil properties (sand, clay, and SOC content)

only the soil samples from the western sector were available (Fig. 1).
The grain size distribution was determined through sieving and
sedimentation using the pipette method (McKenzie, Henderson, &
nfrared (TIR) to detect and quantify semi-arid soil properties, Remote
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Fig. 1. Investigated area in the Western Australian wheatbelt region (~500 km north of
Perth). The trianglesmark the locationswhere surface soil samples have been takenwith-
in circular plots with a diameter of 15m (circles are not scaled). Red-crossed are two sam-
ple plots where LWIR spectral measurements have been taken in the field from the soil
surfaces with an emission FTIR spectrometer.

Table 1
Descriptive statistics of the soil properties (sand, clay, and soil organic carbon (SOC) con-
tent) and the soils' geo-chemistry (SiO2 and Al2O3 content) based on laboratory analyses
(number of samples (n), mean, standard deviation (SD), maximum (Max), minimum
(Min), median, 25% percentile (Q1), and 75% percentile (Q3)).

n Mean SD Max Min Median Q1 Q3

SAND (%) 41 92.01 2.33 95.30 85.50 92.20 91.20 93.30
CLAY (%) 41 6.62 2.03 12.60 3.80 6.80 4.90 7.60
SOC (%) 53 0.51 0.22 1.12 0.17 0.46 0.34 0.60
SiO2 (%) 137 89.59 6.26 97.00 60.30 91.60 87.40 93.60
Al2O3 (%) 137 4.50 2.58 14.80 0.90 3.70 2.60 6.00
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McDonald, 2002) to obtain clay (b2 μm), silt (2–20 μm), and subsumed
sand (20–1,000 μm) size fractions. The soils' organic components have
been removed with hydrogen peroxide before the grain size distribu-
tion analyses. Soil organic carbon (SOC) content was measured using
theWalkley–Black method (Walkley & Black, 1934). 53 of the soil sam-
ples in sector west were taken within paddocks and were used for the
prediction of the SOC content. These 53 agricultural samples predomi-
nantly showed a small range in texture (b15% clay and N85% sand
content) with only a few clay rich samples (~30% clay content). Incor-
porating such non-typical, clay rich samples, and thus modeling the
soils' clay and sand content across this data gap is feasible (Eisele
et al., 2012) but would result in too optimistic prediction models with
a very high predictive accuracy (R2). For a constant predictive precision
an increasing range of the response variable (e.g. clay content) would
result in unjustified increasing R2-values in the partial least squares re-
gressions, as shown in Eisele (2014). The focus of this research is tomap
textural changes of coarse textured soils as accurate as possible, as they
are more likely affected by wind erosion. We used 41 samples for the
quantification of the soils' clay and sand content, which covered the
dominating textural range b 15% clay and N85% sand content to support
the aim of this paper and enable a profound spectral interpretation
based on robust predictionmodels. This textural range is representative
for a typical distribution on the paddocks in the marginal edges of the
Western Australian wheat belt region as can be seen in Kobayashi
et al. (2010). They independently sampled paddocks within the same
Please cite this article as: Eisele, A., et al., Advantages using the thermal in
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area and obtained a similar textural distribution with sandy soils as
the dominant composition.

The datasets used for the quantitative analyses of this study are de-
scribed in Table 1. Only the clay and the sand contents have been used
as soil texture properties in this study. The complementary silt fraction
was not considered. In this study clay or sand content refers to the clay
or sand fraction determined in the grain size distribution analyses, and
the soils' grain size (or particle size) distribution is referred to as the
soils' texture.

2.2. Soil spectroscopic measurements

2.2.1. LWIR emission spectroscopy
The soils' spectral signatures in the LWIR were acquired via emission

FTIR spectroscopy, a passive emissionmodemethod,measuring the radi-
ance emitted by the sample itself. The spectra were recorded at ITC
(Faculty of Geo-Information Science and Earth Observation of the University
of Twente) spectral laboratory in Enschede using a portable MIDAC spec-
trometer (Model Illuminator M4401 — http://midac.com/illuminator.
html) equipped with customized foreoptics. The foreoptics contain a
flat folding mirror on a rotational axis that allowed the viewing of the
sample or one of the two calibration blackbodies built into the foreoptics.
The MIDAC used a liquid-nitrogen-cooled Mercury Cadmium Telluride
(MCT) detector and recorded interferograms with a spectral resolution
of 4 cm−1 (~40 nm @ 10 μm; sampling interval ~ 3.86 cm−1) within
the spectral range from 2.5 to 20 μm.However, for this study the spectral
rangewas reduced to 7–14 μm, due to decreasing signal strength outside
this range. The instrument's field of view (using a cut-off of 5% of the
maximum responsivity) has a starting diameter of 53 mm at the folding
mirror and spreadswith about 18mrad. For thismeasurement series, the
samples and an Infragold plate were placed 100 mm below the folding
mirror, resulting in a sampling spot with a diameter of 55 mm.

The radiometric calibration of the instrument and the downwelling
radiance measurement are not described in full length here, but can
be found in Eisele et al. (2012), which adopted methods of Hook and
Kahle (1996) and Salisbury et al. (1994) for a similar emission FTIR in-
strument (Design and Prototypes μFTIR-102). The temperature emissiv-
ity separation method (BBfit), applied to calculate emissivity values, is
described in detail by Salvaggio and Miller (2001).

2.2.1.1. Radiometric calibration and downwelling radiance measurements.
The instrument was radiometrically calibrated before each sample by
using radiance measurements from two individual blackbodies, set to
70 °C (BBhot) and 20 °C (BBcold). Gains and offsets were calculated
from these readings assuming a linear relationship between the
instrument's raw digital number (DN) values and the calculated at sen-
sor radiance. Downwelling radiance (DWR) was measured, to derive
the quantitative influence of the laboratory background self-emission
(e.g. walls, celling, etc.), which was included within the sample mea-
surements. A highly diffuse reflecting gold plate (Infragold®) with an
emissivity (ε) of ~0.05 was used to collect DWR, right after the two
blackbodymeasurements and just before the sample reading. The labo-
ratory background temperature and the temperature of the gold plate
were assumed to be equal due to sufficient time of acclimatization.
frared (TIR) to detect and quantify semi-arid soil properties, Remote
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2.2.1.2. Soil sample radiancemeasurements. The soil sampleswere heated
in a forced-air oven to 70 °C for aminimumof 4 h. This allowed the sam-
ples to bemuch hotter in relation to the background room temperature
during the measurement, which ensured an improved signal-to-noise
ratio (SNR). The samples were measured straight after being removed
from the oven and 64 scans were integrated (resulting in a measure-
ment time of about 15 s) to keep the decrease in temperature to a min-
imum while recording the spectra.
2.2.1.3. Temperature emissivity separation (TES). The retrieval of the soil
surface emissivity requires the knowledge of the exact surface temper-
ature at the time of measurement. This is estimated using an inverse
Planck curve fitting algorithm (BBfit), called temperature-emissivity
separation (TES), which we applied to the spectral region between 7
and 7.5 μm.We assumed this range to be close to ε ~ 1.0 due to the pre-
dominance of the quartz-rich mineralogy among theMullewa soil sam-
ples and thus, the associated Christiansen frequency feature of quartz
within this wavelength region.
2.2.2. DHR FTIR spectroscopy
To assess the accuracy of the LWIR emission spectroscopy approach,

we measured a reference material consisting of sand sized particles of
quartz (grain size: 200–800 μm; 99.95% SiO2 content) for its direction-
al–hemispherical reflectance (DHR). In contrast to passive mode
emission FTIR spectroscopy, active mode DHR spectroscopy does not
depend on a controlled and stabilized sample temperature and is not in-
fluenced by downwelling radiance. A Perkin&Elmer FTIR spectrometer
(model: SpectrumGX)with an external integrating sphere (100mmdi-
ameter, 25 mm sample port in a down-looking mode) was used for the
DHR measurements at GFZ (German Research Centre for Geosciences in
Potsdam). The spectra were recorded with a spectral resolution of
4 cm−1. To improve the SNR we integrated 2048 scans for the quartz
sand and 256 scans for the background measurements, which took ap-
proximately 40 min per sample. A comprehensive discussion about the
DHR FTIR spectroscopy can be found in Hecker et al. (2011).
2.2.3. VNIR-SWIR diffuse reflectance spectroscopy
Soil surface bidirectional reflectance in the VNIR-SWIR spectral re-

gion was measured in the laboratory using an Analytical Spectral De-
vices (ASD) Inc. FieldSpec-Pro Full Range (http://www.asdi.com)
spectrometer. Soil samples were illuminated with a 1000 W quartz-
halogen lampwith a zenith angle of 30°. The reflected light was collect-
ed from a nadir position using a bare-fiber (23° field of view, FOV) at a
height of 100mm. This resulted in a sampling spot size of ~50mm,mak-
ing it comparable with that of the MIDAC system. The spectral resolu-
tion of the ASD was 3–4 nm in the 0.35- to 1.0-μm region (spectral
sampling 1.4 nm), and 10–12 nm in the 1.0- to 2.5-μm region (spectral
sampling 2 nm). The entire spectrumwas resampled at 1 nm for display
purposes, which resulted in 2151 spectral bands. The ASD spectra were
subsequently corrected to relative reflectance using thewhite reference
measurement of a Spectralon® panel (http://www.labsphere.com) as a
reference.
Table 2
Spectral characteristics of airborne and spaceborne sensors used in the spectral resampling.

LWIR

Sensor TASI-600 ASTER

Spectral range 8.0–11.4 μm 8.3–1
Number of bands 32 5
Spectral resolution (FWHM) 125 nm 350 n

700 n

Please cite this article as: Eisele, A., et al., Advantages using the thermal i
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2.3. Spectral processing

To closely meet the spectral requirements of a remote sensing
approach,we reduced the spectral range of the spectral signatures in ac-
cordance with atmospheric windows, where electromagnetic radiation
is allowed to pass without significant attenuation. Within the atmo-
spheric windows we defined a spectral range, which was available
with the study's spectrometers andnot considered to be significantly in-
fluenced by noise. For the multivariate data analyses we used the LWIR
spectra from 7.9 μm to 12.3 μm, which resulted in 118 bands for full
spectral resolution of the MIDAC spectrometer. The VNIR-SWIR spectra
were used in the wavelength region from 0.4 μm to 2.45 μm, with the
exclusion of potential water vapor bands between 1.35 and 1.45 μm
and between 1.85 and 2.05 μm. This leads to 1753 ASD bands. To be con-
sistentwith the Beer–Lambert's law (Esbensen, 2006), the LWIR and the
VNIR-SWIR soil spectrawere transformed from reflectance (R) to absor-
bance (log10(1 / R)) and used as input for themultivariate data analyses.

The soil signatures were used in full spectral resolution as measured
with the particular spectrometer, and in addition, were spectrally
resampled to multi- and hyperspectral sensor specifications. For the
VNIR-SWIR the spectral response functions (SRF) of the airborne
hyperspectral HyMap sensor (HyVista, http://www.hyvista.com) and
the multispectral ASTER sensor, on board the Terra space platform
(http://asterweb.jpl.nasa.gov), were used to simulate the soils' spectral
responses. The LWIR spectra were resampled to the SRF characteristics
of the hyperspectral airborne sensor TASI-600 (ITRES, http://www.
itres.com) and to the multispectral LWIR sensor of ASTER. The sensors'
specifications are summarized in Table 2. Nine out of 125 HyMap
bands have been excluded for this simulation due to their proximity
to significant atmospheric water-absorption regions near 1.4 μm (4
bands) and 1.9 μm (5 bands), which resulted in 116 bands.

2.4. Multivariate data analyses

Partial least squares (PLS) regression (Wold, Sjöström, & Eriksson,
2001) — applying the NIPALS algorithm (Martens & Naes, 1992) —

was used to model and predict the soil properties from the soil spectral
signatures. PLS regression is awell-established quantification technique
and is tailored especially to spectroscopic requirements: overlapping
spectral response functions (multicollinearity), more spectral bands
than measured samples, and instrument noise. Furthermore, PLS offers
the option to interpret the prediction models in terms of their relevant
spectral influences via the regression coefficients and/or the loading
weights (Esbensen, 2006).

The performance of a PLS-model was assessed by employing a full
cross-validation (“leave one out”). The following performance indica-
tors were calculated for each PLS-model. The performance indicator
for the predictive accuracy was the coefficient of determination (R2),
and for the predictive precision, the root mean square error of cross val-
idation (RMSECV), the standard error of cross validation (SECV), and the
systematic error (BIAS). Note, if the RMSECV and the SECV are similar,
the BIAS is insignificant (Esbensen, 2006). As an accuracy index for the
prediction models the RPD (Ratio of Performance to Deviation) was
computed as the ratio of the standard deviation in the corresponding
data set to the SECV. Three classes of RPD can be defined (Chang,
VNIR-SWIR

HyMap ASTER

1.3 μm 0.45–2.48 μm 0.52–2.43 μm
125 9

m (B10–B12)
m (B13 & B14)

15–20 nm 40–100 nm

nfrared (TIR) to detect and quantify semi-arid soil properties, Remote
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Laird, Mausbach, & Hurburgh, 2001): category A (RPD N 2) are models
with accurate prediction abilities, category B (RPD between 1.4 and
2) is an intermediate class with models that can possibly be improved,
and category C models (RPD b 1.4) with no prediction capability.
3. Results

To evaluate the emissivity signatures, whichwere derived from pas-
sive mode LWIR emission spectroscopy in terms of radiometric calibra-
tion, downwelling radiance measurement, and the TES method, we
compared these spectra with the spectra derived from the active
mode DHR measurement. Reflectance (R) of the DHR spectrum was
brought to emissivity (ε) according to Kirchhoff's law, ε = 1 − R
(Nicodemus, 1965). The comparison is based on the quartz reference
sand, which allows the assumption of a nearly analog surface for both
measurements. Fig. 2 depicts these spectral signatures in the range be-
tween 7 and 14 μm. The comparison shows great consistency between
the two quartz reference sand spectra and emphasizes that the emissiv-
ity values derived from the LWIR emission spectroscopy are appropriate
for this study. The slight tilt effect, which can be diagnosed from 10 μm
to longer wavelengths, could not be addressed. Note, that the cooling of
the sample during the integration time of the measurement was not
considered as a possible cause for this effect (Eisele, 2014).

The assumption we made in the TES (ε ~ 1.0 between 7 and 7.5 μm)
proved to be a good choice for fitting the Planck curve, as for the quartz-
dominated soils this region offered reliable constant high emissivity
values. This can be seen from Fig. 2, which shows emissivity values
close to ε ~ 1.0 within the defined spectral rangewith no noticeable dis-
crepancy between the passive (TES applied) and the active (no TES
needed) spectroscopic measurements. Strictly, for soils this assumption
removes from its validity with decreasing sand content or SiO2 content.
However, even for the soil sample with the lowest sand and SiO2 con-
tent in the investigated area (Cal9: 18.7% and 57.1%, respectively), the
deviation was below 2% and was considered as negligible.
3.1. Soil spectral characteristics in the LWIR and in the VNIR-SWIR

The spectral signatures of 4 soil samples, which are representative of
the investigation area, are displayed in Fig. 3 for the LWIR (A) and for
the VNIR-SWIR (B). The figure additionally shows the spectrum of the
quartz reference sand (black-dashed curve), which is the investigated
soils'mainmineral constituent. Note that sample Cal9was found by tex-
tural analysis to have the highest clay content (68.4%) within the inves-
tigation area. This sample was taken away from the agricultural
paddocks and thus was not considered in the predictions of the soil
properties.
Fig. 2. Comparison of the spectral signatures of the reference quartz sand (99.95% SiO2
content) derived from the active mode reflectance directional hemispherical measure-
ment (DHR-FTIR spectroscopy) and from the passive mode emission measurement
(LWIR emission spectroscopy).
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3.1.1. Spectral characteristics of quartz based mineralogy and the influence
of iron

The LWIR soil signatures in Fig. 3-A demonstrate the characteristic
spectral properties of quartz: the reststrahlen bands (RB) with its in-
tense spectral contrast, which is produced by the strong fundamental
molecular vibrations of the Si–O stretching. The RB are bordered on
both sides by a Christiansen frequency feature (CFF) at 7.5 and at
12.3 μm,where the scattering is minimum, penetration into themateri-
al and thus emissivity (ε) is maximum (Salisbury, Hapke, & Eastes,
1987). Within the RB the distinct quartz doublet is apparent with an
emissivity maximum at 8.6 μm.

The similarity in themineralogy/texture of the quartz reference sand
and the extremes among the coarse textured soil samples, such asMu18
(94% sand and 5% clay content; 97% SiO2 content), suggests similar spec-
tral characteristics. But in the VNIR-SWIR (Fig. 3-B) the mismatch is ob-
vious and can be largely attributed to the grain coating effects of iron-
oxides (hematite) and -oxyhydroxides (goethite), which dominate the
spectral soil signatures in the VNIR. Both of these iron bearing minerals
show a strong spectral contrast until ~1.3 μm and their characteristic
spectral features (Hunt et al., 1971; Viscarra-Rossel & Behrens, 2010)
were evident among all measured soil spectra. However, the results of
XRD analyses detected hardly any hematite and goethite, as these min-
erals occurred as thin, nano-crystalline layers with almost no grain vol-
ume. These thin mineral layers cease to exist in the powdered sample
volumes by the grinding of the soil samples to a grain size b 20 μm for
the mineralogical analyses. The quartz reference sand does not show
any unique spectral characteristics throughout the VNIR-SWIR wave-
length region.

3.1.2. Spectral features of clay minerals
In general, the LWIR can contain spectral information of several typ-

ical clay minerals of soils, such as kaolinite, illite and montmorillonite.
This can be seen from the reference spectra of these minerals in Fig. 4,
which are taken from the ASTER spectral library (Baldridge, Hook,
Grove, & Rivera, 2009) and were converted to emissivity assuming
Kirchhoff's law. Note that these reference spectra were measured in bi-
directional (biconical) reflectance, which is a limitation in quantitative
comparisons to emission measurements from remote sensing. In the
spectral signatures of the soils samples from the paddocks in Mullewa
the spectral features of kaolinite are evident at 9.0 μm, at 9.8 μm, at
10.5 μm, and at 10.95 μm (Fig. 3-A and A1). An additional lobe within
the quartz doublet (i.e. a triplet) appears with the presence of kaolinite.
Kaolinite was also identified in the XRD analyses as the dominating clay
mineral among these soils. Moreover, the distinctive kaolinite doublet
in the SWIR around 2.2 μm (2.16/2.209 μm) related to Al–OH-content
(Hunt & Salisbury, 1970) emphasizes this mineralogy. Note that the
spectral features in the VNIR-SWIR around 1.4 μm and 1.9 μm are relat-
ed to H2O/OH and H2O, respectively, and are not available for remote
sensing datasets due to atmospheric absorption.

3.1.3. Soil texture related spectral characteristics
In the LWIR the soil spectral signatures reveal diagnostic soil

textural-related information. The LWIR spectra respond in accordance
with the theory (Salisbury & D'Aria, 1992b) and display the characteris-
tic reduction of the spectral contrastwithin the RBwith increasing influ-
ence of smaller particles (Fig. 3-A).

For the VNIR-SWIR the general theory states that the overall reflec-
tance increases with decreasing particle size, while the spectral contrast
of the clay feature decreases (Baumgardner, Silva, Biehl, & Stoner, 1985;
Ben-Dor, Irons, & Epema, 1999; Hunt, 1980). This was inconsistent with
the spectral signatures of the investigated soils. However, an inverse
trend can be recognized in the SWIR, which can be linked to the opaque
part of the theory from Irons,Weismiller, and Petersen (1989), who fur-
ther differentiates between opaque and transparent minerals (opaque
minerals, including oxides, accordingly show inverse relationship to
transparent minerals, which includes quartz). Even so, no robust
frared (TIR) to detect and quantify semi-arid soil properties, Remote
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Fig. 3. Spectral signatures of soil samples (solid curves) from theMullewa investigation area and from a reference quartz sand (dotted curves) in the LWIR (A) and in the VNIR-SWIR (B). The
table (C) depicts the corresponding soil properties (clay and sand content) as well as the soils' geo-chemical properties (SiO2 and Al2O3 content). For the LWIR the reference spectral signa-
tures from the ASTER spectral library (Baldridge et al., 2009) of pure kaolinite are displayed in packed (A1), and in powder (A2) condition. On the right side of the LWIR plots the spectral
ranges between 9.5 μm and 12.5 μm are displayed in more detail. Here fine-sized particles can cause volume scattering.
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regularity related to the particle size could be observed for the overall
reflectance of the soil spectra in the VNIR-SWIR. The reasonwasmainly
seen in the influence of grain coatings, and thus conflicting particle size
related behaviors. Although the continuum-removed absorption depth
(CRAD) of the claymineral spectral feature at 2.2 μmshowed the poten-
tial to quantify the clay content in previous studies (Nanni & Demattê,
2006; Rodger & Cudahy, 2009), the small textural range of the sandy
soils of Mullewa does not allow such a mono-causal approach (Fig. 5).

3.1.4. The influence of volume scattering on the soils' spectral signatures
The LWIR soil spectra showed additional texture-related spectral

features between 9.5 and 12.5 μm (Fig. 3-A). For particulate materials
Fig. 4. Spectral signatures of typical semi-arid soil minerals from the USGS (Clark et al., 2007)
(ASTER-VNIR-SWIR, 9 bands and ASTER-LWIR, 5 bands) and airborne (TASI, 32 bands) sensors
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the scattering processes in this spectral region are strongly influenced
by the materials' particle sizes (Salisbury & Wald, 1992). While the
LWIR is in large part controlled by surface scattering processes (excep-
tions are the CFFs), in the interaction between wavelength of 9.5–
12.5 μm and very fine material (0–75 μm) the influence of the volume
scattering becomes perceptible. This is demonstrated in Fig. 3-A2 in ac-
cordance with a reference spectrum of kaolinite powder (particle sizes:
0–2 μm). Here the volume scattering causes an emissivity troughwith a
minimum at 11.8 μm, a so called Transparency Feature (TF) (Salisbury &
Walter, 1989).

This reference powder sample contains only clay-sized particles
(100% clay content), whereas even the most clay-rich agricultural soil
and ASTER spectral library (Baldridge et al., 2009). The spectral bands of the spaceborne
used in the spectral resampling are highlighted in gray and green, respectively.

nfrared (TIR) to detect and quantify semi-arid soil properties, Remote
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Fig. 5. Clay content of the soil texture data set (41 samples) versus the continuum-removed
absorption depth (CRAD) of the VNIR-SWIR spectra between 2.15 μm and 2.25 μm.
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samples taken for the prediction have less than 15% clay content with a
mean value of approximately 7%. However, even these coarse textured
soils reveal the influence of the volume scattering. This is already notice-
able for lower clay contents, as the influence of the TF modifies other
spectral features in this region. This can be observed from the kaolinite
feature at 10.95 μm,which is apparent as a distinct emissivityminimum
in the coarse textured samples (e.g. Mu18: 4.7% clay content) and gets
successively reduced with increasing clay content. For the soil samples
with comparably high clay content (e.g. Mu46: 8.8% clay content) the
LWIR signature clearly indicates the built up of the TF.
3.1.5. Minerals in the soils' grain coatings
The distinct emissivity minimum at 10.95 μm coincides with the

same feature of the reference spectrum of packed kaolinite powder
(Fig. 3-A1), which simulates the spectral character of coarse textured
surfaces (Wald & Salisbury, 1995). Thus, we assume that the distinct
emissivity minimum at the 10.95 μm is caused by surface scattering
from kaolinite within the soils' grain coatings. This conclusion is sup-
ported by the fact that these extremely sandy soils, such as Mu18,
showed very little clay-sized particles in the grain size distribution anal-
yses. However, the spectral features for kaolinite were strong and dis-
tinct for these coarse textured soils in both the LWIR (9.0, 9.8, 10.5,
and 10.95 μm) and the SWIR (2.16/2.209 μm). Hence, in addition to
thehematite/goethite grain coatings,we assume that these soils also ex-
hibit kaolinite within their grain coatings. This was also observed by
Lyon (1990), who interpreted similar VNIR-SWIR signatures of coarse
textured Western Australian soils, as caused by iron-oxides and alumi-
nosilicates within the grains' “desert varnish coatings”.

While the iron-bearing minerals within the grain coatings were
spectrally evident only in the VNIR-SWIR (the thermal infrared wave-
length did not have enough energy to trigger the necessary electron
charge transfer processes, and thus these iron bearing coatings were
transparent for the LWIR), the kaolinite within the grain coatings was
evident in the soil spectra of both wavelength regions, in the VNIR-
SWIR and in the LWIR.
Table 3
PLS-model performance indicators for the soil spectral signatures in their full spectral resolutio
(R2), root mean square error of cross validation (RMSECV), standard error of cross validation (

n LWIR (full-resolution)

f R2 RMSECV SECV BIAS

SAND 41 4 0.826 0.986 0.997 −0.037
CLAY 41 4 0.772 0.980 0.992 −0.002
SOC 53 6 0.778 0.104 0.105 −0.004
SiO2 137 3 0.918 1.800 1.807 −0.004
Al2O3 137 3 0.911 0.772 0.775 −0.002
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3.2. Prediction of soil properties (sand, clay, and SOC content)

PLS-calibration and -validation were realized with the LWIR and the
VNIR-SWIR spectral signatures for the soil properties sand-, clay-, and
SOC content. The descriptive statistics of the datasets that were used
are summarized in Table 1, and the PLS-models' performance indicators
for the validation stage are summarized in Tables 3, 4, and 5. The
models' y-variances are displayed in Fig. 6.

3.2.1. Full spectral resolution

3.2.1.1. Soil texture properties (sand and clay content). Both soil texture
properties (sand and clay content) could be predicted with high
precision from the LWIR soil spectra with full spectral resolution
(RMSECVSAND: 0.986%; RMSECVCLAY: 0.980%). Both models showed a
high predictive accuracy, as they were able to explain a large part of
the soil properties' variances (y-variance = R2 ∗ 100) (R2

SAND: 0.826;
R2

CLAY: 0.772). Only 4 factors were needed to establish robust models
for the sand and the clay content. For both properties the explained var-
iances were close between calibration (blue) and validation (red)
(Fig. 6-A1 and B1), thus, overfitting in these models was low. The
robustness of these models was also demonstrated from the uniform
development (quasi-parallel) of the explained variance between cali-
bration and cross-validation over the number of model factors.

To determine the models' spectral drivers, their regression coeffi-
cients (RC) were interpreted (Fig. 7). The RC were calculated from the
models' loading weights (calculated for each model factor), which rep-
resent a direct link between the spectral space and the corresponding
predicted soil property (Esbensen, 2006). The models for predicting
the sand and the clay content were both driven by the same spectral
drivers (Fig. 7-A1 and B1), butweremodeled inversely, aswas expected
from their high negative correlation. The RC of the soil texture models
showed large influence at 9 μm and to a lesser degree at 9.8 μm. These
wavelengths correspond to emissivity peaks of kaolinite. The peak in
the correspondingRC at 9 μm(or 9.8 μm) indicates that this spectral fea-
ture is (1) important and (2) its importancedrops from9 μm(or 9.8 μm)
in both directions.

Besides these mineralogical spectral drivers these models also pre-
sented soil texture related spectral drivers. On the one hand, this was
evident as an ascent (sand content) / descent (clay content) towards
the quartz doublet. This ascent is associated with the described theory
of the grain size related reduction of the spectral contrast within the
reststrahlen bands (driven by surface scattering). And on the other
hand, this could be seen as a volume scattering induced particle size re-
lated modification for the spectral response at wavelengths less and
greater than the 10.95 μm-feature (Note, that also these transition
points (RC = 0) between increasing and decreasing influence marked
wavelength which were important for the models.). Thus, the soil tex-
ture models could benefit from both mineralogical and particle size re-
lated spectral drivers.

Quantifying the soil texture properties from the VNIR-SWIR pro-
duced less stable models than from the LWIR, which was immediately
n (number of samples (n), number of model factors used (f), coefficient of determination
SECV), systematic error (BIAS), and the ratio of performance to deviation (RPD)).

VNIR-SWIR (full-resolution)

RPD f R2 RMSECV SECV BIAS RPD

2.34 7 0.566 1.557 1.579 0.055 1.48
2.05 7 0.537 1.398 1.413 −0.072 1.44
2.10 4 0.571 0.144 0.146 −0.002 1.51
3.46 9 0.784 2.919 2.931 0.049 2.14
3.33 11 0.826 1.079 1.083 −0.02 2.38
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Table 4
PLS-model performance indicators for the soil spectral signatures resampled to TASI (LWIR) and to HyMap (VNIR-SWIR).

n LWIR (resampling TASI) VNIR-SWIR (resampling HyMap)

f R2 RMSECV SECV BIAS RPD f R2 RMSECV SECV BIAS RPD

SAND 41 4 0.791 1.080 1.092 −0.035 2.13 7 0.513 1.649 1.670 0.019 1.40
CLAY 41 4 0.768 0.990 1.001 −0.004 2.03 7 0.520 1.423 1.440 −0.053 1.41
SOC 53 6 0.733 0.114 0.115 −0.004 1.91 4 0.608 0.138 0.139 −0.002 1.58
SiO2 137 3 0.910 1.881 1.888 −0.015 3.32 9 0.776 2.972 2.984 0.031 2.10
Al2O3 137 3 0.908 0.786 0.789 −0.004 3.27 11 0.837 1.048 1.051 −0.008 2.45
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evident from thedevelopment of their explainedvariances over thenum-
ber of model factors (Fig. 6-D1 and E1). Both VNIR-SWIR models, for the
sand and the clay content, showed large differences in the explained var-
iances between model calibration and validation. This means that the
texture properties were partially modeled (calibrated) from spectral in-
formation, which could not be found in the validation stage again. It can
be assumed that noise (in the sense of information which is not related
to the soil property) was a large factor in these models. Consequently,
these models were predominately influenced by overfitting and would
reveal their sensitivity in further predictions. Compared to the LWIR,
the VNIR-SWIR models needed more factors (Sand: 7; Clay: 7), and
with these they explained less of the y-variance (R2

Sand: 0.566; R2
Clay:

0.537) with less precision (RMSECVSand 1.557%; RMSECVClay: 1.398%).
The spectral Interpretation from theRC (Fig. 7)wasmore difficult for

the VNIR-SWIR models because of the large number of model factors
(additional model factors comprise additional loading weights, which
successively weakens the information of the inherent relationships
within the final RC, comprising all loading weights). However, from
the RC it was observed that in addition to the SWIR features (shown
by the kaolinite doublet at 2.16/2.209 μm) the VNIR response had a
large influence on the soil texture models (e.g. spectral features of he-
matite and goethite) (Fig. 7-A2 and B2). A deeper look inside themodels
via an interpretation of their loading weights (not shown here), con-
firmed the assumption that the VNIR-SWIR models predicted the sand
and the clay content primarily via the spectral features of the soils'
iron based grain coatings. As these spectral drivers— hematite and goe-
thite— are not directly associated with the soils' grain size distribution,
this resulted in comparable complex prediction models. In the discus-
sion section we made one possible explanation to that effect.

3.2.1.2. Soil organic carbon (SOC). Both wavelength regions, the LWIR
and the VNIR-SWIR, were dominated by mineralogical spectral influ-
ences. Nevertheless the content of soil organic carbon (SOC) could be
predicted from the LWIR with good performance (R2: 0.778; RMSECV:
0.104%), and also, to a lesser degree, from the VNIR-SWIR soil spectra
(R2: 0.571; RMSECV: 0.144%). But both models were mainly driven by
indirect relationships and not by direct optical features of organic func-
tional groups. This increased themodels' complexity regarding the rela-
tionships between spectral features caused by vibrations of a specific
functional group and the response variable.

Themodels' complexity can be seen for the LWIR from the additional
model factors in Fig. 6-C1, which were needed to reach the maximum
value of the explained y-variance and to guarantee at the same time
Table 5
PLS-model performance indicators for the soil spectral signatures resampled to 5 ASTER-LWIR

n LWIR (resampling to 5 ASTER bands)

f R2 RMSECV SECV BIAS

SAND 41 4 0.758 1.161 1.176 0.004
CLAY 41 4 0.728 1.072 1.085 −0.002
SOC 53 5 0.383 0.173 0.175 0.001
SiO2 137 3 0.883 2.15 2.158 0.023
Al2O3 137 3 0.867 0.946 0.949 −0.007
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minimum overfitting to obtain a preferable robust model for further
predictions. The spectral interpretation of the SOC models from the RC
wasmore difficult than of the soil texturemodels in the LWIR, due to ad-
ditional model factors (Fig. 7-C1). The mineralogical influence, howev-
er, was evident from the RC, where the kaolinite spectral features at
9.0 μm and at 9.8 μm could be identified. Furthermore, the RC of the
SOCmodel revealed two othermajor influences, whichwere associated
as primarily quartz spectral features, diminished by the influence of in-
creasing SOC content: (1) the wavelength position of the reflection
point around 8.1 μmwithin the steep ascent from the CFF (at 7.5 μm) to-
wards the first lobe of the quartz doublet, and (2) the descent towards
the CFF at 12.3 μm. Noticeable influence could also be determined
from the wavelength within the first lobe of the quartz doublet until
8.6 μm, which could also be the result of a diminished quartz feature
(emissivity maximum at 8.6 μm), but is also in accordance with the
wavelength region, where spectral active organic components such as
carboxylic acids, aliphatic OH, polysaccharides, or cellulose have been
found (Bornemann, Welp, & Amelung, 2008, 2010; Bornemann, Welp,
Brodowski, Rodionov, & Amelung, 2008; Haberhauer, Rafferty, Strebl,
& Gerzabeck, 1998; Rumpel, Janik, Skjemstad, & Kogel-Knabner, 2001;
Solomon, Lehmann, Kinyangi, Liang, & Schafer, 2005).

In the VNIR-SWIR the SOC model reached its comparable lowmaxi-
mum in the y-variance (R2: 0.571) after 4 factors and thus required
fewer factors than the soil texture models, and also showed less
overfitting in this region (Fig. 6-F1). The RC showed that the models
were predominantly selecting the wavelength of the VNIR to predict
the SOC content (Fig. 7-C2). This corresponds with the wavelength re-
gion where organic soil components have been found to be spectrally
active (Ben-Dor & Banin, 1995; Ben-Dor et al., 1997). We attributed
this influence to the spectral features of the iron-bearing grain coatings
(hematite and/or goethite), which were evident in the model's loading
weights of all four factors (Figs. 4 and 8). The SWIR, where spectral fea-
tures of soil organic components also have been identified (Viscarra-
Rossel & Behrens, 2010), showed minor influence in this prediction
model.

3.2.2. Resampling to multi- and hyperspectral sensor specifications
The same LWIR and VNIR-SWIR soil spectral signatures were spec-

trally resampled to multi- and hyperspectral sensor specifications
(VNIR-SWIR: HyMAP, ASTERVNIR-SWIR; LWIR: TASI, ASTERLWIR). Based
on these resampled soil spectra PLS models were established for the
same datasets and for the same soil properties (sand-, clay-, and SOC
content). The PLS-models' performance indicators for the validation
bands and to the 9 ASTER-VNIR-SWIR bands.

VNIR-SWIR (resampling to 9 ASTER bands)

RPD f R2 RMSECV SECV BIAS RPD

1.98 2 0.105 2.23 2.26 0.017 1.03
1.87 2 0.179 1.861 1.884 −0.021 1.08
1.26 3 0.579 0.143 0.144 −0.001 1.53
2.90 7 0.719 3.326 3.338 0.019 1.88
2.72 7 0.694 1.433 1.438 −0.003 1.79

nfrared (TIR) to detect and quantify semi-arid soil properties, Remote
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Full resolution Resampling TASI Resampling ASTER 
LWIR

Full resolution Resampling Hymap Resampling ASTER 
VNIR-SWIR

A1 A2 A3

B1 B2 B3

C1 C2 C3

D1 D2 D3

E1 E2 E3
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Fig. 6. Explained y-variance of the predicted parameters sand, clay, and SOC content in the PLS-models based on the LWIR (A, B, C) and the VNIR-SWIR (D, E, F) soil spectra in the full
spectral resolution (1), and for the spectral resampling onTASI/HyMap (2), and ASTERLWIR/ASTERVNIR-SWIR (3). Calibration indicates the blue and cross-validation the red curve. The arrows
indicate the number of model factors used in the predictions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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stage are summarized in Tables 4 and 5. The models' y-variances are
displayed in Fig. 6.

The decreasing spectral dimensionality of the LWIR showed little in-
fluence on the performance indicators for the prediction models of the
sand and clay content. Using the multispectral ASTERLWIR-resolution
(5 spectral bands) these soil texture properties could be predicted
Please cite this article as: Eisele, A., et al., Advantages using the thermal in
Sensing of Environment (2015), http://dx.doi.org/10.1016/j.rse.2015.04.001
with only a slightly decreased accuracy (R2
Sand: 0.758; R2

Clay: 0.728)
and precision (RMSECVSand: 1.161%; RMSECVClay: 1.072). However, the
prediction of the SOC content using the multispectral ASTERLWIR-
resolution was degraded by this spectral band reduction (R2

SOC:
0.383). The difference could be seen from the development of the y-
variances in Fig. 6. The models of the texture properties (sand and clay
frared (TIR) to detect and quantify semi-arid soil properties, Remote
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Fig. 7. Regression coefficients (RC) of the PLS-models (clay, sand, and SOC content) based on the LWIR and based on theVNIR-SWIR soil spectra (full spectral resolution). The dashed green
lines indicate wavelength positions of spectral drivers which correspond to identifiedmineral spectral features (see Fig. 3). VNIR-SWIR-bands which have been ignored in the prediction
models due to their proximity to significant atmospheric water-absorption are highlighted in gray.
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content) were able to explain a large proportion of the y-variance on a
constant level down to the multispectral ASTERLWIR-resolution and
remained very robust (Fig. 6-A1 to A3 and B1 to B3). The proportion
of the explained y-variance in the SOCmodel, however, was decreasing
successively with decreasing spectral resolution, while overfitting in-
creased (Fig. 6-C1 to C3). Only the models based on the hyperspectral
resolutions were able to reproduce the comparable complex settings
of the relationship between LWIR spectra and SOC content for a success-
ful quantification. Prediction accuracy and precision for the LWIR
hyperspectral TASI-resolution were marginally lower than from the
Fig. 8. Loading weights (1–4) of the 4-factor PLS-model for prediction of the SOC content
(%) from the VNIR-SWIR soil spectra (full spectral resolution).
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full spectral resolution for the soil texture properties, and more pro-
nounced in the accuracy for the prediction of the SOC content (R2

SOC

(TASI): 0.733; R2
SOC (full resolution): 0.778).

The low predictability and high complexity of the texture models
using the VNIR-SWIR wavelengths were repeated for the models
based using HyMap-resolution. The multispectral ASTER-resolution
showed low ability for the prediction of the texture properties (Fig. 6-
D3 and E3). The prediction of the SOC content using the VNIR-SWIR
wavelengths could be realized on a constant level from the full resolu-
tion down to the multispectral ASTERVNIR-SWIR-resolution with
explaining y-variances of about 60% (Fig. 6-F1 to F3).

3.3. Prediction of the soils' geochemistry (SiO2 and Al2O3 content)

Partial Least Squares calibration and cross-validation were accom-
plished with the LWIR and the VNIR-SWIR spectral signatures for the
soils' SiO2 and Al2O3 content. The descriptive statistics of the datasets
used are summarized in Table 1, and the PLS-models' performance indi-
cators for the validation stage are summarized in Tables 3, 4, and 5. The
models' y-variances are displayed in Fig. 9. The 137 samples used in this
dataset represent a broader range of soil characteristics, as they com-
prise samples distributed over the whole investigation area (including
agricultural and non-agricultural soils).

3.3.1. LWIR
Both geochemical properties, SiO2 content (associated with quartz)

and Al2O3 content (associated with clay minerals), were predicted
nfrared (TIR) to detect and quantify semi-arid soil properties, Remote
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Fig. 9. Explained y-variance of the predicted geo-chemical parameters (SiO2 andAl2O3 content) in the PLS-models based on the LWIR and on the VNIR-SWIR soil spectra in the full spectral
resolution and for the spectral resampling. Calibration indicates the blue and cross-validation the red curve. The arrows indicate the number ofmodel factors used in the predictions. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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from the full spectral resolution with high accuracy (R2
SiO2: 0.918;

R2
Al2O3: 0.911) and high precision (RMSECVSiO2: 1.8%; RMSECVAl2O3:

0.772%). This performance was accomplished after just 3 factors, with
a high degree of robustness (Fig. 9-A1 and B1). This was apparent as
small differences in the explained y-variances between calibration and
validation. Overfitting was considered negligible in these models.

The RC of the SiO2-model in Fig. 10 showed the dominant influence
of the reststrahlen bandsproduced by the fundamentalmolecular vibra-
tions of the Si–O stretching. This can be seen particularly from the ascent
between ~8 μm and ~8.6 μm (including the first lobe of the quartz dou-
blet) and the ascent between ~9.3 μm and ~9.8 μm (based on surface
scattering). Additionally the importance of the volume scattering in-
duced spectral region from 11 μm on was indicated as indicated in
Fig. 3-A2. The RC of the SiO2–model did also reveal evidence of the spec-
tral feature of features kaolinite at 9.8 μm. The Al2O3-model on the other
hand was dominated by the spectral features of kaolinite (at 9.0 μm,
9.8 μm, 10.5 μm, and at 10.95 μm) and also showed the influence of
the volume scattering region.

The reduction in the spectral dimensionality from the LWIR
hyperspectral resolution (full-resolution and TASI) to the multispectral
resolution (ASTERLWIR) showed only a very small reduction of the
Please cite this article as: Eisele, A., et al., Advantages using the thermal in
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prediction indicators for the SiO2 and the Al2O3 content. Five ASTER
bands were still sufficient to establish very robust models for both geo-
chemical properties with a high predictive accuracy (R2

SiO2: 0.883;
R2

Al2O3: 0.867) and a high predictive precision (RMSECVSiO2: 2.15%;
RMSECVAl2O3: 0.946).

3.3.2. VNIR-SWIR
The simplicity of the LWIR models was in sharp contrast to the very

complex VNIR-SWIR models (Fig. 9-C1 and D1). Sufficient prediction
from the VNIR-SWIR could only be realized for both geochemical prop-
erties by using much more model factors. This is due to SiO2 having al-
most no features in the VNIR-SWIR. Due to the fact that the performance
indicators do improve in PLSwith each additional model factor, the pre-
dictive accuracy and the predictive precision from Table 3 were consid-
ered as not beingmeaningful in this case. For the same reason, a detailed
interpretation of the RC was not feasible. However, it was noted that
compared to the VNIR-SWIR models of the soil properties (sand, clay,
and SOC content) these geochemical models did not show such exces-
sive overfitting in the development of the y-variances. Both geochemi-
cal VNIR-SWIR models also revealed more influence of the clay
mineral feature at 2.16/2.21 μm in their RC. The spectral resampling in
frared (TIR) to detect and quantify semi-arid soil properties, Remote

http://dx.doi.org/10.1016/j.rse.2015.04.001


Fig. 10.Regression coefficients (RC) of the PLS-models of the predicted geo-chemical parameters (SiO2 andAl2O3 content) based on the LWIR and based on theVNIR-SWIR soil spectra (full
spectral resolution). The dashed green lines indicatewavelength positions of spectral driverswhich correspond to identifiedmineral spectral features (see Fig. 3). VNIR-SWIR-bandswhich
have been ignored in the prediction models due to their proximity to significant atmospheric water-absorption are grayed out. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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the VNIR-SWIR showed a decrease in the prediction performance with
the transfer from the hyperspectral (HyMap) to the multispectral reso-
lution (ASTERVNIR-SWIR) (Fig. 9-C2 to C3 and D2 to D3).

4. Discussion

All of the inspected soil properties (sand-, clay, and SOC-content)
and the geochemical properties (SiO2 and Al2O3 content) could be pre-
dicted with higher accuracy and precision from the LWIR than from the
VNIR-SWIR soil spectra. This difference was particularly evident for the
prediction of the soil texture properties, sand and clay content, which
possessed a small range in values. Here the VNIR-SWIR was clearly
outperformed by the LWIR, as the VNIR-SWIR basedmodels were dom-
inated by the influence of the strong spectral contrast of the iron bearing
grain coatings (hematite and goethite) in the VNIR. The texture related
spectral feature in the SWIR (2.16/2.21 μm) showed minor influence in
these models. This was evident from the models' RC values (Fig. 7).
However, the prediction models of the SiO2 and Al2O3 content clearly
showed the influence of this spectral feature (Fig. 10-A2 and B2). This
could be addressed to either the extended texture range (less conflict-
ing effects throughout grain coatings) or to the fact that this spectral
feature is more related to the chemical composition than to the soil
texture.

4.1. Spectral requirements for the detection of soil texture

In this study the silt fraction was not considered. In order to deter-
mine a soil's texture, its sand (N20 μm) and clay fraction (b2 μm)
needs to be known, which allows estimating the complementary silt
fraction (2–20 μm). The quantification of the sand and the clay content
was basically accomplished from an indicative spectral response from
either the particle size or from a distinctive mineralogy within these
two fractions. The mineralogy of the sand and the clay fractions gener-
ally is sufficiently distinctive. The sand fraction consists predominantly
of themineral quartz, and the clay fraction of clay minerals (e.g. kaolin-
ite). However, the silt fraction typically is amixture of themineralogy of
the sand and clay fraction (Brady & Weil, 2008). Predicting the silt
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content was not possible, neither from PLS-models using the LWIR nor
from the VNIR-SWIR soil spectra (results are not shown). The reason
for the outstandingly successful prediction of the sand and the clay con-
tent from the LWIR soil spectra was the presence of both mineralogical
and texture-related spectral drivers in these models.

4.2. Modeling texture from VNIR-SWIR despite the influence of iron bearing
grain coatings

Themodels based on theVNIR-SWIR soil signatures,whichwere still
moderately able to predict the soil texture properties (this could only be
realized from the hyperspectral resolution), could be explained by the
potential relationship between the VNIR-SWIR soil spectra and the
soils' texture. Despite the VNIR-dominance of the iron bearing minerals
in the investigated soils, the content of hematite and goethite was
assessed as low in the XRD analyses. These iron oxides/oxyhydroxides
were concentrated in the soils' thin grain coatings. The specific surface
rapidly increases with decreasing particle size, which justified an indi-
rect relationship between soil texture and the spectral characteristics
of theseminerals. This indirect relationship becomes evenmore compli-
cated by the different spectral characteristics of hematite, goethite, and
its mixtures. The PLS models had to consider these circumstances, and
thus needed more model factors. This resulted in more complex and
less robust models.

4.3. Iron and clay bearing grain coatings in the LWIR and in the VNIR-SWIR

The strong spectral contrast of the hematite and/or goethite in the
soils' grain coatings was accounted as the main interference factor
that negatively influenced the prediction models based on the VNIR-
SWIR. In this regard, the advantage of the LWIR became particularly ev-
ident in the prediction of the soils' geo-chemistry. The SiO2 and Al2O3

content, derived from the XRF analyses, is related to the finely ground
soil samples (grain size b 20 μm), where the iron bearing minerals of
these thin layers cease to significantly influence within the net volume.
However, these predictionmodels were based on the LWIR spectral sig-
natures using the original soil samples, which clearly demonstrated the
nfrared (TIR) to detect and quantify semi-arid soil properties, Remote
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existence of hematite and/or goethite in their grain coatings in the cor-
responding VNIR soil spectra. The high accuracy and the high precision,
which were achieved in the prediction of the SiO2 and Al2O3 content
(even by using just 5 bands based on the ASTER-resampling), suggest
that the LWIR response did not become affected by the soils' grain coat-
ings of hematite and/or goethite. This was because these comparable
longwavelengths did not hold enough energy to interact with these ox-
ides/oxyhydroxides (electronic transitions occur at shorter wave-
length). Thus, these iron-bearing minerals within the grain coatings
appeared transparent for the LWIR.

In contrast, the kaolinite within the grain coatings interacted with
both wavelength regions. This was apparent by the presence of strong
kaolinite spectral features of the coarse textured soil samples in the
VNIR-SWIR and in the LWIR.

The advantage of the LWIR over the VNIR-SWIRwas based on the in-
creasing influence of the volume scattering in the LWIR soil spectrawith
the increasing influence of clay-sized particles, whichmodified the sur-
face scattering induced features at 10.95 μmwith respect to soil texture.

The multivariate data analyses technique, which was used to quan-
tify the soil texture properties, was able to handle these relationships.
It involved the whole continuum of the spectrum and as well assisted
the spectral interpretation of the models, which confirmed such rela-
tionships. Mono-causal quantification approaches, such as from CRAD,
were not able to encompass such complex relationships. Hewson,
Cudahy, Jones, and Thomas (2012) addressed limitations in the quanti-
fication of clay content from spectral indices based on selected wave-
lengths derived from LWIR soil spectra to interferences from clay
mineral particle coatings over coarser grain particles.

4.4. Transferability of the prediction models to soils from other locations

Strictly, thedemonstrated PLSmodels' prediction accuracy/precision
are site specific. Increasing deviation or even inefficacy needs to be ex-
pected when applying these models to other sites, which show soil
characteristics departing from those used in the primary calibration.
Similar soil mineralogy and range of the soil properties would increase
the feasibility to transfer a model to another site. However, best predic-
tion performance will be achieved using site-specific models, which
preferably encompasses the full range of soil characteristics in the cali-
bration stage.

4.5. Soil surfaces under outdoor/field conditions

With regard to an applicability of the laboratory LWIR soil spectra to
outdoor/field measurements Salisbury et al., 1994 & Johnson, Lucey,
Horton, & Winter, 1998 indicated possible modifications of the soil
spectral signatures, as a consequence of the distortion of the pristine
A

Fig. 11. LWIR soil spectra derived from emission FTIRmeasurements (μFTIR spectrometer) in the
a non-agricultural plot with a surface crust. (For interpretation of the references to color in thi
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soil surface conditions, as well as through the transport, and thus mix-
ture, of such soil samples. Accordingly, an undisturbed soil surface is
comparably free of small particles due to atmospheric forces, such as
wind and water. These pristine conditions are referred to as clean soils
and can only be observed in the field. Due to distortion and transport/
mixture, these soils get contaminated by small sized particles, such as
clay, which surround the soils' grains like coatings (dirty soils). As a con-
sequence these dirty soils show reduced spectral contrast in their LWIR
signatures.

The theory of dirty and clean soilswas tested for pristine soil surfaces
in the investigation area during a field survey in April 2011 (Eisele,
2014). Field spectral measurements included agricultural and non-
agricultural plots close to the locations from 2010 measured with
μFTIR-102 spectrometer (integration time: 16 scans or ~5 s). The spec-
tra were taken under dry soil conditions without noticeable amount of
vegetation residues in the FOV. Based on these spectra the theory of
dirty and clean soils could generally be confirmed for non-agricultural
(natural) soil surfaces, especially for those which exhibited soil crusts.
For the agricultural plots, however, the differences between field and
the laboratory spectrum were small. This was attributed to the land
management practices on the agricultural plots, which cannot be
completely avoided even under conservational farming practices.
Fig. 11 demonstrates the difference between the spectra for an agricul-
tural plot (A) and for a non-agricultural plot with a soil crust (B). The lo-
cations of these plots are marked in Fig. 1 (A in the lower and B in the
upper window).

4.6. Influence of cellulose

Although the paddocks of Mullewa are partially covered with crop
residuals due to conservation farming practices, in this study we did
not consider the influence of cellulose on the LWIR soil spectra. The
quantification of soil properties within the VNIR-SWIR, such as associat-
ed with clay content, is in the vicinity of the cellulose feature at 2.08 μm
and is potentially affected from its influence (Rodger & Cudahy, 2009).
Although cellulose also exhibits spectral features in the LWIR (Elvidge,
1988), we expect less influence from it on the soil spectra than in the
VNIR-SWIR. This is a result of the strong spectral contrast of the
quartz-based soils, the availability of a greater variety of mineral spec-
tral features, and of texture related spectral features in the LWIR soil
spectra.

4.7. Influence of atmospheric gases

For this study it was assumed that there was negligible atmospheric
influence for the laboratory andfield spectra, but as shown in Fig. 10 the
influence of water vapor towards 8 μm is identifiable. As the distance
B

field (red spectra) and in the laboratory (black spectra) for an agricultural plot (A) and for
s figure legend, the reader is referred to the web version of this article.)
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from the Earth's surface through remote sensing applications (airborne
or spaceborne) increases, there will be a reduction of information from
both ends of the atmospheric window due to an increasing atmospheric
column between target and sensor (due to H2O b 8 μm and due to
CO2 N 14 μm). This could also have an impact on the assumption we
made in the TES, for which we defined the spectral range between 7
and 7.5 μm to fit the Planck curve. However, an alternative spectral
range could be defined in the vicinity of the second CFF around
12.3 μm. Furthermore, we expect an interference of the soil spectra
within the atmospheric window due to the influence of ozone. This
would occur in the wavelength region between 9 μm and 10 μm,
where important spectral drivers were located (Figs. 7 and 10). The
ozone interference would be less influential to airborne hyperspectral
imagery than to datasets obtained from spaceborne platforms, which
would acquire through the ozone-enriched stratospheric layer.

4.8. Remote sensing perspective

The results demonstrated the LWIR as the appropriate spectral re-
gion for an operational remote sensing system to monitor soil surface
dynamics in dryland agricultural regions, where small ranges in soil
properties and spectral interferences due to grain coatings emerge. In
contrast to the VNIR-SWIR, the LWIR did not show noticeable interfer-
ence with iron based grain coatings (hematite and/or goethite) and
compensated for the interference from clay mineral based grain coat-
ings (kaolinite) due to a greater variety of spectral drivers in the LWIR.
The soil texture models in the LWIR could benefit from bothmineralog-
ical and particle size related spectral drivers.

The spectral resampling showed that the prediction of the soil
texture and the geochemical properties could be realized from themul-
tispectral ASTERLWIR-resolution data with only slightly decreased accu-
racy and precision. However, the prediction of the SOC content was not
feasible from the multispectral ASTERLWIR-resolution. A hyperspectral
system would be required for this. We want to emphasize that for a
real LWIR multispectral dataset acquired via a remote sensor (e.g.
ASTER satellite) we do not expect to obtain such high prediction perfor-
mance, which was achieved for the soil texture and the geochemical
properties and are based on the spectral resampling simulations. Be-
sides the atmospheric influences, a real multispectral dataset would
also suffer from a more inaccurate determination of the soils' surface
temperature. Note that the spectral resampled laboratory soil signa-
tures contained emissivity values, which were derived via a tempera-
ture emissivity separation (TES) approach based on a hyperspectral
dimension. A LWIR hyperspectral system would also benefit from the
ability to identify the involved soilmineralogy, as these spectral features
cannot be resolved with a multispectral resolution. Furthermore a
hyperspectral system could deliver important atmospheric information,
such as water vapor content.

Some limitations have to be considered with regard to scaling LWIR
from laboratory to satellite. LWIR sensors generally rely on coarser spa-
tial and spectral resolution compared to VNIR-SWIR sensors to compen-
sate for less energy in the LWIR. Under-determined solution equations
are inevitable for LWIR products. Their accurate interpretation depends
predominantly on the accuracy of the TES, which is affected by the SNR
of the data and the spectral resolution of the sensor. Especially inmoun-
tainous regions high temperature differences can occur due to different
slope and aspect that affect the TES in contrast to VNIR-SWIR sensors.
However, the inherent self-emission associated with the LWIR allows
remote sensing also from shaded targets. Furthermore, LWIR sensors
can operate below a cloud cover and even during the night.

5. Conclusion

The study revealed that the LWIR provides the capabilities to detect
and quantify small ranges of the soil properties sand-, clay, and SOC-
content, as they appear in the semi-arid agricultural landscapes of
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Mullewa, inWestern Australia. Thus, the LWIR offers extended possibil-
ities for potential soil monitoring applications in the area of Mullewa by
means of remote sensing. All of the three soil properties and the geo-
chemical properties, SiO2 and Al2O3 content, could be predicted from
the LWIR soil spectra with better predictive accuracy and predictive
precision than from the VNIR-SWIR soil spectra. From the LWIR spectra,
the soil texture and the geochemical properties could be predicted from
even a multispectral resolution (spectral resampling to the 5 ASTER
LWIR bands) with only a slight loss of performance based on simulation
studies.

The findings of this study suggest that the LWIR has the potential to
be the idealwavelength region to quantitativelymonitor the soil surface
dynamics in semi-arid environments,where small ranges in soil proper-
ties occur and spectral interference from grain coatings is possible. This
baseline study demonstrated the extended capabilities for a remote
sensing of semi-arid environments in the LWIR, as these wavelengths
did not show noticeable interference with iron based grain coatings
(hematite and/or goethite) and in addition allowed for the compensa-
tion for the interferencewith claymineral based grain coatings (kaolin-
ite) via a greater variety of spectral features in the LWIR. Based on this
study an observation of large scale farming areas, where erosion rele-
vant properties need to be quantitatively derived, appears to be more
realistic through the means of a LWIR remote sensing.
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