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As a way to understand vegetation changes, trend analysis on NDVI (normalized difference vegetation index)
time series data have beenwidely performed at regional to global scales. However,most long-termNDVI datasets
are based upon multiple sensor systems and unsuccessful corrections related to sensor shifts potentially intro-
duce substantial uncertainties and artifacts in the analysis of trends. The temporal consistency of NDVI datasets
should therefore be evaluated before performing trend analysis to obtain reliable results. In this studywe analyze
the temporal consistency ofmulti-sensor NDVI time series by analyzing the co-occurrence between breaks in the
NDVI time series and sensor shifts from GIMMS3g (Global Inventory Modeling and Mapping Studies 3rd gener-
ation), VIP3 (Vegetation Index and Phenology version 3), LTDR4 (Long Term Data Record version 4) and SPOT-
VGT (Système Pour l'Observation de la Terre VEGETATION). Single sensor time series from MODIS (MODerate
Resolution Imaging Spectroradiometer) Terra and Aqua are used as reference datasets. The global land surface
is divided into six regions according to the world humidity zones and averaged NDVI time series in each region
are analyzed separately using a multiple structural change detection approach. We find that artifacts exist in the
VIP3 and LTDR4 NDVI datasets with an abrupt shift detected in all humidity zones coinciding with the shift from
NOAA-9 to NOAA-11 in 1988 and that orbital drift effects are evident in arid regions, potentially introducing
uncertainties in NDVI trend analysis. Platform/sensor change fromVGT-1 to VGT-2 is found to cause a significant
positive break in the SPOT-VGTNDVI time series. Potential artifacts exist in humid, dry-subhumid, semi-arid and
hyper-arid regions of GIMMS3gNDVI, whereas no signs of artifacts are found in the arid region. Although temporal
consistency throughout all examined datasets increases after 2000 due to the usage of advanced platforms and
sensors, variations in NDVI values from 2010 to 2011 still result in different trends at global and regional scales.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Monitoring vegetation change over time at regional to global scales
using Earth Observation data has greatly improved our understanding
of the changing planet. Derived from red and near-infrared band reflec-
tance, the normalized difference vegetation index (NDVI) (Tucker,
1979) is an efficient indicator for vegetation monitoring due to its
simplicity and close relation to vegetation productivity (Prince, 1991;
Tucker, Vanpraet, Sharman, & Van Ittersum, 1985). Thus, several
datasets provide NDVI products at various spatial and temporal resolu-
tions from a suite of sensor systems (Didan, 2010; Huete et al., 2002;
Maisongrande, Duchemin, &Dedieu, 2004; Tucker et al., 2005). Through
trend analysis of these NDVI time series, both gradual greening/
browning vegetation changes related to land degradation and abrupt
vegetation declines due to fires, insect outbreaks, etc. have been found
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(Bai, Dent, Olsson, & Schaepman, 2008; Boschetti et al., 2013; Goetz,
Fiske, & Bunn, 2006). However, existing long-term NDVI datasets that
are based upon multiple sensor systems and artifacts in time series
may be introduced from unsuccessful corrections related to sensor
shifts between platforms/sensors (van Leeuwen, Orr, Marsh, &
Herrmann, 2006) thereby introducing substantial uncertainties in
trend analysis results. The lack of field observations with sufficient
spatio-temporal coverage limits the evaluation and correction of such
artifacts (Wessels, van den Bergh, & Scholes, 2012).

The longest continuous record of NDVI data comes from AVHRR
(Advanced Very High Resolution Radiometer) sensors onboard NOAA
(National Oceanic and Atmospheric Administration) satellite series,
starting in July 1981, which forms the basis of generating long-term
NDVI products (Brown, Pinzon, Didan, Morisette, & Tucker, 2006).
However, this data suffers from several well-known problems, such
as orbit drift of NOAA-7 through NOAA-14 (Pinzon, Brown, &
Tucker, 2005), vicarious post-launch sensor calibration (Nagaraja
Rao & Chen, 1995, 1996), and inconsistency between AVHRR/2
(1981–2000) and AVHRR/3 (2000–present) (Latifovic, Pouliot, &
f long-term global NDVI datasets for trend analysis, Remote Sensing of
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Dillabaugh, 2012; Pinzon & Tucker, 2014). Based on AVHRR observa-
tions, severalNDVI datasetswere produced using different data process-
ing methods to alleviate these problems; for example, the Pathfinder
AVHRR Land (PAL) (James & Kalluri, 1994), the Fourier-Adjustment,
Solar zenith angle corrected, Interpolated Reconstructed (FASIR) (Los
et al., 2000), the Global Inventory Modeling and Mapping Studies
(GIMMS) (Pinzon & Tucker, 2014; Tucker et al., 2005), and the Land
Long Term Data Record (LTDR) (Pedelty et al., 2007). However, unsuc-
cessfully corrected artifacts of PAL data in Central Asia and LTDR version
3 data in Libyan Desert were reported (Beck et al., 2011; de Beurs &
Henebry, 2004). Discrepancies in the results of browning or greening
trends amongst the AVHRR based NDVI datasets (Alcaraz-Segura,
Chuvieco, Epstein, Kasischke, & Trishchenko, 2010; Alcaraz-Segura,
Liras, Tabik, Paruelo, & Cabello, 2010) also indicate the importance of
thepreprocessingmethods selected to overcome time series artifacts re-
lated to the use of multiple AVHRR instruments. Newer sensors like the
Système Pour l'Observation de la Terre VEGETATION (SPOT-VGT)
(1998–2014), Terra-MODIS (2000–present) and Aqua-MODIS (2002–
present) are designed to have more stable orbits and improved spectral
configurations for vegetation monitoring. NDVI time series from these
datasets have been extensively included in vegetation analysis
(Boschetti et al., 2013; Horion, Fensholt, Tagesson, & Ehammer, 2014;
Ivits, Horion, Fensholt, & Cherlet, 2014; Rasmussen, Fensholt, Fog,
Rasmussen, & Yanogo, 2014; Yin, Udelhoven, Fensholt, Pflugmacher, &
Hostert, 2012), but their time span are shorter than AVHRR based
datasets and are also not free of calibration related problems. SPOT-
VGT was observed to suffer from data discontinuity in a desert transect
between the VGT-1 andVGT-2 sensors (Fensholt, Rasmussen, Nielsen, &
Mbow, 2009) and several bands of the Terra-MODIS sensor are report-
edly influenced by degradation (Wang et al., 2012). Recent datasets
take advantage of both the unique long time span of AVHRR sensors
and the later and more advanced sensors to generate combined long-
term NDVI datasets, such as the Vegetation Index and Phenology Labo-
ratory (VIPLab) combining LTDR AVHRR (1981–1999) and MODIS
(2000–2011) (Barreto-Munoz, 2013; Didan, 2010). Such long-term
data may potentially also be influenced by sensor/data inconsistency
related problems.

Vegetation trend analysis approaches have recently evolved from
linear analysis, e.g. least squares regression, Theil–Sen and Mann–
Kendall (de Beurs & Henebry, 2005; Fernandes & Leblanc, 2005) to
also include analysis accounting for non-linearity, such aswavelet anal-
ysis (Martínez & Gilabert, 2009), polynomial model (Jamali, Seaquist,
Eklundh, & Ardö, 2014), BFAST (Breaks For Additive Seasonal and
Trend) analysis (Verbesselt, Hyndman, Newnham, & Culvenor, 2010;
Verbesselt, Hyndman, Zeileis, & Culvenor, 2010), and DBEST (Detecting
Breakpoints and Estimating Segments in Trend) analysis (Jamali,
Jönsson, Eklundh, Ardö, & Seaquist, 2015). These newly developed anal-
yses are able to capture rapid and reversing vegetation changes in long
term time series that risk to be balanced out in linear analyses (de
Jong, Verbesselt, Schaepman, & de Bruin, 2012), thus enabling im-
proved insights into vegetation responses to short term climatic
changes and human activities. At the same time, however, the
methods accounting for non-linear changes are more sensitive to
abrupt changes or short period of trends, thus potentially confusing
actual vegetation changes by unsuccessfully corrected sensor arti-
facts. Therefore, in order to obtain reliable results of vegetation
changes, trend analysis should not be performed with temporally
inconsistent NDVI datasets characterized by significant abrupt
changes or short period of trends caused by incomplete sensor
cross-calibration or inadequate correction of known issues, such
as orbital drift and sensor degradation.

The aimof this study is to identify potential sensor related artifacts in
GIMMS3g, VIP version 3 (VIP3), LTDR version 4 (LTDR4) and SPOT-VGT
NDVI datasets. The global NDVI datasets from MOD13C2, MYD13C2,
LTDR-Terra and LTDR-Aqua are also included as references in the
study as they do not include platform/sensor shifts. Analyses of
Please cite this article as: Tian, F., et al., Evaluating temporal consistency o
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individual dataset are performed using a multiple structural change de-
tection algorithm under the assumptions that 1) the influence of arti-
facts in NDVI time series are most easily detectable through averaging
on a regional to global scale and 2) the severity of artifacts, as well as
the corresponding corrections applied, vary for different vegetation
densities.

2. Data

2.1. NDVI datasets

The AVHRR sensor based long-term NDVI datasets evaluated in this
study are GIMMS3g, VIP3 and LTDR4. Table 1 provides detailed informa-
tion on the processing details of each of the datasets. The time span
covers from 1982 to 2011. The 15-day GIMMS3g data and daily LTDR4
data were aggregated to a monthly temporal resolution using maxi-
mum value compositing (MVC) method (Holben, 1986).

The SPOT-VGT S10 product provides 10-day MVC NDVI data from
April 1998 to May 2014, covering from north 75° to south 56° at 1 km
spatial resolution. This dataset is produced using observations from
VGT-1 onboard SPOT-4 (April 1998–January 2003) and VGT-2 onboard
SPOT-5 (February 2003–May 2014). SPOT-VGT S10 products have been
corrected for atmospheric effects based on the SMAC (SimplifiedModel
for Atmospheric Correction) algorithm (Maisongrande et al., 2004;
Rahman & Dedieu, 1994). Differences in the spectral response function
between VGT-1 and VGT-2 sensors can introduce between-sensor re-
flectance variations (VITO, 2014). We restricted the time span from
1999 to 2011 in this study. The data can be downloaded from http://
www.vgt.vito.be/.

The MODIS sensor onboard the Terra platform (Terra-MODIS) has
acquired data since February 2000 crossing the dayside equator at
10:30 am local time. The identicalMODIS sensor onboard the Aqua plat-
form (Aqua-MODIS) began operation two years later than Terra-MODIS
and was put in an orbit with equator crossing time at 13:30 pm local
time. BothMODIS time series are based on single sensors and are there-
fore not influenced by sensor shifts. The reference MODIS NDVI data in-
cludes the MOD13C2 (Collection 5), MYD13C2 (Collection 5), LTDR-
Terra and LTDR-Aqua NDVI products. All selected data are processed
as CMG's (ClimateModeling Grid) at a spatial resolution of 0.05° gener-
ated from MODIS land surface reflectance data being thoroughly
corrected for atmospheric effects (Vermote, El Saleous, & Justice,
2002). BRDF (bidirectional reflectance distribution function) effects
have been corrected for in the LTDR-Terra and LTDR-Aqua data, but
not in the MOD13C2 and MYD13C2 data. However, as the orbits of
both the Terra and Aqua platforms have been stable throughout the op-
erating period, the BRDF effect should not make a difference for the
MODIS data based inter-annual trend analysis as also shown by Guay
et al. (2014). TheMOD13C2 andMYD13C2 aremonthly data temporally
aggregated from the 16-daymaximumcomposites using aweighted av-
erage (Solano, Didan, Jacobson, & Huete, 2010) and the period of use is
restricted to 2001–2011 and 2003–2011, respectively, in this study. The
LTDR-Terra and LTDR-Aqua data are daily observations and we aggre-
gated these into monthly maximum values and used data during the
periods of 2001–2011 and 2003–2011, respectively. The MOD13C2
and MYD13C2 can be obtained from http://reverb.echo.nasa.gov/, and
the LTDR data are available from ftp://ltdr.nascom.nasa.gov/allData/
MODIS2LTDR/.

2.2. World humidity zones

Systematic errors (e.g. orbital drift effects) in AVHRR data vary as a
function of vegetation properties and location (Pinzon et al., 2005).
Additionally, the quality of GIMMS NDVI data was reported to vary
amongst different land cover classes when compared to MODIS NDVI
data (Fensholt & Proud, 2012). Therefore, we evaluate theNDVI datasets
in separate regions defined by theworld humidity zones used as a proxy
f long-term global NDVI datasets for trend analysis, Remote Sensing of
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Table 1
Processing details for the AVHRR based NDVI products evaluated in this study.

GIMMS3g VIP3 LTDR4

Data input AVHRR GAC level-1b data LTDR3 AVHR09C1 and MOD09CMG data AVHRR GAC level-1b data
Platform/sensor lineage AVHRR-2:

01/1982–02/1985 NOAA-7
03/1985–10/1988 NOAA-9
11/1988–08/1994 NOAA-11
09/1994–12/1994 NOAA-9
01/1995–10/2000 NOAA-14
AVHRR-3:
11/2000–12/2003 NOAA-16
01/2004–12/2008 NOAA-17
01/2009–12/2011 NOAA-18

AVHRR-2 (LTDR3 AVHR09C1):
01/1982–12/1984 NOAA-7
01/1985–10/1988 NOAA-9
11/1988–09/1994 NOAA-11
01/1995–12/1999 NOAA-14
MOD09CMG:
02/2000–12/2011 Terra

AVHRR-2:
01/1982–12/1984 NOAA-7
01/1985–10/1988 NOAA-9
11/1988–09/1994 NOAA-11
01/1995–12/1999 NOAA-14
AVHRR-3:
01/2001–12/2006 NOAA-16
01/2007–12/2011 NOAA-18

Radiometric calibration AVHRR-2:
Ocean and clouds vicarious calibration
(Vermote & Kaufman, 1995), followed by
desert calibration for NDVI itself (Los, 1998)
AVHRR-3:
Operational NOAA–NESDIS (desert) vicarious
calibration coefficients

LTDR3 AVHR09C1:
Ocean and clouds vicarious calibration
(Vermote & Kaufman, 1995)
MOD09CMG:
Onboard calibration (Xiong & Barnes, 2006)

Ocean and clouds vicarious calibration
(Vermote & Kaufman, 1995)

Atmospheric correction None, but extra aerosol correction was applied
during El Chichon (04/1982–12/1984) and Mt
Pinatubo (06/1991–12/1993) volcanic stratospheric
aerosol periods (Vermote, Saleous, Kaufman, & Dutton, 1997)

Rayleigh scattering, ozone, water vapor,
aerosol corrections

Rayleigh scattering, ozone, water vapor,
aerosol corrections

BRDF correction AVHRR-2:
Adaptive empirical mode decomposition/reconstruction
(Pinzon et al., 2005)
AVHRR-3: none

LTDR3 AVHR09C1:
The same method with MODIS BRDF correction
(Schaaf et al., 2002)
MOD09CMG: none

The same method with MODIS BRDF
correction (Schaaf et al., 2002)

Temporal composting 15-day maximum Daily, 7-day, 15-day, monthly maximum Daily
Spatial resolution 1/12°. 0.05° 0.05°
Cloud screening Channel 5 thermal mask of 0 °C (10 °C for Africa) LTDR3 AVHR09C1:

Channel 5 thermal mask of 0 °C
MOD09CMG:
Generated from combined MODIS bands information
and ancillary data

Channel 5 thermal mask of 0 °C

Noise removal Kriging interpolation Larger than 1.5 standard deviations of long term averages Fourier adjustment
Gap filling Kriging interpolation Inverse distance weighting interpolation (if failed using

the long term average instead)
None

Sensor inter-calibration Bayesian analysis using SeaWiFS NDVI as evidence
information (Pinzon & Tucker, 2014)

Land cover based empirical equations None

Main references Pinzon & Tucker, 2014; Tucker et al., 2005 Barreto-Munoz, 2013; Didan, 2010; Pedelty et al., 2007 Pedelty et al., 2007
Data source https://nex.nasa.gov/nex/projects/1314 http://measures.arizona.edu/vip_workshop_docs.php http://ltdr.nascom.nasa.gov/

cgi-bin/ltdr/ltdrPage.cgi
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Fig. 1. World humidity zones defined by the United Nations Environment Program (UNEP).
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for separating between different vegetation densities. The world hu-
midity zones are defined by the United Nations Environment Program
(UNEP) based on a global humidity index, as the ratio of annual precip-
itation and potential evapotranspiration (P/PET) (UNEP et al., 1997).
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According to the mean annual potential moisture availability for the
period 1951–1980, global land surface is classified into a humid zone
(P/PET ≥ 0.65), dry-subhumid zone (0.65 N P/PET ≥ 0.50), semi-arid
zone (0.50 N P/PET ≥ 0.20), arid zone (0.20 N P/PET ≥ 0.05) and a
(B) LTDR4
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(A) VIP3 and (B) LTDR4 datasets. The gray vertical lines denote satellite changing time
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hyper-arid zone (P/PET b 0.05) (Fig. 1). The cold zone is defined as
areas that have more than six months average temperature below
0 °C and not more than three months above 6 °C. All of the NDVI
datasets are subset to the spatial extent shown in Fig. 1. The
humidity zones map can be obtained from http://geonetwork.
grid.unep.ch/.

3. Methods

3.1. Averaging NDVI data on global and regional scales

Detecting sensor related artifacts at the per-pixel level can be
challenging because the magnitudes of NDVI changes caused by cloud
contamination and actual land surface disturbance, i.e. fires, floods etc.
can be much larger than those caused by unsuccessfully corrected arti-
facts, thus concealing the later. However, when averaging the NDVI
values on a global or regional scale, cloud contamination and small
scale actual changes are expected to be balanced out, making the detec-
tion of systematic bias/errors caused by cross sensor differences more
easily detectable. Therefore, the evaluations were performed on both
global and regional averaged NDVI time series for each of the humidity
zones. Detected breaks were considered potential artifacts if they coin-
cided with the satellite sensor changes. Consequently, the correspond-
ing NDVI time series were deemed to be temporally inconsistent and
should be used with caution for trend analysis. However, large scale
events like El Niño/La Niña and the Mt Pinatubo volcanic eruption
may also cause vegetation changes on global or regional scales
(Anyamba & Eastman, 1996; Li & Kafatos, 2000; Lucht et al., 2002) and
introduce breaks in the averagedNDVI time series. If a breakwas detect-
ed close to the dates of these natural events and the dates of sensor
changes, it would be difficult to know which one was causing the
break. In this case, those datasets being free or partly free from sensor
shift (i.e. MODIS data and SPOT-VGT2) can provide references for dis-
criminating between these two types of changes during the overlap pe-
riods. CO2 fertilization impacts on global vegetation is not expected to
introduce abrupt shifts in time series (Los, 2013; Mao et al., 2013) and
is therefore not likely to be confused by time series breaks caused by
satellite sensor shifts.

3.2. De-seasonalizing NDVI time series

Compared to the NDVI seasonal variations, even in arid regions, the
magnitude of abrupt changes related to sensors are usually small. There-
fore, the temporal consistency evaluation was performed on NDVI
anomalies (the NDVI time series was de-seasonalized by subtracting
the long-term average seasonal effects from the monthly values). It is
clear from Fig. 2 that at the beginning of the NOAA-11 operating period,
the NDVI anomalies are significantly below the normal level in all VIP3
and LTDR4 averaged series, indicating that NDVI data during this period
is of sub-optimal quality in these datasets. Therefore, we excluded one
year data from November 1988 to October 1989 in the analysis of VIP3
and LTDR4 (assuming the obvious bad quality data during this period)
to better assess thequality of the remaining part of NOAA-11 time series.
The years of 1994 and 2000 are also excluded from the analysis of LTDR4
data because of existing data gaps.

3.3. Detecting breaks in NDVI anomaly series

We employed the multiple structural change detection approach
(Bai, 1997; Bai & Perron, 2003) for detecting breaks in the NDVI
anomaly series. This method was firstly developed for characterizing
long-term shift in economic time series data. Verbesselt, Hyndman,
Newnham, et al. (2010) incorporated this approach into the BFAST
tool for NDVI seasonal and trend change detection which has been
applied in several studies (Forkel et al., 2013; Lambert, Drenou,
Denux, Balent, & Cheret, 2013; Schucknecht, Erasmi, Niemeyer, &
Please cite this article as: Tian, F., et al., Evaluating temporal consistency o
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Matschullat, 2013; Watts & Laffan, 2014). The NDVI anomaly series
was modeled by the linear structural change model with m breaks
(m + 1 segments)

yi ¼ ajxi þ bj þ εi i ¼ i j−1 þ 1;…; i j; j ¼ 1;…;mþ 1
� �

ð1Þ

where j is the index of the segment, (i1, …, im) represents the set of
the break positions and by convention i0 = 0, im + 1 = n (n is the
size of the time series), a and b are the regression coefficients that
can be estimated by the ordinary least squaremethod, and ε is the re-
sidual. For vegetation trend analysis, both the number and positions
of breaks in a NDVI time series are unknown and have to be estimat-
ed from the data. Given a minimal number of observations in one
segment (h), the maximum number of breaks allowed is no more
than the ratio between h and the total number of observations in
the time series (n). Each possible number of breaks represents one
model to fit the NDVI anomaly data. For each specific number of
breaks, all the possible sets of the break positions can be obtained
through a standard grid search procedure. The optimal set of break
positions is determined by minimizing the sum of squared residuals.

î1;…; îm
� �

¼ arg min i1 ;…;imð Þ
Xn

i¼1
εi: ð2Þ

Bai (1997) constructed the distribution function for the break posi-
tions under an asymptotic framework where the magnitudes of the
shifts between segments converge to zero as the size of the time series
increases. For a given significance level, the confidence interval of each
break was constructed based on the distribution function and the data
of the two segments at both sides of the break. Once all the possible
models have been set up, the optimal one was determined using the
Bayesian Information Criterion (BIC) (Gideon, 1978). BIC was designed
for model selection based on the information theory, calculated by

BIC ¼ −2ln Lð Þ þ K log nð Þ ð3Þ

where L is themaximum likelihood for themodel andK is thenumber of
parameters. The selectedmodel is the onewith theminimumBIC value.

When determining the optimal set of break positions, the extensive
grid search for the global minimizers would be of order O(nm). To speed
up the computation, Bai and Perron (2003) presented a dynamic pro-
gramming algorithm using a recursive procedure that performs least
square operations of order O(n2). This algorithm generates a triangular
matrix of sums of squared residuals that contains all the possible seg-
ments (at most n(n + 1)/2). Based on this triangular matrix, the global
minimizers (the optimal set of break positions) for any number of
breaks can be obtained, as well as the corresponding BIC values, regres-
sion coefficients and confidence intervals. The procedures described
above were implementedwith the function ‘breakpoints’ in the R pack-
age ‘strucchange’ (Zeileis & Kleiber, 2005; Zeileis, Kleiber, Krämer, &
Hornik, 2003; Zeileis, Leisch, Hornik, & Kleiber, 2002).

The h parameter must be assigned prior to the breakpoints analysis.
The results can potentially vary by setting different h parameters
because it determines the minimal length of a segment (Zeileis &
Kleiber, 2005). Using a low h value will produce more breaks in the
time series as compared to a higher h value.When setting a h value larg-
er than n/2, the analysis will give no breaks and become a simple linear
trend analysis. Therefore, the h parameter should be selected according
to the length of the time period between successive structural changes.
In addition, a uniform h parameter should be used to ensure that all the
statistical analyses are performed at the same significance level. In this
study, we set the h to 24 (2 years) to allow the evaluation of temporal
consistency for the shortest period covered by a single sensor. The con-
fidence intervals of the detected breakswere calculated at a significance
level of 0.05.
f long-term global NDVI datasets for trend analysis, Remote Sensing of
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4. Results

For eachNDVI anomaly series, all the possiblefittedmodels (number
of breaks)were calculated and Fig. 3 shows the associated BIC values for
each model (normalized to 0–1 for improved visualization). There are
fewer models calculated for SPOT-VGT, Terra, Aqua, LTDR-Terra and
LTDR-Aqua time series than GIMMS3g, VIP3 and LTDR4 because their
total number of observations are different. BIC shows clear differences
between different models; the models with the minimal BIC values
were selected and shown in Fig. 4. The magnitudes and dates of detect-
ed breaks and the corresponding confidence intervals are listed in
Table 2.

Fig. 4A shows the results of the GIMMS3g averaged NDVI anomaly
series data. The NOAA-7 to NOAA-9 sensor shift date is located in the
narrow confidence interval of the first detected break in April 1985
(magnitude = 0.023) in the humid region and the NOAA-9 to NOAA-
11 sensor shift date is close to the second detected break, however not
coinciding with the break confidence interval. A break is detected dur-
ing the NOAA-9 period in the arid zone but not close to either of these
two sensor shifts. No breaks are detected around these two sensor shifts
dates in the other humidity zones of theGIMMS3g data. Negative breaks
are detected in averaged NDVI anomaly series of global, humid, dry-
subhumid and semi-arid regions in June/July 1991 (with magnitudes
Please cite this article as: Tian, F., et al., Evaluating temporal consistency o
Environment (2015), http://dx.doi.org/10.1016/j.rse.2015.03.031
of −0.015, −0.025, −0.02 and −0.009, respectively) when GIMMS3g
data starts including the correction of Mt Pinatubo volcano eruption ef-
fects. Positive breaks are detected in global, humid, dry-subhumid and
arid regions around September 1994 (magnitudes of 0.015, 0.041,
0.018 and 0.009), coinciding with the sensor shift from NOAA-11 to
NOAA-9 (descending). It should be noticed that another sensor shift
fromNOAA-9 (descending) toNOAA-14 is following shortly after in Jan-
uary 1995. Two breaks are detected in themiddle of 1997 in humid and
arid regions. The humid, semi-arid and hyper-arid regions show breaks
coinciding with the NOAA-14 to NOAA-16 sensor shift in November
2000 (magnitudes of 0.017, −0.011 and 0.006). This sensor shift date
is also located within the confidence interval of the detected break in
March 2002 (magnitude = −0.012) in the dry-subhumid region.
The NOAA-17 to NOAA-18 sensor shift date coincides with the de-
tected break for the hyper-arid region in the end of 2008
(magnitude = 0.007) and aligns with the confidence interval of the
detected break in June 2009 (magnitude = 0.008) for the global av-
eraged series. Several breaks are detected during the NOAA-17 peri-
od, i.e. in April 2008 (magnitude=−0.002) for the semi-arid region,
March 2005 (magnitude = 0.005) and December 2007
(magnitude = −0.012) for the arid region, and August 2004
(magnitude = 0.002) for the hyper-arid region, but no sensor shifts
are overlapping break confidence intervals. All the series except for
f long-term global NDVI datasets for trend analysis, Remote Sensing of
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the hyper-arid region show increasing trends after the last break
detected.

Fig. 4B shows the results of the VIP3 data series excluding data from
November 1988 to October 1989. The NOAA-7 to NOAA-9 sensor shift
date coincides with the first detected break in 1985 for the humid,
semi-arid, arid and hyper-arid regions (magnitudes of 0.013, −0.013,
−0.028 and −0.009). Although we excluded the beginning of the
NOAA-11 data, an overlap between detected breaks and the NOAA-9
to NOAA-11 sensor shift are still found in humid and arid regions (mag-
nitudes of 0.023 and −0.016). Breaks coinciding with this sensor shift
are also detected in global, dry-subhumid and hyper-arid regions (mag-
nitudes of 0.015, 0.023 and−0.013). A notable drop of NDVI anomaly
values at this sensor shift date is found in semi-arid region, but not de-
tected as a break. During the period of NOAA-11, NDVI anomaly varia-
tion patterns are similar in global, humid and dry-subhumid regions,
with detected abrupt changes in November 1992, five months after
the Mt Pinatubo volcano eruption (magnitudes of 0.032, 0.039 and
0.038). In the semi-arid region, an abrupt decrease is detected in May
1991 (magnitude=−0.023), coinciding with the Mt Pinatubo volcano
eruption, followed by an abrupt increase in May 1993 (magnitude =
0.033). Two breaks in 1991 and 1993 are detected in the arid regions
(magnitudes of −0.005 and −0.015) that are less sharp as compared
to the semi-arid region. The Hyper-arid region shows similar change
patterns to the arid region. No breaks are detected around the NOAA-
11 to NOAA-14 sensor shift in the VIP3 data. Negative breaks with nar-
row confidence intervals are detected in semi-arid, arid and hyper-arid
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Fig. 4. Detected changes in global averaged and humidity zone averaged NDVI anomaly data
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regions in December 1999 (magnitudes of −0.027, −0.028 and
−0.026), coinciding with the date when the VIP3 data source was
changed from AVHRR to MODIS. Although the generation of VIP3 data
only consists of MODIS data after 2000, clear breaks are detected in all
the anomaly series except for the hyper-arid region. It is noticeable
that negative breaks in February–April 2002 are detected in global,
cold, dry-subhumid and semi-arid regions (magnitudes of −0.021,
−0.052,−0.022 and−0.019)which are not found in the other datasets.
Additionally, during the last five years breaks are detected in all averaged
series except the cold region, i.e. May 2007 (magnitude = −0.027) for
the global average, January 2009 (magnitude = 0.004) in the humid
region, August 2009 (magnitude = 0.008) in the dry-subhumid region,
December 2009 (magnitude = 0.021) in the semi-arid region,
December 2009 (magnitude= 0.012) in the arid region, and August
2008 (magnitude = −0.006) in the hyper-arid region. Increasing
trends are found after the last breaks in all VIP3 averaged NDVI
anomaly series.

Fig. 4C shows the results of the LTDR4 data series excluding data
from November 1988 to October 1989 and the years 1994 and 2000.
In semi-arid and arid regions, both NOAA-7 to NOAA-9 and NOAA-9 to
NOAA-11 sensor shifts coincide with detected breaks with magnitudes
between−0.034 and−0.015. In the hyper-arid region, the first sen-
sor shift also aligns with the detected break in December 1984
(magnitude = −0.007), while the second sensor shift is close to
the break in May 1988 (magnitude = −0.010) but not included in
the temporal coverage of the confidence interval. Breaks in the
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Fig. 4 (continued).
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middle of 1991, coinciding with the Mt Pinatubo volcano eruption,
are detected in all LTDR4 averaged series (except the cold region)
with magnitudes from −0.055 to −0.005. Overlaps between sensor
shift from NOAA-11 to NOAA-14 and corresponding detected breaks
are found in all LTDR4 averaged series with magnitudes from
−0.049 to −0.008. The NOAA-14 to NOAA-16 sensor shift coincides
with breaks in humid, arid and hyper-arid regions (magnitudes of
0.025, −0.020 and −0.023). In the end of 2003/beginning of 2004,
negative breaks are found in all the averaged series (except for the
hyper-arid region) with magnitudes from −0.054 to −0.004 that
do not coincide with a sensor shift. Whereas in the end of 2006, dis-
tinct negative breaks (magnitudes between −0.094 and −0.014)
are detected in all the averaged series, coinciding with the sensor
shift from NOAA-16 to NOAA-18. A break in November 2009
(magnitude = 0.012) is detected only in the arid region. Increasing
trends are found in all the anomaly series from the last breaks until
to the end of the time series.

Fig. 4D shows the results of the SPOT-VGT data series. Clear positive
breaks are found in the beginning of 2003 in global, humid, arid and
hyper-arid regionswithmagnitudes of 0.019, 0.022, 0.014 and0.010, re-
spectively, coinciding with sensor shift from VGT-1 to VGT-2. No break
is detected in the cold averaged series. In the dry-subhumid region,
two breaks are detected in February 2002 (magnitude = −0.021) and
October 2004 (magnitude = −0.017). A positive break is found in
April 2003 (magnitude = 0.021) in the semi-arid region, which is
close to the sensor shift date (January 2003) butwithout a direct overlap
with the break confidence interval. During the VGT-2 period, breaks are
detected that do not coincide with sensor shift, i.e. August 2009
(magnitude = 0.008) in the global averaged series, June 2007
Please cite this article as: Tian, F., et al., Evaluating temporal consistency o
Environment (2015), http://dx.doi.org/10.1016/j.rse.2015.03.031
(magnitude = −0.009) in the humid region, December 2009
(magnitude = 0.015) in the semi-arid region, January 2005
(magnitude = −0.010) and December 2007 (magnitude = −0.012)
in the arid region, and August 2005 (magnitude = −0.004) and Octo-
ber 2008 (magnitude= 0.003) in the hyper-arid region. No break is de-
tected in the cold region. Increasing trends are found during the last five
years in all averaged anomaly series.

Fig. 4E and F show the results of MOD13C2 and MYD14C2 data
series, respectively. The MOD13C2 data shows no breakpoints or
clear trends in the averaged series of global, cold, humid and dry-
subhumid regions. A break is detected in September 2007
(magnitude =−0.010) in the semi-arid region, with an increasing
trend afterwards. The arid region also shows a break in September
2007 (magnitude = −0.011), together with breaks in May 2003
(magnitude = 0.010), August 2005 (magnitude = −0.002) and
December 2009 (magnitude = 0.008). The hyper-arid region
shows breaks in January 2005 (magnitude = −0.002), October
2007 (magnitude = −0.002) and December 2009 (magnitude =
0.002). Increasing trends are found after the last breaks in arid
and hyper-arid regions. Similar to the MOD13C2 data, MYD13C2
also shows no breaks or clear trends in global, cold and humid
regions. Breaks in January 2005 and December 2004 with large
confidence intervals and magnitudes of −0.008 are detected in
dry-subhumid and semi-arid regions, respectively. A break in
December 2007 (magnitude = −0.010) is found in the arid region
with increasing trend afterwards. The averaged series in the hyper-arid
region shows two breaks in February 2005 and October 2007, but the
time series looks relatively stable due to the small magnitudes (both
are −0.001) of the beaks.
f long-term global NDVI datasets for trend analysis, Remote Sensing of
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Fig. 4 (continued).

9F. Tian et al. / Remote Sensing of Environment xxx (2015) xxx–xxx
Fig. 4G and H shows the results of LTDR-Terra and LTDR-Aqua, re-
spectively. LTDR-Terra data shows similar change patterns in global,
cold, dry-subhumid and semi-arid regions, with only one break in
2009 (magnitudes of 0.015, 0.014, 0.019 and 0.019). Breaks in Decem-
ber 2002, November 2006 and November 2008 are detected in the
humid region (magnitudes of 0.012, 0.023 and 0.003). The arid region
has similar break positions as the MOD13C2 arid region. Two breaks in
January 2007 and November 2009 are found in the hyper-arid region
(magnitudes of −0.002 and 0.006). All the series data show increasing
trends after the last break detected. LTDR-Aqua data shows breaks in
2007 in global, semi-arid and arid regions (magnitudes of −0.008,
−0.010 and −0.011) and increasing trends afterwards. No breaks or
clear trends are found in cold, humid, dry-subhumid and hyper-arid
regions.

5. Discussion

5.1. Interpretation of detected breaks

It is clear from the global and regional averaged time series in Fig. 2
that the VIP3 and LTDR4 datasets are characterized by temporal incon-
sistencies at the beginning of the NOAA-11 time series that may be
caused by unsuccessful correction of orbital drift effects. These two
NDVI datasets are also suffering from severe orbital drift effects during
the NOAA-7, NOAA-9, and NOAA-14 periods (Fig. 4B,C) most clearly
shown in the more arid parts of the world causing higher NDVI values
as a function of the equator passing time being later in the afternoon
with lower solar zenith angles (Fensholt, Sandholt, Proud, Stisen, &
Rasmussen, 2010). GIMMS3g also shows orbital drift effects throughout
NOAA-7 to NOAA-14 in the humid region (Fig. 4A), while drift effects
are not observed for the dry environments. However, it is still possible
that residual orbital drift effects have caused the clear increasing trends
Please cite this article as: Tian, F., et al., Evaluating temporal consistency o
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from 1982 to July 1991 in the dry-subhumid region. The transition from
AVHRR-2 to AVHRR-3 was neither totally seamless in the GIMMS3g
data or in the LTDR4 data. In addition, the LTDR4 data is also likely influ-
enced by artifacts related to sensor shifts from NOAA-11 to NOAA-14
and from NOAA-16 to NOAA-18; the latter is evident as no breaks
around this date are found in other datasets. The VIP3 data fails to pro-
duce a temporally consistent data series by using the land cover based
empirical equations to convert AVHRR NDVI to the AVHRR–MODIS
equivalent for the drier parts of the globe. The discontinuity of SPOT-
VGT NDVI data in February 2003 was shown in Fensholt et al. (2009)
andHorion et al. (2014) by examining the time series of desert transects
in the Sahara. Our results further revealed that this discontinuity is also
present in vegetated areas (Fig. 4D), whichmay be caused by radiomet-
ric differences between VGT-1 and VGT-2 being uncorrected for (VITO,
2014) and a re-processing of the entire VGT archive is foreseen in
2015. At the end of 2007/beginning of 2008 negative breaks, not related
to sensor shift issues, followed by notable increasing trends were de-
tected in arid regions of the MODIS based datasets (Fig. 4E–H) as well
as GIMMS3g and SPOT-VGT datasets. The break and trendmay be relat-
ed to the cooling effects caused by the La Niña occurring in 2007–2008
and the following El Niño in 2009–2010, which were the strongest re-
corded since 2000 (Golden Gate Weather Service). Climatically driven
phenology variation (from changes in temperature and moisture) is
also expected to have an impact on the anomaly values (van Leeuwen,
Hartfield, Miranda, & Meza, 2013). Hence, identification of modes of
variation as well as significant changes within phenology could form a
better basis for understanding the changes in NDVI anomalies.

5.2. Inter-comparisons between datasets and humidity zones

Both the VIP3 and LTDR4 data are produced from LTDR3 data and
have quite similar NDVI anomaly change patterns around the Mt
f long-term global NDVI datasets for trend analysis, Remote Sensing of
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Table 2
The magnitudes (unit: NDVI) and dates of detected breaks and the corresponding confidence intervals (2.5%–97.5%).

GIMMS3g VIP3 LTDR4 SPOT-VGT MOD13C2 MYD13C2 LTDR3-Terra LTDR3-Aqua

Global −0.015
07/1991
(06/1991–02/1992)

0.015
04/1990
(02/1990–05/1990)

−0.031
07/1991
(02/1988–10/1988)

0.019
01/2003
(12/2002–03/2003)

0.015
12/2009
(10/2009–01/2010)

−0.008
10/2007
(01/2007–12/2007)

0.015
09/1994
(06/1994–11/1994)

0.032
11/1992
(10/1992–01/1993)

−0.034
10/1993
(09/1993–01/1995)

0.008
08/2009
(05/2009–05/2010)

0.008
06/2009
(12/2008–07/2009)

−0.021
04/2002
(02/2002–06/2002)

−0.010
01/2002
(10/2001–05/2002)

−0.013
05/2005
(12/2003–06/2005)

−0.023
02/2004
(04/2003–03/2004)

−0.021
05/2007
(04/2007–08/2007)

−0.063
11/2006
(10/2006–01/2007)

Cold −0.008
08/2008
(11/2005–09/2009)

−0.052
02/2002
(12/2001–03/2002)

−0.024
09/1993
(01/1992–11/1993)

0.014
09/2009
(10/2008–11/2009)

−0.027
03/2004
(07/2003–09/2004)

−0.054
02/2004
(09/2002–03/2004)
−0.094
11/2006
(10/2006–04/2007)

Humid 0.023
04/1985
(02/1985–05/1985)

0.013
04/1985
(02/1984–06/1985)

−0.055
06/1991
(03/1991–07/1991)

0.022
12/2002
(10/2002–02/2003)

0.012
12/2002
(08/2002–09/2003)

0.025
04/1989
(03/1989–06/1989)

0.032
02/1990
(10/1988–03/1990)

−0.033
10/1993
(09/1993–06/1995)

−0.009
06/2007
(09/2005–10/2007)

0.023
11/2006
(09/2006–12/2006)

−0.025
06/1991
(04/1991–07/1991)

0.039
11/1992
(10/1992–02/1993)

0.025
03/2001
(09/1999–04/2001)

0.003
11/2008
(10/2008–12/2008)

0.041
09/1994
(08/1994–10/1994)

0.011
06/1997
(10/1996–07/1997)

−0.024
12/2003
(03/2003–01/2004)

0.014
06/1997
(02/1996–07/1997)

0.020
04/2000
(03/2000–09/2000)

−0.060
11/2006
(10/2006–02/2007)

0.017
10/2000
(09/2000–07/2001)

0.016
10/2006
(06/2006–11/2006)
0.004
01/2009
(12/2008–03/2009)

Dry-subhumid −0.020
07/1991
(05/1991–07/1992)

0.023
04/1990
(01/1990–05/1990)

−0.043
07/1991
(01/1991–08/1991)

−0.021
02/2002
(10/2001–04/2002)

−0.008
01/2005
(12/2004–09/2006)

0.019
12/2009
(10/2009–01/2010)

0.018
09/1994
(04/1994–01/1995)

0.038
11/1992
(10/1992–02/1993)

−0.037
10/1993
(09/1993–05/1995)

−0.017
10/2004
(09/2004–03/2005)

−0.012
03/2002
(03/2000–07/2002)

−0.022
03/2002
(01/2002–09/2002)

−0.035
12/2003
(11/2002–01/2004)
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0.008
08/2009
(05/2009–09/2009)

−0.066
11/2006
(10/2006–02/2007)

Semi-arid −0.009
06/1991
(12/1990–03/1992)

−0.013
01/1985
(12/1984–09/1985)

−0.034
10/1984
(08/1984–12/1984)

0.021
04/2003
(03/2003–07/2003)

−0.010
09/2007
(03/2007–12/2007)

−0.008
12/2004
(11/2004–02/2007)

0.019
12/2009
(11/2009–01/2010)

−0.010
05/2007
(10/2006–07/2007)

−0.011
07/2000
(06/2000–01/2002)

−0.023
05/1991
(02/1991–06/1991)

−0.026
10/1988
(08/1988–04/1990)

0.015
12/2009
(09/2009–02/2010)

−0.002
04/2008
(11/2007–05/2008)

0.033
05/1993
(02/1993–06/1993)

−0.019
10/1991
(04/1991–11/1991)

0.017
07/1996
(06/1996–10/1996)

−0.049
10/1993
(09/1993–01/1995)

−0.027
12/1999
(10/1999–01/2000)

0.013
10/1998
(08/1998–11/1998)

−0.019
03/2002
(02/2002–08/2002)

−0.006
02/2004
(12/2003–03/2004)

0.021
12/2009
(10/2009–03/2010)

−0.062
11/2006
(10/2006–12/2006)

Arid 0.007
10/1987
(12/1986–12/1987)

−0.028
02/1985
(01/1985–03/1985)

−0.025
12/1984
(11/1984–01/1985)

−0.002
12/2000
(11/2000–03/2001)

0.010
05/2003
(04/2003–07/2003)

−0.010
12/2007
(08/2007–01/2008)

0.013
04/2003
(03/2003–05/2003)

−0.011
10/2007
(04/2007–11/2007)

0.010
04/1992
(02/1992–06/1992)

−0.016
09/1988
(08/1988–02/1990)

−0.015
10/1988
(08/1988–04/1990)

0.014
01/2003
(12/2002–03/2003)

−0.002
08/2005
(06/2005–09/2005)

−0.001
08/2005
(06/2005–09/2005)

0.009
07/1994
(02/1994–08/1994)

−0.005
09/1991
(07/1991–10/1991)

−0.005
10/1991
(07/1991–11/1991)

−0.010
01/2005
(12/2004–04/2005)

−0.011
09/2007
(08/2007–11/2007)

−0.012
10/2007
(09/2007–12/2007)

0.011
03/1997
(02/1997–07/1997)

−0.015
11/1993
(10/1993–01/1994)

−0.018
10/1993
(09/1993–02/1995)

−0.012
12/2007
(07/2007–01/2008)

0.008
12/2009
(11/2009–06/2010)

0.011
11/2009
(10/2009–05/2010)

0.005
03/2005
(09/2004–04/2005)

0.007
09/1996
(08/1996–12/1996)

0.008
11/1996
(10/1996–01/1997)

−0.012
12/2007
(05/2007–01/2008)

−0.028
12/1999
(11/1999–02/2000)

−0.020
12/1999
(11/1999–04/2001)

0.010
04/2003
(03/2003–02/2004)

−0.004
03/2004
(01/2004–04/2004)

0.012
12/2009
(11/2009–01/2010)

−0.031
12/2006
(11/2006–02/2007)
0.012
11/2009
(10/2009–06/2010)

Hyper-arid 0.004
03/1996
(03/1995–04/1996)

−0.009
02/1985
(01/1985–08/1985)

−0.007
12/1984
(11/1984–03/1985)

0.010
01/2003
(12/2002–02/2003)

−0.002
01/2005
(11/2004–08/2005)

−0.001
02/2005
(01/2005–06/2005)

0.002
01/2007
(12/2006–02/2007)

0.006
11/2000

−0.013
05/1988

−0.010
05/1988

−0.004
08/2005

−0.002
10/2007

−0.001
10/2007

0.006
11/2009
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Pinatubo volcanic eruption producing low values from the middle of
1991 to the end of 1992 in global, humid, dry-subhumid and semi-
arid regions. The GIMMS3g data also showed distinct lower values
from the middle of 1991 in the same regions, but the low NDVI anoma-
lies last for a longer period until September 1994 in global, humid, and
dry-subhumid regions. The GIMMS3g only corrected for the Mt
Pinatubo volcanic effects until December 1993, thus the abrupt increase
of NDVI anomaly in September 1994 in global, humid and dry-
subhumid regions may be attributed to sensor related artifacts. In the
arid region, the NDVI anomalies of GIMMS3g and VIP3/LTDR4 datasets
showed different response to the Mt Pinatubo volcanic eruption. The
VIP3/LTDR4 data increased significantly right after the event, which
could be caused by the orbital drift effects also shown in the NOAA-7
and NOAA-9 periods. The GIMMS3g data showed no disturbance in
1991 but an abrupt increase during the following year. At the pixel
level, de Jong et al. (2012) performed BFAST trend analysis based
on GIMMSg data and found abrupt NDVI increases during June
1991–December 1992 in the global arid regions, i.e. Kazakhstan
and West Australia. They argued that abrupt increases might be
explained by the precipitation changes that counter-balanced Mt
Pinatubo effects.

Terra-MODISwas reported to suffer from sensor degradation of blue,
red and near-infrared bands, resulting in a NDVI decline at a rate of
0.001–0.004 per year (Wang et al., 2012). This artificially decreasing
trend was shown over North America based on NDVI during July–Au-
gust from 2002 to 2010. Terra MOD13C2 show smaller slope values
than the AquaMYD13C2 data in the global and humidity zone averaged
monthly NDVI anomaly series (2003–2011) in the present analyses
(Table 3). Particularly, the differences are N0.001 in humid and dry-
subhumid regions. In addition, we further examined the seasonal
based global averaged NDVI time series from 2003 to 2011 (Fig. 5).
MOD13C2 shows a smaller trend (N0.001 difference per year) than
MYD13C2 for averaged NDVI time series of June–August and Decem-
ber–February (Fig. 5A,C) which is in accordancewith the results report-
ed in Wang et al. (2012). This trend difference between MODIS sensors
becomes smaller in averagedNDVI time series of September–November
and March–May (b0.0005 per year) and therefore, the Terra-MODIS
sensor degradation effects are less clear in themonthlyNDVI time series
as compared to the Northern Hemisphere growing and winter sea-
sons. All together, these results indicate the feasibility of using glob-
ally averaged time series to examine systematic errors in satellite
NDVI datasets.

It is noticeable that higher NDVI anomalieswere seen for 2010–2011
in the semi-arid and arid regions of all the examined datasets, which
could be caused by the enhanced land carbon sink in these areas
(Poulter et al., 2014). However, a large discrepancy still exists amongst
the datasets during 2010–2011. The VIP3 and LTDR-Terra datasets
showed extraordinarily high NDVI anomalies for the global and all
humidity zones (Fig. 4B,G), both of which were generated from
Terra MODIS reflectance. While the MOD13C2 dataset, also generat-
ed from Terra MODIS reflectance, did not show such high anomalies
(Fig. 4E). The GIMMS3g, LTDR4 and SPOT-VGT had similar variations
during 2007–2011 and also showed higher values for 2010–2011
(Fig. 4A,C,D), but not as extreme as the VIP3 and LTDR-Terra
datasets. This pattern of higher NDVI anomalies for 2010–2011
was not clearly shown in the MYD13C2 and LTDR-Aqua datasets
(Fig. 4F,H). The discrepancy amongst all the datasets during recent
years is somehow surprising as all of them are generated from stable
platforms and improved sensors and thus are expected to be more
similar. However, if we assume that the hyper-arid region should
be stable over time as this region covers desert area with almost
no vegetation, we find that only the MYD13C2 and LTDR-Aqua
datasets meet this assumption.

Although differences amongst the MODIS based datasets exist,
the magnitudes of detected breaks in NDVI anomaly series do not
exceed the ±0.011 level in MOD13C2, MYD13C2 and LTDR-Aqua.
f long-term global NDVI datasets for trend analysis, Remote Sensing of
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Table 3
Linear trends of the MOD13C2 and MYD13C2 NDVI anomaly series during 2003–2011.

MOD13C2 MYD13C2

Humidity zones Slope R2 Slope R2 Slope difference

Global −0.00024 0.016 0.00056 0.075 −0.00080
Cold 0.00046 0.009 0.00061 0.016 −0.00015
Humid −0.00079 0.079 0.00042 0.018 −0.00121
Dry-subhumid −0.00050 0.019 0.00065 0.026 −0.00115
Semi-arid 0.00010 0.002 0.00081 0.090 −0.00071
Arid −0.00008 0.002 0.00018 0.011 −0.00026
Hyper-arid −0.00029 0.201 −0.00016 0.338 −0.00013
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The GIMMS3g and SPOT-VGT datasets show roughly the same level
of break magnitudes (higher than the MODIS based datasets), ex-
cept for the humid region where break magnitudes in GIMMS3g
exceed breaks detected in SPOT-VGT. Amongst the long-term
datasets, the magnitudes of detected breaks in VIP3 and LTDR4
datasets are of higher values as compared to GIMMS3g, indicating
the better temporal consistency of the GIMMS3g data.

5.3. Implications for NDVI trend analysis on pixel scale

The discontinuities caused by sensor changes in GIMMSg dataset
(the previous version of GIMMS3g) were evaluated by de Jong,
Verbesselt, Schaepman, and De Bruin (2011) using a per-pixel ap-
proach. Their results revealed that the temporal distribution of BFAST
detected breaks reached the highest number during periods coinciding
with platform changes from NOAA-9 to NOAA-11 and further from
NOAA-11 to NOAA-14 (almost double amount of pixels as compared
to the long term average) with high possibilities to be caused by
under- or over-correction of platform changes and orbital drift. Even
though a given pixel does not show breaks coinciding with platform
changing dates, it cannot be concluded that this pixel was not influ-
enced by sensor related artifacts. By averaging the data on a regional
scale, our results indicate systematic artifacts in the humid region.
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Fig. 5. Linear trends of global averagedMOD13C2 andMYD13C2 NDVI time series (2003–2011)
to February, and (D) from March to May.
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Therefore, it could be problematic to use the GIMMS3g NDVI data for
vegetation trend analysis in humid parts of the world. No evidence of
temporal inconsistencies was found for the GIMMS3g data in the arid
region; hence trend analysis based on GIMMS3g data in arid regions
should have high reliability. For the semi-arid region, the discontinuity
of sensor shifts from NOAA-14 to NOAA-16 should be treated with cau-
tion when performing trend analysis covering this time. As The El
Chichon volcanic eruption should affect the NDVI values negatively
like the Mt Pinatubo volcano and the influence period (March
1982–December 1984) is at the beginning of the GIMMS3g time
span, it may contribute to the greening trends in the global semi-
arid region reported in Fensholt et al. (2012) and Helldén and
Tottrup (2008). Whether this period of low NDVI values coinciding
with the El Chichon volcanic eruption, should be considered as an ar-
tifact or the eruption actually caused a real decrease in NDVI due to
changed climatic forcing (Lucht et al., 2002) cannot be concluded
from this study. The sensor shift related breaks in SPOT-VGT data series
would introduce an increasing trend in NDVI. This was confirmed by
Guay et al. (2014) who conducted per-pixel trend analysis and com-
pared growing season NDVI from GIMMSg, GIMMS3g, MODIS, and
SPOT-VGT data during 2002–2008 at high northern latitudes (N50°N)
and found widespread greening trends only in the SPOT-VGT based re-
sults. Trend analysis results from GIMMS3g, SPOT-VGT and Terra-
MODIS based datasets covering the years of 2010–2011 should be
interpreted with caution because of the unrealistic higher NDVI anom-
alies in the hyper-arid region averaged series. The VIP3 and LTDR4
datasets should not be used for long-term NDVI trend analysis in the
global drylands due to severe temporal inconsistencies between sen-
sors. However, this does not mean that these two datasets cannot be
used for other applications e.g. related to long-term monitoring of veg-
etation phenology. Parameterization of the onset, peak time and end of
season can still be well captured and is expected to be less impacted
from abrupt shifts in time series as compared to impacts from shifts
on linear trend analysis (Scheftic, Zeng, Broxton, & Brunke, 2014; van
Leeuwen & Hartfield, 2013).
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6. Conclusions

We evaluated the temporal consistency of GIMMS3g, LTDR4, VIP3,
and SPOT-VGT datasets. The global land surface area is divided into six
regions according to the world humidity zones and averaged NDVI
time series are calculated and analyzed in each region for all the candi-
date datasets. GIMMS3g NDVI data showed an inconsistency between
sensors in humid, dry-subhumid, semi-arid and hyper-arid regions.
VIP3 and LTDR4 datasets showed clear artifacts at the beginning of
NOAA-11 and orbital drift effects in semi-arid, arid and hyper-arid re-
gions during 1982–2000. In addition, VIP3 and LTDR4 showed data in-
consistencies when changing the data source from AHVRR to MODIS
and from NOAA-16 to NOAA-18, respectively. Amongst the long-term
AVHRR based datasets analyzed, the GIMMS3g is found to have the
highest temporal consistency and at present state will be the most ap-
propriate choice for NDVI trend analysis. The discontinuity between
VGT-1 and VGT-2 at the beginning of 2003 in SPOT-VGT NDVI dataset
is clearly seen and impacts trend analysis for all vegetated regions.
Distinct different NDVI values amongst the examined datasets during
2010–2011 have resulted in different vegetation breaks and trends for
recent years. The reasons behind these discrepancies need to be further
explored since a growing volume of studies within vegetation and
climate change research is based on these long term datasets.
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