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Vegetation phenology strongly controls photosynthetic activity and ecosystem function and is essential for mon-
itoring the response of vegetation to climate change and variability. Terrestrial ecosystemmodels require robust
phenology models to understand and simulate the relationship between ecosystems and a changing climate.
While current phenology models are able to capture inter-annual variation in the timing of vegetation spring
onset, their spatiotemporal performances are not well understood. Using green-up dates derived from MODIS,
we test 9 phenological models that predict the timing of grassland spring onset via commonly available climato-
logical variables. Model evaluation using satellite observations suggests that Modified Growing-Degree Day
(MGDD) models and Accumulated Growing Season Index (AGSI) models achieve reasonable accuracy
(RMSE b 20 days) aftermodel calibration. Inclusion of a photoperiod trigger and varied critical forcing thresholds
in the temperature-based phenology model improves model applicability at a regional scale. In addition, we ob-
serve that AGSI models outperformMGDDmodels by capturing inter-annual phenology variation in large semi-
arid areas, likely due to the explicit consideration of water availability. Further validation based on flux tower
sites shows good agreement between the modeled timing of spring onset and references derived from satellite
observations and in-situ measurements. Our results confirm recent studies and indicate that there is a need to
calibrate current phenologymodels to predict grassland spring onsets accurately across space and time.Wedem-
onstrate the feasibility of combining satellite observations and climatic datasets to develop and refine phenology
models for characterizing the spatiotemporal patterns of grassland green-up variations.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Vegetation phenology, characterizing the recurring and periodic cy-
cles of vegetation green-up and senescence, is highly sensitive to cli-
mate change and variability (Cleland, Chuine, Menzel, Mooney, &
Schwartz, 2007; Koerner & Basler, 2010; Piao, Fang, Zhou, Ciais, & Zhu,
2006; Richardson et al., 2013). Environmental drivers, such as tempera-
ture, photoperiod, water and nutrient availability, regulate the timing of
the spring onset of natural vegetation (Friedl et al., 2014; Piao et al.,
2011; Yu, Price, Ellis, & Shi, 2003). Numerous studies using in-situ mea-
surements and satellite observations have documented decadal shifts in
vegetation phenology under a changing climate at both regional and
global scales (Broich et al., 2014; Julien & Sobrino, 2009; Wu & Liu,
2013; Yang, Mustard, Tang, & Xu, 2012). The shifts of key phenophases,
such as spring onset and autumn senescence, control vegetation photo-
synthetic activities (Churkina, Schimel, Braswell, & Xiao, 2005;
gminwei South Building Room
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Richardson et al., 2010) and have profound impacts on global carbon
and water cycles in both field measurements and model simulations
(Dragoni et al., 2011; Jeong, Medvigy, Shevliakova, & Malyshev, 2012;
Piao, Friedlingstein, Ciais, Viovy, & Demarty, 2007). Robust climate-
driven models of vegetation phenology are therefore critical for
projecting climate change scenarios (Cramer et al., 2001; Levis &
Bonan, 2004).

Modeling springtime vegetation phenology via climate variables has
received extensive attention in recent publications, and a variety of
climate-driven phenological models have been proposed and tested
using in-situ measurements (Cesaraccio, Spano, Snyder, & Duce, 2004;
Melaas, Richardson, et al., 2013; Richardson, Bailey, Denny, Martin, &
O'Keefe, 2006; Yang et al., 2012). Based on species-level observations
of tree budburst, it is generally considered that temperature is the
main driver for spring onsets of temperate forests (Bale et al., 2002;
Chuine, Cour, & Rousseau, 1999; Hanninen & Kramer, 2007; Kaduk &
Los, 2011; Wu, Gonsamo, Gough, Chen, & Xu, 2014). The temperature-
based phenology models have been widely employed as sub-models
in terrestrial biosphere models (Cramer et al., 2001; Kucharik et al.,
2006). Most of these phenology models are empirical, with prescribed
et across the Western United States using climate variables and
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values of parameters (Yang et al., 2012). However, recent studies have
argued that the currentmodel schemes do not capture the spatiotempo-
ral variation of vegetation phenology metrics derived from satellite ob-
servations (Fisher, Richardson, & Mustard, 2007), particularly for
grasslands. The responses of grasslands to local climates are more com-
plicated than that of the forest biome. While grasses in moist environ-
ments are sensitive to temperature variation, the spring onset of dry
grasslands is limited by soil water availability (Choler, Sea, Briggs,
Raupach, & Leuning, 2010; De Michele, Vezzoli, Pavlopoulos, &
Scholes, 2008; Liu, Tian, Hu, Hu, & Sivapalan, 2013) and often initiated
by precipitation events (Ji & Peters, 2004; Lotsch, Friedl, Anderson, &
Tucker, 2003; Shen, Tang, Chen, Zhu, & Zheng, 2011). Given that
grassland is a key component in terrestrial biomes, it is important to fur-
ther develop and refine the climate-driven phenological models for
grasslands.

Thoughmodelinggrassland green-up is a research frontier in pheno-
logical studies, model development is constrained by the lack of long-
term records of grass phenology from ground observations (White
et al., 2009), possibly because the phenomenon of grass green-up is
challenging to define with respect to tree budburst or leaf expansion
(i.e., based on the percentage of leaves at their full sizes). Observations
from digital cameras (Coops et al., 2012; Nijland et al., 2014) and mea-
surements from flux towers (Melaas, Richardson, et al., 2013) provide
alternative ways to infer and define the timing of vegetation green-up
for specific sites, but robust model development and evaluation require
sufficient site-year data. In addition to model validation using in-situ
observations, there is a need for improved understanding of the spatio-
temporal performance of phenology models over large geographic
regions with appropriate datasets.

Satellite remote sensing provides abundant time-series observations
of land surfaces for regional and global phenological studies. Vegetation
indices derived from satellite observations have been shown to have
close relationships with vegetation chlorophyll abundance and photo-
synthetic activity (Huete et al., 2002; Myneni, Hall, Sellers, & Marshak,
1995) and have proven suitable to derive key phenophases such as
spring green-up and autumn browning (Fisher & Mustard, 2007;
Zhang et al., 2003). Commonly used approaches that derive vegetation
spring onset from satellite observations include those based on:
1) predefined thresholds of spectral vegetation indices (White,
Thornton, & Running, 1997); 2) when time series of vegetation indices
reach certain ratios of the seasonal amplitude (Jönsson & Eklundh,
2004), 3) the rate of increase in vegetation indices during the early
growing seasons (Piao et al., 2011), and 4) higher-order derivatives of
the time series of vegetation indices (Tan et al., 2011). Though the def-
inition of spring onset varies across studies, satellite-derived spring on-
sets have shown good agreement with digital camera observations
(Hufkens et al., 2012) and time series of CO2 fluxes measured at tower
sites (Bottcher et al., 2014).

Long-term observations from AVHRR dating back to the early
1980s have been used to quantify changes in phenology at regional
and global scales (Heumann, Seaquist, Eklundh, & Jönsson, 2007;
Tateishi & Ebata, 2004; White et al., 2009). However, due to sensor
degradation and data quality issues, recent studies based on the
AVHRR datasets have led to conflicting results concerning the trend
and magnitude of phenological shifts in specific regions, such as
the Tibetan Plateau (Piao et al., 2011; Wu & Liu, 2013; Zhang,
Zhang, Dong, & Xiao, 2013). The coarse resolution of the AVHRR
dataset also hinders validation using ground observations (Wang
et al., 2011). Data from MODIS sensors with an improved signal-to-
noise ratio and moderate spatial resolution have been used routinely
to provide high-quality datasets (Justice et al., 2002). The product of
MODIS Land Cover Dynamics (MCD12Q2) has been examined and
validated in several recent studies (Ganguly, Friedl, Tan, Zhang, &
Verma, 2010; Zhang et al., 2003). A relatively new time series of
MCD12Q2 dataset is now available, which offers opportunities to re-
fine and evaluate phenological models at a large scale.
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The objectives of this study are to 1) use phenology metrics derived
from MODIS for model refinement and validation, 2) propose a new
method to characterize the spatiotemporal patterns of regional phenol-
ogy variations, and 3) use flux measurements at tower sites to validate
both MODIS-derived green-up dates and spring phenology models.

2. Materials and methods

2.1. Study area and data preprocessing

Weperformed our analysis for theWestern United States (25° to 49°
N, −125° to −95° W), where reliable daily climate data are available
(Fig. 1). Climatic zones range from temperate in the North to tropical
in the South. Temperature generally decreases with latitude and varies
as a function of topography. Annual precipitation ranges widely across
large areas and shows an east–west gradient. The study area includes
over 95% of the grasslands in the United States and has a variety of
grass species mixed with shrubs or local species of short vegetation.

To match the spatial resolution of the climate data, we preprocessed
remotely sensed data from standard MODIS products and scaled up
the timing of grassland green-up from MODIS resolution to a
0.125° × 0.125° resolution. Ten-year (2001–2010) data of vegetation
green-up dates were extracted from the first layer ofMCD12Q2 product
(Ganguly et al., 2010). The timing of vegetation green-up in MCD12Q2
was derived based on the changing rates in the time series of Enhanced
Vegetation Index (see for example in Fig. 2A). Because we only
attempted to model springtime green-up (from Jan 1st to July 1st),
areas such as California, where grass green-up begins in November
and December, were not included in our analysis. The MODIS Land
Cover Type product (MCD12Q1) was used to screen non-grass pixels
(Friedl et al., 2002; Friedl et al., 2010). To reduce the influences of
land-cover and land-use changes, we only processed pixels that were
mapped as grasslands consistently in both 2001 and 2010. Apparent
anomalies of grassland green-up dates within each 0.125° grid cell
were excluded based on the criteria of mean ± 3 standard deviation
(Roy, Jin, Lewis, & Justice, 2005). To minimize the effect of elevation
on vegetation phenology, we obtained digital elevation maps from
NOAA's Global Land One-km Base Elevation (GLOBE) project (Hastings
& Dunbar, 1998) and excluded MODIS pixels that have an elevation ex-
ceeding mean ± 100 m of each 0.125° grid cell (Peng et al., 2014). The
timing of grassland green-up for each 0.125° grid cell was then deter-
mined as the median value for all qualified MODIS observations within
the corresponding grid cell. However, if the standard deviation of
within-pixel grassland green-upwas greater than 30 days, we excluded
those grid cells for further analysis because grasses respond diversely to
local climates. Because remotely sensed data contain inherent noise
(Xin, Olofsson, Zhu, Tan, & Woodcock, 2013), the above processes
were applied to ensure that MCD12Q2-derived grassland phenology
data were of high quality for model calibration and evaluation.

Daily climate data, including photoperiod, temperature, and vapor
pressure deficit, were used as forcing drivers in phenology models. To
testmodel robustness, we processed two observational climate datasets
that have been widely used in scientific research: 1) the Maurer02v2
datasets (Maurer,Wood, Adam, Lettenmaier, & Nijssen, 2002) originally
developed in coordinationwith NASA's National LandData Assimilation
System (NLDAS) project (Maurer, personal communication; http://
hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010/), and 2) the
Daymet datasets (Thornton et al., 2012) distributed by the Oak Ridge
National Laboratory (ORNL) Distributed Active Archive Center (http://
daymet.ornl.gov/). To analyze the influences of soilmoisture,we obtain-
ed hourly NLDAS NOAH model data achieved by NASA Goddard Earth
Sciences Data and Information Services Center (ftp://hydro1.sci.gsfc.
nasa.gov/). Hourly root zone (0 to 1 m for grass) soil moisture content
derived from the NOAH model were averaged to daily mean values.
All climate and soil moisture datasets from 2000 to 2010 were proc-
essed to daily data at a 0.125° × 0.125° resolution under the Geographic
et across the Western United States using climate variables and
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Fig. 1.Geographic distribution of (A) long-termmean springtime onset (2001–2010) derived fromMODIS Land Cover Dynamics Product (MCD12Q2); (B) elevation derived fromNOAA's
Global Land One-km Base Elevation project; (C) long-term mean temperature (2001–2010) derived from Daymet data; and (D) long-term mean annual precipitation (2001–2010)
derived from Daymet data. Solid dots denote tower sites used for ground validation (Table 1).
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Lat/Lon projection. Daily mean temperature was calculated as the aver-
age of daily maximum and minimum temperatures. Daily photoperiod
and vapor pressure deficit were derived following methods outlined
in Allen, Pereira, Raes, and Smith (1998). Because daily vapor pressure
is not available in Maurer02v2, we estimated the daily vapor pressure
deficit as the difference between saturated vapor pressure at daily
Fig. 2. Examples showing how grass green-up is derived from (A) MODIS Enhanced Vegetatio
derived grassland green-up. Data come from the US-Wlr site (Table 1) in 2002.
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maximum and minimum temperatures (Lobell et al., 2014). For each
year, climate data dating back to the previous Septemberwere compiled
for use in spring phenology models.

Groundmeasurements of CO2 flux time series at flux tower sites can
be used to derive the timing of spring onsets for vegetation (Baldocchi
et al., 2001). Eight grassland sites that had Level 4 data available in the
n Index time series and (B) flux tower CO2 time series. Vertical lines denote the timing of

et across the Western United States using climate variables and
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Table 2
Model descriptions.

Model
code

Model name Equations

SGDD Standard growing-
degree day tSOS such as S f ¼ ∑

tSOS

t0
max xt−Theat ;0ð Þ ¼ F�

MGDD1 Modified growing-
degree day 1

tSOS such as

Sf ¼ ∑
tSOS

t0
max xt−Theat ;0ð Þ ¼ aGDDþ b ¼ F�

MGDD2 Modified growing-
degree day 2

t0 such as Photo = p0

tSOS such as S f ¼ ∑
tSOS

t0
max xt−Theat ;0ð Þ ¼ F�

MGDD3 Modified growing-
degree day 3

t0 such as Photo = p0
tSOS such as

Sf ¼ ∑
tSOS

t0
max xt−Theat ;0ð Þ ¼ aGDDþ b ¼ F�

SEQ Sequential
t0 such as Sc ¼ ∑

t0
max xtbTchill;0ð Þ ¼ C�

tSOS such as S f ¼ ∑
tSOS

t0
max xt−Theat ;0ð Þ ¼ F�

PAR Parallel
Sc ¼ ∑

tSOS
max xtbTchill;0ð Þ ¼ C�

W ¼ min Sc=C
� ;1ð Þ

tSOS such as S f ¼ ∑
tSOS

W �max xt−Theat ;0ð Þ½ � ¼ F�

SGSI Standard growing
season index

iTMIN ¼ min max TMIN−TMINMin
TMINMax−TMINMin

;0
� �

;1
� �

iVPD ¼ min max 1− VPD−VPDMin
VPDMax−VPDMin

;0
� �

;1
� �

iPhoto ¼ min max Photo−PhotoMin
PhotoMax−PhotoMin

;0
� �

;1
� �

GSI = iTMIN × iVPD × iPhoto

tSOS such as GSI ¼ G�

AGSI1 Accumulated
growing
season index 1

GSI = iTMIN × iVPD × iPhoto

tSOS such as ∑
tSOS

GSI ¼ G�

AGSI2 Accumulated
growing
season index 2

iSWC ¼ min max SWC−SWCMin
SWCMax−SWCMin

;0
� �

; 1
� �

GSI = iTMIN × iSWC × iPhoto

tSOS such as ∑
tSOS

GSI ¼ G�

* tSOS [days] is the date of start-of-season (SOS) for grassland green-up; t0 [days] is the
starting date of heating accumulation; xt [°C] is the air temperature at the time of day t;
Theat and Tchill [°C] are the heating- and chilling-base temperature, respectively; Sf and Sc
[°C] are the accumulated heating and chilling forcing units, respectively; C⁎ [°C] is the crit-

ical threshold of the chilling process; GDD [°C] is long-term mean annual growing degree
days with base temperature of 0 °C; a and b are regression coefficients; and F⁎ [°C] and G⁎

[dimensionless] are both critical thresholds for the heating forcing process. TMIN [°C] is
daily minimum temperature; VPD [kPa] is daily vapor pressure deficit; Photo [hours] is
daily photoperiod; SWC [kg/m2] is daily mean root zone soil water content; iTMIN, iVPD,
iPhoto, and iSWC [dimensionless] are the scalars for daily minimum temperature, daily
vapor pressure deficit, daily photoperiod, and daily root zone soil water content, respec-
tively, and all scalars are bounded between 0 and 1. GSI is the Growing Season Index
and GSI is the 21-day running averages of the Growing Season Index.
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AmeriFlux website (http://ameriflux.ornl.gov/) were used for ground
validation (Table 1). These flux towers monitor fields of different grass
types and are representative of a widespread environment in the
study area.We excluded the site-year data if the Gross Primary Produc-
tion (GPP) time series did not follow distinct annual cycles or the tem-
perature data were missing for more than 10 days during springtime
(Jan 1st to July 1st). Following previous studies (Zhang et al., 2003),
we fit logistic lines to GPP time series and identified dates when the
ratio of daily GPP to seasonal amplitude researches 5% and 10% for
each site-year data (Fig. 2B). To assess the relationship between
ground- and satellite-based grass green-up, we estimated the dates of
MCD12Q2-derived green-up as the median value of 9 × 9 MODIS
500 m pixel windows centered on each site, excluding non-grassland
pixels (Xin et al., 2012). Meteorological data measured at flux towers
were processed from a half-hourly to a daily basis as forcing data for
phenological models. Photoperiod for each site was calculated as a
function of the latitude and the day of year, similar to our processing
of regional datasets (Allen et al., 1998).

2.2. Spring phenology models

In this paper, we tested nine different models (Table 2) that predict
the timing of grassland green-up based on climatic variables. The
standard growing-degree day (SGDD) model, first introduced by De
Réaumur (1735), is used as a phenology sub-model in several ecosys-
tem models to predict the timing of budburst. This model simply
assumes a linear relationship between the status of plant growth and
energy. The grass green-up is considered to appear when heating accu-
mulation starting from a fixed date reach a certain amount of heating-
degree days. In recent modeling studies (Kucharik et al., 2006), grass
green-up is predicted to occur when the accumulated heating-degree
days on a −5 °C heating-base temperature after January 1 exceed
150 °C.

Melaas, Richardson, et al. (2013) proposed modified growing
degree-day (MGDD) models by including a photoperiod trigger and
by varying critical forcing thresholds as a function of long-term mean
temperature, of which three derivative models were tested here. In
the first model (MGDD1), the critical forcing threshold was varied as a
linear function of long-term mean annual GDD, which accommodated
to the fact that warmer areas need larger thermal summations (White
et al., 1997). We used a long-term mean annual GDD instead of a
long-termmean temperature to ensure a positive slope factor in the re-
gression. In the second model (MGDD2), heating accumulation began
when the daily photoperiod was greater than the photoperiod trigger
(a threshold of p0), which allowed the initiation of heating accumula-
tion to vary along latitudes. If the minimum photoperiod was always
greater than the photoperiod trigger, the heating accumulation was as-
sumed to start from December 21, the day with the shortest photoperi-
od in the Northern Hemisphere. In the third model (MGDD3), we
employed both photoperiod and long-term annual GDD factors to test
model performance over large geographic areas.

Models that are more complex consider chilling effects on bud
dormancy in addition to heating effects to predict the timing of spring on-
sets (Chuine, Cour, & Rousseau, 1998; Yang et al., 2012). The Sequential
Table 1
Information for the study tower sites as obtained from the AmeriFlux website.

Site code Site name Lat (°N) Lon (°W) Elev (m) Veg

US-ARb ARM SGP Burn 35.5497 −98.0402 424 C4/C
US-Arc ARM SGP Control 35.5465 −98.0401 424 C4/C
US-Aud Audubon Research Ranch 31.5907 −110.5092 1469 Des
US-Bkg Brookings 44.3453 −96.8362 510 Tem
US-FPe Fort Peck 48.3077 −105.1019 634 Tem
US-Fwf Flagstaff Wildfire 35.4454 −111.7718 2270 Her
US-Wkg Kendall Grassland 31.7365 −109.9419 1531 C4 g
US-Wlr Walnut River 37.5208 −96.8550 408 C4/C

Please cite this article as: Xin, Q., et al., Modeling grassland spring ons
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(SEQ) model assumes that chilling accumulation initiates when the air
temperature falls below a chilling base temperature (Tchill) and heating
accumulation starts after the chilling requirement is fulfilled. In compari-
son, the Parallel (PAR) model assumes that heating accumulation occurs
concurrently with chilling fulfillment and spring onset occurs when
heating accumulation reaches a critical sum of heating units. Bothmodels
employ Tchill to trigger the processes of chilling accumulation. However,
etation type No. year Reference

3 mixed grasses 1 Fischer, Billesbach, Berry, Riley, and Torn (2007)
3 mixed grasses 1 Fischer et al. (2007)
ert grassland 2 Xiao et al. (2010)
perate grassland 2 Xiao et al. (2010)
perate grassland 5 Gilmanov et al. (2005)
baceous species 2 Dore et al. (2008)
rasses with shrubs 1 Scott (2010)
3 mixed grassland 3 Coulter et al. (2006)

et across the Western United States using climate variables and
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for areas where the air temperature is always greater than the chilling
base temperature, we prescribed the heating accumulation to start from
December 21 (Melaas, Richardson, et al., 2013). In this case, both models
are functionally equivalent to the MGDD2 model when its requirement
for the photoperiod trigger (p0) is never met.

The standard Growing Season Index (SGSI) model, originally devel-
oped by Jolly, Nemani, and Running (2005), combines a common set of
climatic variables for modeling vegetation phenology. SGSI considers
three key environmental variables on plant growth and canopy devel-
opment, in which GSI is calculated as the product of scalars of photope-
riod, minimum temperature, and vapor pressure deficit. The model
parameters are prescribed empirically from previous literature and
site calibrations. The moving average of SGSI has shown to be strongly
correlated with satellite-derived time series of Normalized Difference
Vegetation Index (Jolly et al., 2005). The spring onset was predicted to
occur when the 21-day moving average of the GSI reaches 0.5.

In addition, we tested new methods that combine the concepts of
the SGSI and SGDD models and accumulate GSI instead of temperature
to track the suitability of the climatic environment. In the first model
(AGSI1), the photoperiod mainly served as a scalar for initiating accu-
mulation, and the temperature was normalized to account for the ener-
gy requirements of vegetation spring onset. Vapor pressure deficit, as an
indicator of surface dryness (Jolly et al., 2005), was used to characterize
the influence of water availability: in moist environments where water
has fewer limitations on canopy development, the scalar of vapor pres-
sure deficit is close to 1, whereas the scalar of vapor pressure deficit is
close to 0 in dry areas, reflecting the limitation of water availability on
vegetation growth. The spring onset was predicted to occur when the
GSI accumulation reaches a critical threshold. The second model
(AGSI2) was similar to AGSI1, but used root zone soil water content in-
stead of vapor pressure deficit as an indicator of water availability. Here,
we simply used a linear ramp function to represent the limitation of soil
water content similar to other environmental stresses.

It is worth noting that AGSI models can be generalized and
rearranged as:

tSOS such as
XtSOS

TMIN−TMINMinð Þ �∏ f xið Þ ¼ G� TMINMax−TMINMinð Þ ¼ F�

ð1Þ

where f(xi) [dimensionless] are scalar functions that down-regulate
temperature summation; tSOS [days] is the date of start-of-season
(SOS) for grassland green-up; TMIN [°C] is daily minimum temperature,
TMINMax [°C] is the capped temperature for dailyminimum temperature
when temperature does not limit grass growth and TMINMin [°C] is the
base temperature for daily minimum temperature; and F* =
G*(TMINMax− TMINMin) [°C] is the critical threshold for the heating forc-
ing process.

In essence, AGSI models are similar to SGDDmodels and accumulate
temperatures, but they apply a multiple-constraint model of ∏ f(xi) to
synthesize the influences of various environmental stresses. Under un-
suitable environmental conditions, effective temperature accumulation
becomes smaller, such that more days are required to meet a critical
threshold for initiating vegetation growth. In this way, effective GDD ac-
cumulation has an analogous form to the Jarvis–Stewart equation
(Jarvis & McNaughton, 1986), which has been widely used to describe
the responses of stomatal conductance to environmental factors
(Ding, Kang, Du, Hao, & Zhang, 2014; Lammertsma et al., 2011;
Leuning, 1995). In this study, we mainly considered the influences of
water availability and photoperiod, such that ∏ f(xi) = f(W) × f(P),
where f(W) and f(P) represent scalars that account for the limitations
of water availability and photoperiod, respectively.

2.3. Model parameterization and validation

We used all pixel-years phenologymetrics of grassland derived from
MODIS to calibrate phenology models except two benchmark models of
Please cite this article as: Xin, Q., et al., Modeling grassland spring ons
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SGDD and SGSI. Because each model had three or more parameters, we
used the Shuffled Complex Evolution Approach (Duan, Gupta, &
Sorooshian, 1993; Duan, Sorooshian, & Gupta, 1992) to speed up the
model calibration process without exploring the entire parameter
spaces. The Root Mean Squared Error (RMSE) between modeled and
MODIS-derived green-up dates served as the cost function in model op-
timization (Eq. (2)). Because our study areawas relatively large, we used
Willmott's method (Willmott et al., 1985) to correct RMSE calculations
by accounting for the latitudinal variation in the grid-cell size. To opti-
mize global parameters, we employed the Monte Carlo technique
(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) by repeating
the optimization processwith random initial input values. Ifmodelswith
varied parameter sets achieved similar performances (ΔRMSE b 0.5 day),
we chose the parameter set that provided the smallest biases, which
were calculated as the mean difference between modeled and observed
dates of spring onset (Eq. (3)).

We validated phenology models using 1) all pixel-year dates of
grassland spring onset that are derived from MCD12Q2 and 2) all site-
year dates of grassland spring onset that are derived from flux tower
CO2 time series. Following previous studies (Melaas, Richardson, et al.,
2013), a fourfold cross-validation was performed to evaluate the out-
of-sample model accuracy for each model. We performed Pearson's
correlations and two-tailed Student's t-tests for model evaluation, and
used the metrics of RMSE, Bias, and Mean Absolute Error (MAE) for
error analysis.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

wj t0SOS; j−tSOS; j
� �2

=
X

wj

r
ð2Þ

Bias ¼
X

wj t0SOS; j−tSOS; j
� �

=
X

wj ð3Þ

MAE ¼
X

wj t
0
SOS; j−tSOS; j

��� ���=Xwj ð4Þ

where t ' SOS,j and tSOS,j are modeled and observed dates of the start-of-
season (SOS) for grassland green-up, respectively; the subscript j refers
to an observation in time and space; and wj = cos(L) is a scalar weight
for correcting pixel sizes given that observation j varies spatially at a
latitude of L.

3. Results

3.1. Model performance using MCD12Q2-derived phenology metrics

Table 3 compares the performances of climate-driven phenological
models against grassland green-up dates derived from MCD12Q2.
Both Maurer02v2 and Daymet climate datasets were used for model
predictions. These results indicate that two benchmark models (SGDD
and SGSI)make inaccurate predictions for the timingof grassland spring
onsets. The RMSE values are consistently higher than 40 days for both
models. SGDD tends to have large negative biases and SGSI tends to
have positive biases (approximately 4–7 weeks) for grassland onsets.
After model calibrations, MGDD and AGSI models perform considerably
better with RMSE values less than 20 days and low bias values. By
introducing a photoperiod trigger, MGDD2 andMGDD3 perform slight-
ly better thanMGDD1. The performances ofMGDDmodels for grassland
are comparable to those for evergreen needleleaf forest or deciduous
broadleaf forest presented in the work of Melaas, Richardson, et al.
(2013). However, both the SEQ and PARmodels result in slightly higher
RMSE and MAE than the MGDD and AGSI models.

In addition to error analysis, we performed Pearson's correlations
between modeled and MCD12Q2-derived dates of springtime onsets
for each individual pixel, in which significant positive correlations indi-
cate that phenology models are capable of capturing the 10-year
(2001–2010) variation of the timing of grassland spring onsets. The
spatial patterns shown in Fig. 3 suggest that SGDD only captures the
et across the Western United States using climate variables and
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Table 3
The performance of climate-driven models of spring phenology as evaluated against MCD12Q2-derived phenology metrics. All pixel-year spring onset dates derived fromMCD12Q2 are
used formodel optimization and evaluation. Two climate datasets of Maurer02v2 and Daymet are used for spring onset predictionswith the same parameter sets. Soil water content data
fromNLDASNOAHmodels are used in AGSI2 model. The two values for environmental parameters listed for the SGSI and AGSImodels correspond to the lower and upper limits. The two

values of F* listed forMGDD1 andMGDD3 correspond to the coefficients in F� ¼ aGDDþ b, whereGDDdenotes long-termmean annual GDD.Negative biases indicate thatmodeled spring
onsets are earlier than observed ones, whereas positive biases indicate the opposite.

Model Maurer02v02 Daymet Optimized model parameters

RMSE (day) Bias (day) MAE (day) RMSE (day) Bias (day) MAE (day) P0 (hour) Th (°C) Tc (°C) C⁎ (°C) F⁎ (°C) VPD (kha) SWC (kg/m2) G⁎

SGDDa 41.6 −35.1 35.3 45.3 −39.6 39.7 −5.0 150
MGDD1 18.9 8.2 14.9 18.6 5.4 14.3 −5.0 0.087 196
MGDD2 16.5 1.7 11.7 16.6 0.2 11.7 10.7 −0.8 125
MGDD3 16.4 2.2 11.7 16.7 0.5 11.8 10.7 −0.7 0.010 91
SEQ 19.9 5.2 15.2 18.9 1.3 13.9 −5.9 10.0 56 586
PAR 19.9 5.8 15.3 18.5 1.5 13.7 −6.6 9.2 83 792
SGSIb 67.8 33.0 56.7 44.2 36.2 38.5 10.0 11.0 −2.0 5.0 0.90 4.1 0.5
AGSI1 18.5 7.8 13.7 17.1 1.2 12.0 10.3 11.3 −7.2 1.5 1.15 3.0 12.3
AGSI2 17.9 6.3 13.1 17.5 1.9 12.4 10.3 11.3 −7.2 1.2 36.4 216 12.4

a Model parameter values are from Kucharik et al. (2006).
b Model parameter values are from Jolly et al. (2005).

Fig. 3. Pearson's correlation coefficients between 10-year dates of spring onsets derived from MCD12Q2 and simulated by (A) Standard GDD, (B) Modified GDD 1, (C) Modified GDD 2,
(D) Modified GDD 3, (E) Sequential, and (F) Parallel models, (G) Standard GSI, (H) Accumulated GSI 1, and (I) Accumulated GSI 2. The Maurer02v2 climate datasets are used for
model predictions. The labels on the color bars R = 0.76, R = 0.63, R = 0.55 and R = 0.44 correspond to the 1%, 5%, 10%, and 20% significance levels, respectively. Note the difference
between model performances in the subset of the cyan box (30° to 40° N, −100° to −95° W). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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temperature influences on spring onsets in mountainous areas. By in-
troducing a photoperiod trigger and accounting for the spatial variation
of long-term annual GDD, MGDD models improve model performance
over large geographic areas (Fig. 3B, C, and D for MGDD1, MGDD2,
andMGDD3, respectively). The correlations between spring onsets pre-
dicted byMGDDmodels and observed byMODIS are strong in the north
of the study area, but are weak in specific regions (i.e., the cyan box in
Fig. 3), where generally have less annual precipitation than other
areas (Fig. 1D). The SGSI model captures some temporal variations in
the subset area, but does not perform well across other areas. AGSI1
and AGSI2 can model the inter-annual variation of spring onsets well
across theWestern US, likely due to the inclusion of vapor pressure def-
icit or soilmoisture content. The results for both SEQ andPAR are similar
in terms of the spatial pattern, but only perform reasonably well in
temperature-limited areas.

Fig. 4 further compares the time series anomaly of observed and
modeled spring onsets from 2001 to 2010. The mean spring onset
anomalies were calculated as absolute values of timing of springtime
onset minus long-term means for the entire area and for the example
sub-region, respectively. The two-tailed Student's t-tests for 10-year
trends (Table 4) show that only the onset anomalies modeled by
Fig. 4. The ten-year (2001–2010) anomaly of grassland spring onsets as derived fromMCD12Q2
to 40° N,−100° to−95°W) in Fig. 3. TheMaurer02v2 climate datasets are used formodel pred
in the AGSI2 model. Shaded areas denote ± standard deviation for MODIS observations. Pear
modeled springtime onsets. The asterisks indicate that the correlation between modeled and M
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AGSI2 are statistically significant for the entire areas and the sub-
region. Though some models capture the general trend of the entire
area, they may not be used for predicting inter-annual phenology vari-
ation over specific regions, where water availability plays a vital role
in the timing of grassland onsets. The results presented here imply
that explicit inclusion of water availability in phenology models could
potentially improve their performances for grasslands.

To test the robustness of phenology models, we also performed the
same analysis using Daymet climate datasets. The results in terms of
error analysis (Tables 3 and 4), the spatial pattern of the correlation
coefficient (Fig. 5), and general trends (Fig. 6) are very similar to those
obtained using the Maurer02v2 climate dataset. These results illustrate
that high-quality climate datasets and satellite observations could pro-
vide a robust basis for phenology model calibration and refinement at
large scales.

3.2. Ground validation using eddy covariance data

Fig. 7 shows good agreement between green-up dates derived from
MODIS observations and flux towermeasurements, though their green-
up dates are defined somewhat differently. The satellite-derived green-
and differentmodels shown for (A) the entire area and (B) the subset of the cyan box (30°
ictions. Root zone (0 to 1m) soil water content data from theNLDASNOAHmodel are used
son's correlations and two-tailed Student's t-tests are performed between observed and
ODIS-derived timing of spring onset is significant at the 0.05 level.
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Table 4
Pearson's correlation coefficient (r) for the ten-year (2001–2010) anomaly of grassland spring onsets as derived fromMCD12Q2 and differentmodels. This table summarizes all results in
Figs. 4 and 6. The sub-region area (30° to 40° N, −100° to −95° W) is shown as the cyan box in Fig. 3. Probabilities for two-tailed Student's t-tests are given in parenthesis.

Model Entire area Sub-region

Maurer02v2 Daymet Maurer02v2 Daymet

SGDD 0.295 (p = 0.408) 0.197 (p = 0.586) −0.288 (p = 0.419) −0.318 (p = 0.370)
MGDD1 0.677 (p = 0.032)a 0.654 (p = 0.040)a −0.312 (p = 0.380) −0.346 (p = 0.327)
MGDD2 0.915 (p b 0.001)c 0.894 (p b 0.001)c 0.081 (p = 0.823) 0.072 (p = 0.843)
MGDD3 0.914 (p b 0.001)c 0.893 (p b 0.001)c 0.085 (p = 0.816) 0.077 (p = 0.832)
SEQ 0.738 (p = 0.015)a 0.697 (p = 0.025)a 0.079 (p = 0.827) 0.089 (p = 0.806)
PAR 0.648 (p = 0.043)a 0.595 (p = 0.070) −0.119 (p = 0.744) −0.157 (p = 0.665)
SGSI 0.713 (p = 0.021)a 0.765 (p = 0.010)a 0.798 (p = 0.006)b 0.553 (p = 0.097)
AGSI1 0.935 (p b 0.001)c 0.939 (p b 0.001)c 0.753 (p = 0.012)a 0.617 (p = 0.057)
AGSI2 0.953 (p b 0.001)c 0.930 (p b 0.001)c 0.675 (p = 0.032)a 0.643 (p = 0.045)a

a Correlation is significant at the 0.05 level.
b Correlation is significant at the 0.01 level.
c Correlation is significant at the 0.001 level.
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up dates are significantly correlated with dates defined based on a 5%
GPP ratio (r = 0.665; p = 0.0036) or a 10% GPP ratio (r = 0.761; p =
0.0004). Green-up from MCD12Q2 has lower biases (−2.2 versus
5.6 days) and smaller RMSE (14.7 versus 18.3 days) relative to the
timing of the 10% GPP ratio than the timing of the 5% GPP ratio. These
results demonstrate the usefulness of satellite observations for
scaling-up the timing of grassland spring onset.
Fig. 5. Same as Fig. 3, but the Daymet climate
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Using climate data measured at the flux towers, the climate-driven
models of spring phenology are able to make reasonable predictions
for grassland spring onsets (Fig. 8). Because we calibrate phenology
models with MODIS data, it is not surprising that the modeled results
match the satellite observations better than flux tower measurements.
Overall, the timing of spring onsets modeled by AGSI could explain
approximately 61.0% of the variance (p = 0.0002) for green-up dates
datasets are used for model predictions.
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Fig. 6. Same as Fig. 4, but the Daymet climate datasets are used for model predictions.

Fig. 7. Spring onset dates derived fromMODIS Land Cover Dynamics Product (MCD12Q2) are validated against dates derived from flux tower data based on the criteria of (A) 5% GPP ratio
and (B) 10% GPP ratio. Solid lines denote the 1:1 lines.
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Fig. 8. Spring onset dates modeled by AGSI1 are compared with dates derived from (A) MODIS Land Cover Dynamics Product (MCD12Q2) and (B) flux tower 10% GPP ratio. Solid lines
denote the 1:1 lines.
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derived from MCD12Q2 and 36.7% of the variance (p = 0.0076) for
those derived from flux towers. Table 5 summarizes the statistics for
phenology models as evaluated using all site-year flux tower data. The
performances for summarized models are similar at both small- and
large-scales (Tables 3 and 5), supporting the robustness of ourmethods.
However, due to limited flux towers in the study area, comprehensive
ground validation requires more site-year data from tower sites when
they become available.

3.3. Environmental factors in springtime phenology models

In addition to model calibration and validation, we further investi-
gate the reasons behind the model performances. Fig. 9 plots residuals
between modeled and observed springtime onsets against long-term
mean annual GDD. For the SGDD model, the relationship is negatively
statistically significant (p b 0.0001; Fig. 9A). This result implies that
energy requirements for triggering grass growth could vary with geo-
graphic regions, where colder regions require less energy than warmer
regions to initiate springtime green-up. The MGDD1 model, by varying
the critical threshold, compensates for this effect and the probability
for the correlation becomes insignificant at the 0.05 level. The MGDD2
model, by including a photoperiod trigger alone, also reduces the de-
pendence ofmodeled residuals on long-termmean annual GDD, though
the negative relationship is still significant at the 0.01 level. TheMGDD3
model, which combines the concepts of MGDD1 and MGDD2, achieves
the best performance and modeled and observed springtime onsets
Table 5
Evaluation of spring onset models using flux tower data. The results for the Sequential and Para
such that available site-year observations are largely reduced. The results for the AGSI2model a
sites.

Model MCD12Q2 Green-up Tower 5% GPP

Pearson's corr.
(r)

RMSE
(day)

Bias
(day)

MAE
(day)

Pearson's corr.
(r)

RMSE
(day)

SGDD 0.618b 39.0 −31.1 31.1 0.426 38.0
MGDD1 0.741c 16.2 2.2 13.5 0.472a 24.8
MGDD2 0.736c 17.7 1.5 14.2 0.499a 23.4
MGDD3 0.770c 15.1 −5.0 12.4 0.517a 20.6
SGSI 0.649b 32.9 22.6 27.2 0.315 42.3
AGSI1 0.781c 15.0 −5.3 12.8 0.563a 19.4

a Correlation is significant at the 0.05 level.
b Correlation is significant at the 0.01 level.
c Correlation is significant at the 0.001 level.
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are insignificantly correlated (p = 0.9653). These results indicate that
introducing varied critical thresholds and a photoperiod trigger in
temperature-based phenologymodels could improve overall model ap-
plicability across large geographic regions.

To investigate the effects of water availability on grassland green-
up, we plot residuals between modeled and observed springtime on-
sets against mean soil water content 30 days before MODIS-derived
spring onset dates in Fig. 10. The MGDD3 model, though it performs
well in most areas, shows a significant correlation (r = 0.082;
p b 0.0001) between modeled residuals and 30-day leading mean
soil water content. The relationship is positive, implying that drier
areas require more days to initiate grass green-up. The negative rela-
tionship given by the SGSI model indicates that model calibration is
necessary for current spring phenology models. Both AGSI1 and
AGSI2 could remove the dependence of modeled residuals on 30-
day leading mean soil water content (correlations are insignificant
at the 0.01 level). These results indicate that explicit considerations
of water availability are required in temperature-based phenology
models to predict grassland green-up.

4. Discussion

In this study, we demonstrate the feasibility of using satellite remote
sensing data for the development and refinement of grassland phenolo-
gy models across the Western United States. Models calibrated against
MCD12Q2 are able to make predictions for grassland spring onset
llel models are not presented because both models require climate data in previous years
re not presented because soil moisture data weremissing from themeasurements in some

Tower 10% GPP

Bias
(day)

MAE
(day)

Pearson's corr.
(r)

RMSE
(day)

Bias
(day)

MAE
(day)

−23.8 29.6 0.446 42.9 −32.1 32.9
8.2 19.7 0.521a 21.5 −0.1 16.5
5.3 18.8 0.559a 20.8 −2.9 16.4
1.6 15.2 0.570a 19.5 −6.7 13.9

25.3 32.9 0.387 36.1 17.1 27.2
1.4 14.7 0.606b 18.6 −6.8 13.1
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Fig. 9. Correlations between long-term mean annual growing degree-days and the residuals between modeled and observed timing of spring onsets are shown for A) SGDD, B) MGDD1,
C) MGDD2, and D) MGDD3 models. Data are shown for all observations in 2010 across the entire area. Solid lines denote the regression lines.
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with RMSE values less than 20days. The achieved accuracy is reasonable
considering that grasslands exhibit extensive inter-annual and within-
pixel variation in vegetation dynamics in response to climate variability.
Fig. 11 presents histograms for spring onset anomalies of grasslands.
The frequency of pixel numbers is normally distributed. The standard
deviations for spring onset anomalies are 12.4 days for inter-annual var-
iation and 10.9 days forwithin-pixel variation, indicating the highly var-
ied phenology of grasslands as derived from satellite observations. Our
findings are also in line with previous studies (Kucharik et al., 2006;
White et al., 1997), which suggested that a 10-day error in satellite-
derived timing of vegetation green-up was reasonable.

It would be of interest to test other available models in addition to
nine phenology models tested here. We have tested other variant
GDDmodels proposed in Melaas, Richardson, et al. (2013). The param-
eters that vary the base temperature as a function of long-term mean
temperature tend to have values very close to zero during our optimiza-
tion processes (results are not shown), and we observe no apparent
evidence that including these parameters would improve model
Please cite this article as: Xin, Q., et al., Modeling grassland spring ons
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performances significantly in comparison to tested MGDD models.
There are also other more complex models available. Baldocchi et al.
(2005) modified the phenology sub-model in the TSOIL model and
used air and soil temperature to predict spring onsets of deciduous
broadleaf forests. White et al. (1997) proposed empirical functions of
soil temperature, air temperature, and precipitation for modeling forest
and grass spring onsets. Physiologically, soil temperature and moisture
have been found to influence the timing of grassland spring onsets
(Jin, Zhuang, He, Luo, & Shi, 2013; Liu et al., 2013; Shen et al., 2011);
therefore, including soil temperature is likely to boost model perfor-
mance. Because current large-scale datasets of soil temperature
and moisture such as NLDAS are derived from land-surface models
such as Mosaic, Noah, VIC, and SAC (Koster & Suarez, 1992; Liang,
Lettenmaier, & Wood, 1996; Luo et al., 2003; Schaake et al., 2004; Xia
et al., 2012), care should be taken when calibrating phenology models
with these datasets.

Due to the limited availability of the MCD12Q2 products, we only
performed trend analysis for the period of 2001 to 2010. The 10-year
et across the Western United States using climate variables and
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Fig. 10. Correlations between 30-day leading mean root zone (0 to 1 m) soil water content and the residuals between modeled and observed timing of spring onsets are shown for
A)MGDD3, B) SGSI, C) AGSI1, and D) AGSI2models. Data are shown for observations in 2010 over a sub-region (30° to 40° N,−100° to−95°W; the cyan box in Fig. 3). Solid lines denote
the regression lines.
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satellite data may not be sufficient for evaluating the predictive power
of models on the inter-annual variation of grass phenology. Further
analysis on the temporal ability of models requires phenology datasets
constructed from longer time series of satellite data, such as Landsat
or AVHRR (Zhu et al., 2013). However, recent studies have found that
the data quality issues of AVHRR could influence the derived spring on-
sets of vegetation. On the other hand, deriving phenology metrics from
higher spatial but lower temporal resolution images, such as Landsat, is
challenging, though efforts have been made for small regions (Melaas,
Friedl, & Zhu, 2013). Continued monitoring of land surfaces from
MODIS and new satellite sensorswill provide necessary datasets for fur-
ther investigation.

Grasslands are often composed of a variety of grass species and are
oftenmixedwith other short vegetation. Vegetation primary productiv-
ities under different photosynthetic pathways (i.e., C3 versus C4) have
varied sensitivities to ambient temperatures (Kalfas, Xiao, Vanegas,
Verma, & Suyker, 2011; Xin, Broich, Suyker, Yu, & Gong, 2015). As a
Please cite this article as: Xin, Q., et al., Modeling grassland spring ons
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result, grass growth may respond diversely to climate change and vari-
ability, and regrowth is likely to occur in areas where climate permits.
Multiple cycles of vegetation dynamics in a year are also apparent in
our analysis of the flux tower data. However, the spring phenology
models we tested here only simulate the earliest timing of grass spring
onsets. This may also contribute to errors in our site validation of phe-
nology models because vegetation types in terms of photosynthetic
pathways and species composition are shown to vary across tower
sites (Table 1). Predicting the onset of other cycles or cycles that do
not follow an annual curve is beyond the scope of the current research
and poses a challenge for future research.

5. Conclusions

Modeling grassland phenology is critical for understanding the im-
pacts of climate variation on vegetation dynamics. However, model de-
velopment requires objective datasets and sufficient samples for
et across the Western United States using climate variables and
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Fig. 11. Thedistributions of frequency and derived probability forMCD12Q2-derivedgrasslandgreen-up shown for A) inter-annual and B)within-pixel variation.All observations at 0.125°
resolution from 2001 to 2010 are used to derive the frequency distribution for inter-annual variation (defined as the absolute value of spring onset datesminus the long-termmean of the
corresponding pixel). All observations at 500m resolution are used to derive the frequency distribution for within-pixel variation (defined as the absolute values of spring onset dates at
500 m resolution minus the median value of the corresponding pixel at 0.125° resolution). Observation frequencies are fitted with the normal probability density function. STD denotes
standard deviation.
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grassland. In this study, we tested 9 phenology models and evaluated
their spatiotemporal performance using phenology metrics derived
from satellite observations. We carefully processed the grassland
green-up dates derived from MODIS and the climate datasets. The
spring phenology models were calibrated and evaluated against 10-
year MODIS observations and 17 site-years flux tower measurements.

Three main conclusions are drawn from our study. First, our results
confirm recent studies (Richardson et al., 2012) and indicate that the
current phenology sub-model implemented in several ecosystem
models is likely to misrepresent the timing of vegetation spring onsets.
The standard growing-degree day (SGDD) model uses temperature ac-
cumulations and the standard Growing Season Index (SGSI) model
combines a common set of climatological variables to predict the timing
of grassland springtime onsets. As evaluated against MODIS observa-
tions, both the SGDD and SGSI models produce large biased errors and
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do not capture the inter-annual variation of vegetation dynamics over
large areas. Second, careful calibration of simple variants of generalized
phenology models may produce acceptable accuracies for regional
models. The modified growing-degree day (MGDD) models that add a
photoperiod trigger and varied critical forcing thresholds to SGDD
models could improve the predictions of the spring onset of grasslands.
However, MGDD models do not capture the phenology variation well
over water-limited areas, suggesting that including parameters relative
to water availability is necessary in phenologymodels. Last, we propose
new methods for modeling grassland spring onset based on the accu-
mulation of Growing Season Index. The AGSI models consider the influ-
ences of day length (photoperiod), minimum temperature (energy),
and vapor pressure deficit or soil moisture (dryness) on grass growth.
The results indicate that the AGSI models are able to make reasonable
predictions of grass spring onsets derived from MODIS observations
et across the Western United States using climate variables and
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and flux tower measurements. Further investigation is required to un-
derstand whether the developed models can be applied to longer time
series or other places in the world.

In this study, we combine satellite data and large-scale climate
datasets for modeling grassland spring onsets. The use of time series
MODIS data provides objective definitions of spring onsets and abun-
dant observations that allow model development and calibration over
large areas. Another advantage of this method is that model perfor-
mances can be evaluated both spatially and temporally. Further re-
search should address the issue of data quality in remotely sensed
data and conduct uncertainty analysis for satellite-derived phenology
metrics.
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