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Satellite remote sensing of vegetation parameters and stress is a key issue for semi-arid areas such as the Sahel,
where vegetation is an important part of the natural resource base. In this study we examine if additional infor-
mation can be obtained on intra-seasonal short term scale by using the Shortwave Infrared Water Stress Index
(SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evalua-
tion of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and
Infrared Imager (SEVIRI). The indices and their seasonally detrended anomalies are evaluated using a gridded
rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily
NDVI and SIWSIwere found spatially highly correlated to ETawith r= 0.73 for both indices, showing the impor-
tance of the north/south vegetation gradient in the river catchment. The hypothesis that short term evolution of
index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short
term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where
foundwhen anomaly variationswhere aggregated by Land Cover Classes (LCCs) with R2 values of 0.65 for savan-
na, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren or sparsely vegetated areas. This is higher than for
the same method applied to NDVI anomalies, with R2 values of 0.57 for savanna, 0.50 for grassland, 0.32 for
shrubland, and 0.57 for barren or sparsely vegetated areas. The approach of detrending NIR/SWIR based indices
and spatially aggregating the anomalies do offer improved detection of intra-seasonal stress. However, quite
coarse spatial aggregation is found necessary for a significant analysis outcome.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Satellite remote sensing of terrestrial vegetation and vegetation sta-
tus provides essential information for natural resource management
and drought early warning systems in global dryland areas (Fensholt
et al., 2012). The semi-arid Sahel in Sub-Saharan Africa is amongst the
world's largest dryland areas, yet characterized by limited availability
of conventional meteorological ground observations. This makes Earth
observation (EO) based vegetation monitoring particularly useful. In
the Sahel, vegetation growth is highly related to rainfall (Nicholson,
Davenport, & Malo, 1990), and rainfall variability is a major challenge
for the sustainability of local livelihoods (Mertz et al., 2012).

Many indices have been proposed to study and monitor vegetation
health and vigor using information from visible (VIS), near infrared
(NIR), and shortwave infrared (SWIR) spectral bands. The most widely
applied of these indices is the Normalized Difference Vegetation Index
(NDVI), which has been found related to several vegetation parameters
like photosynthetic activity, fractional vegetation cover, and Net Prima-
ry Production (NPP) (Carlson & Ripley, 1997; Prince, 1991a,b; Tucker,
1979). NDVI has been used to assess changes in phenology and long
term vegetation trends using datasets such as the Global Inventory
Modeling and Mapping Studies (GIMMS) data from the Advanced
Very High Resolution Radiometer (AVHRR) (Fensholt, Sandholt,
Rasmussen, Stisen, & Diouf, 2006; Fensholt et al., 2012; Heumann,
Seaquist, Eklundh, & Jonsson, 2007; Julien & Sobrino, 2009; Sobrino &
Julien, 2011), which now spans several decades.

NDVI is also commonly combinedwith information in the Thermal In-
frared (TIR) spectrum for drought monitoring (Carlson & Ripley, 1994;
Gillies, Carlson, Cui, Kustas, & Humes, 1997; Sandholt, Rasmussen, &
Andersen, 2002). The Vegetation Health Index (VHI) (Kogan, 1995)
combines NDVI and the Temperature Condition Index (TCI) from
AVHRR reflectances and brightness temperatures. VHI has recently
been applied for agricultural drought probability mapping of the
African continent (Rojas, Vrieling, & Rembold, 2011), thus avoiding
the use of potentially unreliable gridded rainfall datasets. Furthermore,
the high dependency and sensitivity of vegetation to rainfall in the
Sahel has lead studies to suggest using NDVI as a proxy for rainfall to
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compensate for unreliable rainfall data (Anyamba & Tucker, 2005; Proud
& Rasmussen, 2010). Although studies of the impact of inter-annual rain-
fall variability on vegetation indices are most common, NDVI has also
been applied in studies on intra-annual timescale of vegetation response
to seasonal rainfall patterns e.g. in the Sahel (Proud & Rasmussen, 2010),
using data from the Spinning Enhanced Visible and Infrared Imager
(SEVIRI) onboard the geostationary Meteosat Second Generation (MSG)
platform, and in Kansas (Wang, Rich, & Price, 2003) using AVHRR data.

While NDVI has been found suitable for inter-annual studies on a
relatively coarse temporal and spatial resolution in a multitude of
studies (Fensholt & Proud, 2012), the red and NIR based NDVI is not
necessarily the most useful index for providing information on short
term variations in surface water properties, like evapotranspiration,
caused by changing water availability and canopy water content. Due
to the SWIR spectrum's sensitivity to the amount of liquid water in
the canopy (Tucker, 1978; Tucker, 1980), several NIR/SWIR based indi-
ces sensitive to canopy water content have been examined for their ap-
plicability (Ceccato, Flasse, Tarantola, Jacquemoud, & Gregoire, 2001;
Ceccato, Gobron, Flasse, Pinty, & Tarantola, 2002; Ceccato, Flasse &
Gregoire, 2002; Fensholt & Sandholt, 2003; Gao, 1996). Amongst these
the Shortwave Infrared Water Stress Index (SIWSI) has been studied
in a Sahelian context. The evolution of SIWSI over a growing season
has been shown to be highly related to the evolution of growing season
NDVI, but SIWSI has also proved to be sensitive to short-term changes in
canopy water status (i.e. whether the canopy is water stressed or not).
This was shown from comparison with observed and modeled soil
moisture in northern Senegal, where the SIWSI signal for a herbaceous
canopy reflected the periods of low soil moisture (Fensholt &
Sandholt, 2003). When implemented using high temporal resolution
data (15 min temporal resolution) from the SEVIRI instrument onboard
MSG, SIWSIwas found to co-varywith short term changes in vegetation
water status (Fensholt, Huber, Proud, & Mbow, 2010a).

Timely information provided from EO data has been implemented in
early warning systems (EWS) for averting food shortage and famine,
e.g. the United States Agency for International Development (USAID)
Famine Early Warning System (FEWSNET) and the United Nation's Food
and Agricultural Organization (FAO) Global Information and EarlyWarn-
ing System (GIEWS). When using VIS/NIR based indices, canopy water
status is assessed from chlorophyll content. However, chlorophyll content
responds more slowly and less direct to plant water shortage, as com-
pared to canopy water content. Direct assessment of the canopy water
content based upon information from SWIR would potentially shorten
the response time required for canopywater stress and drought detection
in dryland areas. Currently, global EO-based NPP products using the
Production Efficiency Model (PEM) approach are not able to sufficiently
integrate short-term, EO-derived, information related to growth con-
straints (primarily water) in arid and semi-arid areas (Fensholt et al.,
2006). If the SWIR sensitivity to canopywater content can be successful-
ly implemented in EO-based monitoring, improvements in dryland
productivity assessment could be foreseen.

Data from polar orbiting environmental satellites (POES) are
largely influenced by daily variations in the sun-target-sensor
geometry (Fensholt, Sandholt, Proud, Stisen, & Rasmussen, 2010b).
These wavelength dependent variations (caused by different degrees of
absorption/transmittance of a surface) are therefore affecting derived in-
dices (Morton et al., 2014) and can ultimatelymask the signal inherent to
changes in canopy water content. (Fensholt, Huber, Proud, & Mbow,
2010a) explored the potential of SWIR based canopy water stress detec-
tion fromgeostationaryMSGdata (fixed viewing geometry) as compared
toMODIS (Moderate Resolution Imaging Spectroradiometer) data (being
a POES) and found higher usefulness of the geostationary signal. Short
term variations of seasonally detrended daily SIWSI and NDVI anomalies,
derived from the geostationaryMSGdata, have been compared to periods
of limited plant available water for sites in the Sahel (Olsen et al., 2013).
This was based on the hypothesis that anomalies would increase or
decrease as a result of changed canopy water status during dry spells.
SIWSI anomalies were shown to be better suited for this approach than
NDVI anomalies. However, variations in anomalies during non-dry pe-
riods resulted in false dry period identifications, thereby making imple-
mentation of the method unsuited for robust drought detection on a
per-pixel level.

Testing SIWSI index anomalies on a larger spatial scale has not
yet been attempted despite: a) the importance of short-termdetection of
vegetation stress at the regional scale, and b) that previous studies have
presented and supported the hypothesis, that short term variations in
index anomalies hold information on changes in canopy water status
(Fensholt, Huber, Proud, & Mbow, 2010a; Fensholt & Sandholt, 2003;
Fensholt, Sandholt, Proud, Stisen, & Rasmussen, 2010b; Olsen et al.,
2013). The purpose of this study is therefore to test this hypothesis by an-
alyzing both NDVI and SIWSI derived from geostationary satellite imag-
ery at a river basin scale (approximately 250,000 km2). For this purpose
NDVI is calculated from the SEVIRI channel 1 (0.6 μm— Red) and channel
2 (0.8 μm — NIR) and SIWSI is calculated from channel 2 and channel 3
(1.6 μm — SWIR). The indices are evaluated during both a well-watered
and dry period during the 2008 growing season in the Senegal River
Basin. Further, the indices are examined in different forms; both as regu-
lar index values and as seasonally detrended anomalies derived from sea-
sonal curve fitting using the TIMESAT software (Jonsson & Eklundh,
2004). For comparison and evaluation, modeled actual evapotranspira-
tion (ETa) from a semi-arid subset of the Senegal River basin area, esti-
mated using a distributed hydrological model (MIKE SHE), is used
together with the CPC-FEWS RFE2 gridded rainfall product.

2. Case area description

The Senegal River basin is located inWest Africa and has a total drain-
age area of approximately 350,000 km2. It covers parts of four countries;
Guinea, Senegal, Mali, and Mauritania and is characterized by a strong
rainfall and vegetation gradient, with little rainfall and vegetation in the
north and increasingly dense vegetation andmore annual rainfall towards
the south (Fig. 1). The basin can be divided into sub-catchments, see
(Stisen, Jensen, Sandholt, & Grimes, 2008), of which the semi-arid ones
are of interest in this study and constitutes close to 250,000 km2. The av-
erage annual rainfall for the sub-catchment shown in Fig. 1 is just below
500 mm/year, ranging from b200 mm/year in the north to N900 mm/
year in the south. Maximum and minimum temperatures are around 40
°C and 17 °C respectively during the dry season (November to May) and
32 °C and 24 °C during the rainy season (June to October), but cooler
close to the coast (weather-and-climate.com). The dominant soils types
are arenosols, lithosols and regosols (FAO Harmonized World Soil Data-
base — www.fao.org). The vegetation is predominantly natural and ac-
cording to the USGS global Land Cover Classes (LCCs) savanna,
grassland, shrubland, and barren or sparsely vegetated areas constitutes
themajority of the area, with less than 6% identified as cropland (Table 1).

3. Data

3.1. Rain gauges

The rain gauge data are needed for assessing the uncertainties of
gridded rainfall data in the case area. Within the Senegal River basin
rain gauge data from 9 meteorological stations have been acquired
from the NOAA Climate Data Online (CDO) facility http://www7.ncdc.
noaa.gov/CDO/cdo (Table 2). Althoughmore stations are presentwithin
the basin, many are without data for 2008.

3.2. CPC-FEWS Rainfall Estimation Algorithm version 2 (RFE2)

For this study a gridded rainfall product of high spatial and temporal
resolution was needed, to facilitate the comparison with daily satellite
data (NDVI and SIWSI) and modeled actual evapotranspiration. The
Climate Prediction Center (CPC) Rainfall estimate product (Herman,
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Fig. 1. The semi-arid sub-catchments of the Senegal River basin with USGS global land cover classes. The full basin is marked with dark gray line. 200 mm isohytes (hashed lines) from
average rainfall for 2001 to 2013 calculated from NOAA RFE2 gridded rainfall product, and rain gauges (black dots).
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Kumar, Arkin, & Kousky, 1997) version 2 (RFE2), has been found to per-
form acceptably for several African river basins (Thiemig, Rojas,
Zambrano-Bigiarini, Levizzani, & De Roo, 2012) although with some
difficulties for more complex terrain (Dinku, Chidzambwa, Ceccato,
Connor, & Ropelewski, 2008). It is based on a combination of data
sources including microwave, IR from geostationary satellites, and
gauge data. With a spatial resolution of 0.1 degree lat/lon, daily esti-
mates, and being available for 2000 and onwards, it fits the purpose of
this study well.

3.3. MIKESHE modeled actual evapotranspiration (ETa)

Actual evapotranspiration estimates were derived using a distribut-
ed hydrological model set up using the MIKE SHE code (Abbott,
Bathurst, Cunge, Oconnell, & Rasmussen, 1986) for the Senegal River
basin. The model includes components for groundwater, unsaturated
zone flow, evapotranspiration, overland flow and river routing. A
modified version of the MIKE SHE code is utilized in this study, where
groundwater flow (SZ) is represented by a series of interconnected
linear reservoirs defined by storage capacities and residence times
(Andersen, Refsgaard, & Jensen, 2001). Flow in the unsaturated zone
(UZ) is assumed to be only vertical and gravity driven, which implies
that upward flow in the unsaturated zone is neglected.

Actual evapotranspiration simulations are based on the formulation
by (Kristensen & Jensen, 1975) accounting for interception, soil evapo-
ration and plant transpiration. Interception is estimated as a function
of leaf area index (LAI) and canopy storage capacity. The actual transpi-
ration (Etrans) calculation is based on potential evapotranspiration (PET)
corrected by three reduction functions f1, f2 and f3 representing the de-
pendency of transpiration on soil moisture in the root zone (f1), vegeta-
tive cover (LAI) (f2) and root depth and distribution (f3).
Table 1
Distribution of case area land cover classes in percent.

Land cover class Area (%)

Savanna 28.3
Grassland 27.2
Barren or sparsely vegetated 21.6
Shrubland 15.6
Cropland/woodland mosaic 3.5
Dryland cropland and pasture 2.1
Water bodies 1.2
Wooded wetland 0.5
The hydrological model has been setup and calibrated for the entire
Senegal River Basin as described in (Stisen & Sandholt, 2010; Stisen
et al., 2008). The horizontal discretization is 4 km × 4 km and within
each grid the vertical unsaturated soil profile is discretized into compu-
tational layers of 5–50 cm. The model is driven by daily CPC-FEWS v2
precipitation data and monthly means PET data estimated from geosta-
tionary remote sensing (Stisen et al., 2008). The soil parameters are
derived from the FAO soil map of theworld while the land surface is pa-
rameterized using MODIS MCD15A2 8-day LAI product and estimates
for root depth derived from the MODIS LAI.

The model has been calibrated against river discharge from six dis-
charge stations as described in (Stisen & Sandholt, 2010; Stisen et al.,
2008) using the shuffled complex evolution (SCE) algorithm (Duan,
Sorooshian, & Gupta, 1992). The overall water balance is reasonable
with 0–8% error. However, it's very difficult to quantify the uncertainty
of themodel simulated spatial and temporal patterns of ETa because no
ground truth data exists that matches the temporal and spatial scale of
the simulated maps. Although the model was originally setup for the
entire Senegal River Basin, only simulations of actual evapotranspiration
from the Northern and semi-arid part of the basin are utilized in this
comparative study.

3.4. MSG SEVIRI

The SEVIRI instrument onboard the MSG geostationary platform
provides observations every 15 min from its location at 0° longitude
over the equator. The observations produced are at a 3 kmsampling res-
olution at sub satellite point in 12 spectral channels, including a high
resolution broadband visible channel with a 1 km spatial sampling dis-
tance (Schmetz et al., 2002). Level 1.5 MSG SEVIRI data are acquired in
real time through the EUMETCast service, and an operational MSG
SEVIRI processor has been built at the Department of Geosciences and
Natural Resource Management, University of Copenhagen, to compute
Earth surface reflectances. Atmospheric correction was performed
using an improved version (Proud et al., 2010) of the SMAC algorithm
(Rahman & Dedieu, 1994) using daily values of atmospheric water
vapor, ozone and aerosols from the Level-3 MODIS Terra (MOD08_D3)
and Aqua (MYD08_D3) Atmosphere Daily Global Products as inputs.
MSG SEVIRI data are cloud-masked using both the cloud mask product
(CLMK) from MSG Meteorological Products Extraction Facility (MPEF)
(Lutz, 2009) and the CMa product produced using software from the
satellite applications facility in support of nowcasting and very short-
range weather forecasting.



Table 2
Rain gauges in the Senegal River Basin with summed measurements from 2008 and land cover class from the USGS EROS Land Cover dataset version 2.0.

Station Country Latitude Longitude 2008 rainfall, gauge (mm) Land cover

Kayes/Dag-Dag Mali 14.48 −11.44 428 Savanna
Yelimane Mali 15.12 −10.57 136 Savanna
Nioro du Sahel Mali 15.23 −9.35 349 Grassland
Linguere Senegal 15.37 −15.12 479 Grassland
Dahra Senegal 15.41 −15.44 317 Grassland
Matam Senegal 15.62 −13.25 423 Barren or sparsely vegetated
Kaedi Mauritania 16.15 −13.52 230 Barren or sparsely vegetated
Rosso Mauritania 16.50 −15.82 272 Dryland cropland and pasture
Kiffa Mauritania 16.63 −11.4 325 Barren or sparsely vegetated

Fig. 2. Comparison of 10-day summed rainfall, x-axis: gauges within the Senegal River
Basin (Table 2, n = 9) in 2008, y-axis: values of RFEv2 rainfall.
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The atmospherically corrected and cloudmasked land surface reflec-
tances from SEVIRI are affected by the changing illumination and view-
ing geometry between sun, target, and sensor (Fensholt, Sandholt,
Proud, Stisen, & Rasmussen, 2010b). This is minimized by using a
Bidirectional Reflectance Distribution Function (BRDF) to describe the
angular dependency, making it possible to produce reflectances nor-
malized to a common set of solar and viewing angles. A Nadir view
BRDF Adjusted Reflectance (NBAR) product has been created on a
daily basis for channel 1 (VIS 0.6 μm), channel 2 (NIR 0.8 μm), and chan-
nel 3 (SWIR 1.6 μm), by using a modified version of the algorithm used
for theMODISNBAR product (Ju, Roy, Shuai, & Schaaf, 2010; Proud et al.,
2014; Schaaf et al., 2002). The NBAR product is created using data from
the given day, as well as up to four preceding days, providing a maxi-
mum of 5 days of observations as input. The product retains sensitivity
to short term variations of surface reflectance, while the chance of re-
trieving sufficient cloud free observations for a successful inversion in-
creases by combining several days of data (Proud et al., 2014).

4. Methods

The archive of rainfall RFE2 data was studied for the Senegal River
basin to find growing season periods characterized by substantial
water shortage at the catchment scale. In 2008 a large part of the river
basin experienced a dry period during the growing season between
DOY 253 and 262, as identified in a previous study for a limited area
around the Dahra test site (Fensholt, Huber, Proud, & Mbow, 2010a)
and by both gauge and RFE2 rainfall estimates. This period is well suited
to examine the performance of NDVI and SIWSI for limited water avail-
ability on a short time scale.

4.1. Rainfall and actual evapotranspiration

Daily RFE2 estimates were temporally aggregated for the 10-day pe-
riod (DOY 253–262) because of the uncertainty of the RFE2 estimates at
a daily time scale. To put this into growing season context four preced-
ing 10-day periods of RFE2were also summed aswell as the one follow-
ing 10-day period. Aggregating on a 10-day basis serves to increase the
correlation between gauge (Table 2) and RFE2 estimates from r = 0.12
(daily estimates) to r=0.79 (10-day sums, see Fig. 2), and alleviates the
inconsistencies on both timing and amount of rainfall for the two data
sets. As the modeled actual evapotranspiration (ETa) is driven by RFE2
estimates, amongst other parameters, ETa is averaged on 10-day basis
for easier comparison.

4.2. Index calculation and seasonal detrending

Using the SEVIRI NBARs, NDVI is calculated from daily red and NIR
reflectances (Eq. 1), and SIWSI is calculated fromdaily NIR and SWIR re-
flectances (Eq. 2). For seasonal detrending of the indices, suitable
fittings of growing season trends are derived using the TIMESAT soft-
ware. For this purpose SIWSI is inverted by multiplying by −1 (Eq. 2).
This is necessary as growing seasonswill normally appear as decreasing
values in a SIWSI time series, and TIMESAT is based on the assumption
that growing seasons will be distinguishable by increased values.

NDVI ¼ NIR−red
NIR þ red

ð1Þ

SIWSIinv ¼ −1 � SWIR−NIR
SWIR þ NIR

ð2Þ

Furthermore, TIMESAT does not handle data with many gaps well.
Therefore pixels with no values in NDVI and SIWSI imagery have been
filled by 2d spline interpolation (see (D'Errico, 2004) for the full algo-
rithm). Due to the large number of observations going into the NBAR
product, the vast majority of gaps are spatially quite small. The full year
of NDVI and SIWSI 2008 imagery is used as input in TIMESAT.
Previous implementation of fitting functions to the distinct Sahelian
growing season seen in daily vegetation and vegetation water sensitive
indices suggests the use of Savitsky–Golay (SG) filteringwith 30 daywin-
dows (Olsen et al., 2013), which is also implemented in this study. The
number of time steps used for SG fitting determines how detailed the
fitting is. The larger window used, the less detailed and more smoothed
fitting. A 30 day window used here is the largest window that can be ap-
plied, which still retains accurate estimates of onset and end of growing
season. Larger windows will result in a flatter curve with too early onset
and too late end estimates. Examples of NDVI and SIWSI time series and
Savitsky–Golay fittings for the Linguere site (Fig. 1) are shown in Fig. 3A.

By subtracting the Savitsky–Golay fitted values from the NDVI and
SIWSIinv time series, daily anomalies are produced (see examples in
Fig. 3B and C). While the fitted values represent the general seasonal
trend for each pixel, the anomalies contain information on short term
variations as well as noise. With water as the primary constraint for



Fig. 3.A) Example of SEVIRI NDVI and SIWSI time series for the pixel overlapping the Linguere site. The dashed lines represent trends derived using TIMESAT Savitsky–Golay fittings.Marked in
vertical lines are the 10-day period (DOY 253–262) identified as dry for large parts of the catchment area. B) NDVI anomalies for the 10-day dry period, with 7 day linear trend fitted. C) SIWSI
anomalies and 7 day linear trend.
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vegetation growth in Sahel, it can be hypothesized that short term varia-
tions in canopy water sensitive indices are related to changes in canopy
water status (Fensholt & Sandholt, 2003; Fensholt, Huber, Proud, &
Mbow, 2010a; Olsen et al., 2013).

The sandy soils predominant in the area can be expected to drain to
about field capacity after a few days without rainfall (Olsen et al.,
2013). Furthermore, a study by (Proud & Rasmussen, 2010) mentions
that farmers in the Sahel expects more than 5 consecutive dry days in
the growing season to potentially influence crop growth negatively.
Therefore a period of 7 days is selected as a reasonable length for
assessing the short term evolution of the daily anomalies. 7-day periods
can also easily be examined in relation to the 10-day summed RFE2 and
10-day averaged ETa by comparing with the 7 last days of anomalies in
a RFE2 or ETa period. To quantify the temporal evolution, linear trends
are fitted to the anomalies (examples for Linguere pixel in Fig. 3B and
C) and the first day fitted value is subtracted from the seventh day fitted
value. Thefitted trends are assessed by calculating correlation coefficients
(r) and p-values. The p-values take into account the relatively few obser-
vation points (7) and a 95% significance criteria (p b 0.05) is applied. Spa-
tial coherence of significant anomaly trends (e.g. meaningful or "salt-n-
pepper") will also indicate whether or not the results are reliable.

5. Results

The results in this section are presented on three different time in-
tervals. First rainfall is summed on 10-day basis and ETa is averaged
on 10-day basis. Secondly NDVI and SIWSI are presented as daily imag-
ery, and thirdly, detrended daily anomalies of both NDVI and SIWSI are
presented as changes over seven days.

5.1. Growing season rainfall 2008

The summed rainfall is shown for six 10-day periods covering the
mid-growing season of 2008 and the general tendency of a north/south
gradient with larger amounts of rainfall in the south is observed (Fig. 4).
The mean basin rainfall for the first two periods and the last period is of
similar magnitude (31, 29, and 39 mm), while the two middle periods,
DOY 233–242 and 243–252, were wetter and received 80 and 61 mm
respectively. The DOY 253–262 period is the driest during the growing
season with a spatial mean of only 16 mm, and parts of the western half
of the river basin received no rainfall at all during the 10-days.

The rainfall isohytes show how savanna areas receive themost rain-
fall, followed by grassland and with shrubland and barren or sparsely
vegetated areas receiving the least (Fig. 1). For the wettest period
(DOY 233–242) the relative difference between received rainfall in
northern and southern parts of the river basin is small, with shrubland
(driest) receiving 68% of the savanna rainfall. For the driest period
(DOY 253–262) the difference is larger and the LCC barren or sparsely
vegetated receives only 37% of savanna rainfall.

5.2. Growing season evapotranspiration 2008

The modeled estimates of ETa are shown in (Fig. 5) as averages of
10-day values to better facilitate comparison with rainfall. ETa follows
the north/south gradient, but also reflects the spatio-temporal pattern
of rainfall. The sub-catchment mean values (noted in Fig. 5) are lowest
for the 223–232 period and not for the 253–262 period, where the
least rainfall is recorded. The average spatial correlation between the
10-day periods of ETa and rainfall is modest (r = 0.55), while stronger
between the ETa 10-day averages and the daily indices for the end
days of the 10-day periods (mean r = 0.73 for both NDVI and SIWSI).

5.3. Daily NDVI and SIWSI for 2008

Examples of daily SEVIRI NDVI and SIWSI imagery for the Senegal
River basin (DOY 262, 2008) are shown in (Fig. 6A) and (B). Values for
both indices increase from north to south, confirming vegetation sensi-
tivity to the region's pronounced rainfall gradient. A high spatial



Fig. 4. Summed rainfall for 10-day periods in mid-growing season 2008, derived from RFEv2 daily gridded rainfall product. The spatial mean is noted for each period.
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correlation between the two indices is found (r=0.85), butwhen com-
paring the indices for the individual LCCs the range of values are re-
duced and the correlation coefficients is lower, especially for drier and
less vegetated areas,with r values of 0.81 for savanna, 0.75 for grassland,
0.51 for shrubland, and 0.42 for barren or sparsely vegetated.

The mean values and standard deviations of daily NDVI and daily
SIWSI (Table 3) are shown for six selected days (the days at the end of
the 10-day periods for which gridded rainfall is summed) and for the
four dominant LCC, aswell as for the full river basin. The low average an-
nual rainfall (Fig. 1) and short growing season of the barren or sparsely
vegetated area in the north of the river basin (Table 3) means that the
values of NDVI and SIWSI for DOY 222 can be used as an approximation
of pre-growing season bare soil values. For NDVI this value is 0.17 and
for SIWSI it is −0.25. Increase in mean values for shrubland and
barren/sparsely vegetated LCC are only observed for DOY 242–262,
whereas the higher values of both indices for savanna and grassland
shows growing season onset before DOY 222 for the southern parts of
the river basin.

For both indicesmean values and standard deviations are highest for
savanna and lowest for the barren or sparsely vegetated areas, with
grassland and shrubland in between. On average, the NDVI standard
deviations are 0.015 higher than SIWSI (for all LCC and all 6 days). The
mean NDVI values of savanna and grassland are observed to decrease
from DOY 222 to DOY 232 with 0.07 and 0.05 respectively (Table 3),
while there were little change in values for the shrubland and barren
or sparsely vegetated LCC (0.02 and 0.01). Later in the season, after
the dry period (DOY 253–262), the daily NDVI values decrease for all
LCC between 0.03 and 0.06 and keep decreasing from DOY 262 to 272,
except for savanna, which rises again. While these variations are ob-
served in NDVI, the SIWSI daily values for all LCC increase continually
until DOY 252 and then decrease again (Table 3). For both NDVI and
SIWSI there are no consistent patterns to be observed in the temporal
variation of the standard deviations.

5.4. Detrended indices

The NDVI and SIWSI anomalies are presented here as the change
over 7 days derived from linear trends (Fig. 7A and B). The correlation
coefficients of the per-pixel linear trend of 7 day anomaly values are
shown in (Fig. 7C and D). Pixels with −0.76 N r N 0.76 are found sig-
nificant (p b 0.05) and pixels with−0.88 N r N 0.88 are found highly sig-
nificant (p b 0.01). For both NDVI and SIWSI anomalies, there are
spatially coherent areas with significant trends.

The NDVI and SIWSI changes in anomalies for the 7 days up to DOY
222, 262, and 272 show similarities in some general spatial patterns.
On DOY 222, negative trends are seen for both sets of anomalies for
the westernmost grassland and shrubland between the Linguere and
Rosso sites (Fig. 1), while an area of positive trends are observed
east-southeast of Linguere. The index anomalies are not similar for the
southern savanna areas, as SIWSI anomalies show negative trends for
most of the area, while NDVI anomalies showboth positive andnegative
trends.

For the period up to and including DOY 232, anomalies in the west-
ern half of the catchment have similar general patterns. However, the



Fig. 5. 10-day averages of MIKESHE modeled actual evapotranspiration (ETa) in mm/day for the Senegal River basin during mid-growing season of 2008.
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eastern half, including the savanna-dominated southern tail of the
catchment, has mostly opposite trends; negative for NDVI anomalies
and positive for SIWSI. For the periods up to DOY 242 and 252 the
anomalies from the two indices are unrelated, and far more pixels
with significant increases are observed for SIWSI anomalies than for
NDVI anomalies. These are the two periods of high average rainfall in
the river basin.

The spatial patterns of anomalies up to DOY 262 and 272 are in bet-
ter agreement for savanna, grassland and shrubland. For the barren or
sparsely vegetated northern areas, patches of both increasing and de-
creasing SIWSI anomalies trends are observed, while NDVI anomalies
almost unanimously have decreasing trends. However, while many
pixels have significant trends the absolute change in anomalies are
small. This is especially true for shrubland and barren or sparsely vege-
tated areas, and spatially most extensive on DOY 272. Areas with less
vegetation will have small seasonal amplitude in per pixel time series
of vegetation indices.

5.5. ETa and index anomalies

Scatterplots of ETa 10-day means aggregated for the four dominant
LCCs and the linear fitted change in index anomlies are shown for
NDVI anomalies in Fig. 8A and SIWSI anomalies in Fig. 8B. The values
are derived with 10-day time intervals, starting at DOY 192 and ending
on DOY 272. The 7 day change in index anomalies aggregated for LCCs
range from−0.082 to 0.092 for NDVI (range of 0.174),with largest neg-
ative and positive change found for savanna. For SIWSI the range is from
−0.041 to 0.034 (range of 0.075) with largest negative change found
for savanna and largest positive change found for shrubland. Except
for the relation between shrubland modeled ETa and NDVI anomalies,
all relations are statistically significant (p b 0.05), despite the limited
number of observation points. For all four LCCs the correlation coeffi-
cients are higher between SIWSI anomalies (Fig. 8B) and ETa, than for
NDVI anomalies (Fig. 8A) and ETa.

6. Discussion

An evaluation of NDVI and SIWSI sensitivity to canopy water status
at the catchment scale inevitably includes satellite based rainfall esti-
mates, especially for an area of limited gauge data availability and
high spatial rainfall variability. The comparison between rain gauges
and RFE2 within the river basin for the 2008 growing season showed
that summing on 10-day basis is necessary to attain a good agreement
(Fig. 2). As it is considered challenging to produce reliable gridded rain-
fall estimates, especially with high temporal and spatial resolutions
(Dinku et al., 2008; Pierre et al., 2011; Stisen & Sandholt, 2010) and
data from weather stations may also contain large uncertainties (Zhao,
Running, & Nemani, 2006) it was decided to conduct the index evalua-
tion on the basis of 10-day periods even though the index values could
be applied on daily time scales. Although lacking the information on
specific rainfall events, the 10-day summed estimates are still sufficient
to describe the general seasonal distribution of rainfall and are consid-
ered more reliable for index evaluation purposes. The general rainfall
gradient (Fig. 4) is clearly observed on an intra-seasonal timescale in



Fig. 6. A–B: Examples of daily NDVI (A) and SIWSI (B) Indices calculated from SEVIRI NBAR product for the Senegal River basin on DOY 262, 2008.

Table 3
Daily NDVI and SIWSImean values and standard deviations for the semi-arid subset of the
Senegal River basin (All) and divided by the four dominant USGS land cover classes
(savanna, grassland, shrubland, and barren or sparsely vegetated).

DOY All Savanna Grassland Shrubland Barren

NDVI mean values 222 0.32 0.48 0.33 0.21 0.17
232 0.28 0.41 0.28 0.19 0.16
242 0.33 0.53 0.32 0.20 0.18
252 0.38 0.54 0.39 0.27 0.23
262 0.34 0.48 0.36 0.24 0.18
272 0.34 0.53 0.33 0.22 0.16

NDVI standard
deviations

222 0.32 0.48 0.33 0.21 0.17
232 0.28 0.41 0.28 0.19 0.16
242 0.33 0.53 0.32 0.20 0.18
252 0.38 0.54 0.39 0.27 0.23
262 0.34 0.48 0.36 0.24 0.18
272 0.34 0.53 0.33 0.22 0.16

SIWSI mean values 222 −0.132 0.024 −0.15 −0.24 −0.25
232 −0.113 0.039 −0.14 −0.21 −0.23
242 −0.078 0.075 −0.10 −0.18 −0.20
252 −0.073 0.075 −0.09 −0.17 −0.20
262 −0.103 0.033 −0.12 −0.19 −0.22
272 −0.129 0.015 −0.16 −0.21 −0.24

SIWSI standard
deviations

222 0.137 0.090 0.084 0.058 0.057
232 0.137 0.103 0.075 0.060 0.058
242 0.142 0.107 0.085 0.073 0.067
252 0.143 0.104 0.086 0.075 0.076
262 0.130 0.095 0.077 0.069 0.069
272 0.134 0.120 0.071 0.058 0.062
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2008. However, the difference in rainfall is small during the wettest pe-
riod between savanna and barren or sparsely vegetated LCCs. This indi-
cates that the rainfall gradient is less pronounced during the wettest
periods because of the northern position of the ITCZ (Intertropical Con-
vergence Zone).

The MIKESHE modeled ETa includes information on both daily and
seasonal time scales, reflecting rainfall and vegetation water status, as
well as the general vegetation gradient over the growing season.
While amodest spatial relation between rainfall and evapotranspiration
is found (r = 0.55), and the two periods of high rainfall are clearly
reflected in themean ETa (Fig. 5), it is noticeable that stronger relations
are found between ETa and both the NDVI and SIWSI (r = 0.73 for
both), again pointing to the interaction between rainfall and vegetation
on longer time scales. This can be interpreted as ETa being primarily lo-
cation determined, and thus reflecting the rainfall/vegetation gradient
first and short term variations in canopy water status second.

The spatial coherent patterns of seven day changes in NDVI and
SIWSI index anomalies, together with the significant linear trends of
these changes (Fig. 7), show that much of the temporal variation in
anomalies does contain information about canopy water status with
an acceptable signal/noise ratio. It is worth noting that TIMESATs SG
filtering used for detrending is quite sensitive to the algorithm settings.
In particular the window size, i.e. the number of time steps used for de-
riving each value of the seasonal trend. The choice of applying a large
window in this study (30 days) results in relatively smoothed fittings
(as seen in Fig. 3), which have limited sensitivity to quick variations in
index time series. This is good for retrieving anomalies that reflects
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short term changes. However, the SG filter is sensitive to longer changes
during a growing season, and prolonged droughts over several weeks
will be reflected in the derived seasonal trend. Hence, canopy water
stress information at longer time scales will not be found in the anom-
alies. The use of SG filtering is also discussed in (Jonsson & Eklundh,
2004; Olsen et al., 2013).

By seasonal detrending of NDVI and SIWSI most of the location
dependency is removed. Naturally, a pixels range of index values over
a growing season still determines the limits of the potential size of
anomalies.

Also, for areas with less vegetation the satellite signal in red/NIR/
SWIR used as input for the indices are likely more affected by soil back-
ground. However, compared to absolute values of both rainfall and ETa
the north/south gradient of the river basin has little influence and
the magnitude of anomalies is similar for all LCCs. The exception
being NDVI anomalies for pixels designated as savanna (Fig. 8A). This
can be a large advantage when estimating the status of vegetation, as
a multi-annual time series of imagery are not needed to determine
what the norm is, and whether a season deviates from the norm of
other years. This is especially true in the Sahel, where areas dominated
by annual plant species are spatially extensive (Breman & Dewit, 1983;
Elberse & Breman, 1989), and annual plant species composition may
vary noticeably on year-to-year basis. This was shown in a study
based on detailed in situmeasurements of NDVI, soil moisture, biomass,
Fig. 7. A: Change in NDVI anomalies on 7 day basis, derived as the difference between end a
and including – the DOY noted in eachmap frame. B: Change in SIWSI anomalies on 7 day basi
anomaly values, from the days up to – and including – the DOY noted in eachmap frame. C: Cor
p values b 0.05 (two-tailed). D: Correlation coefficients (r) for linear trends of 7 days SIWSI an
and species composition for the Dahra test site (Mbow, Fensholt,
Rasmussen, & Diop, 2013). As the seasonal evolution of time series of
vegetation indices can change depending on species composition, a
multi-year average timeline can be a somewhat artificial result of com-
bining time lines from common but varying species. How the vegetation
reacts to periods of plentiful or limited plant water availability may also
vary inter-annually, as species have different germination characteris-
tics and drought resilience (Elberse & Breman, 1989, 1990).

By examining seasonally detrended anomalies from both NDVI and
SIWSI, this study shows, as confirmed by (Fensholt & Sandholt, 2003;
Fensholt, Huber, Proud, & Mbow, 2010a; Olsen et al., 2013), that index
anomalies from especially SIWSI, hold information on short term varia-
tions in canopy water status that can be separated from the seasonality
and noise related to sun-target-sensor geometry. However, two chal-
lenges to meaningful implementation of SIWSI anomalies for water
stress detection exist: first, the need for seasonal detrending to retrieve
daily index anomalies prevents implementation of the method in near-
real time, and secondly the per pixel relation between anomalies and
periods of limited plant available water was found insufficiently robust
for drought monitoring (Olsen et al., 2013). However, many applica-
tions of indices based on annual time series, such as NPP modeling
from annual or seasonal integrated NDVI (Fensholt et al., 2006; Prince,
1991a) and analysis of phenology, may still benefit from the added sen-
sitivity to short term stress from the use of geostationary NIR/SWIR.
nd start values of linear fittings of 7 consecutive anomaly values, from the days up to –

s, derived as the difference between end and start values of linear fittings of 7 consecutive
relation coefficients (r) for linear trends of 7 days NDVI anomalies. Values of r N 0.76 equal
omalies. Values of r N 0.76 equal p values b 0.05 (two-tailed).
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Especially in areas where vegetation growth is water restricted this
could improve NPP modeling performance. The spatial coherent pat-
terns of significant anomaly trends presented in this study suggest
that the second issue may be addressed by spatial aggregation. As pre-
sented in Fig. 8, the 7 day fitted changes aggregated on basis of the
four dominant LCCs within the river basin are significantly related to
modeled ETa, and when compared to 10-day rainfall for each LCC the
positive changes in anomaly values are noticeable for the two wet pe-
riods in the mid-growing season. In (Olsen et al., 2013) where NDVI
and SIWSI anomalies were first examined for information on canopy
water stress on a point/pixel basis for three sites in the Sahel, the
focus was entirely on how periods of limited plant available water
was reflected in short term variations in the signal. However, the posi-
tive trends in SIWSI anomalies during the wet period from DOY 233 to
DOY 252 suggest that the influence of well watered periods is also cap-
tured in the short term changes in anomalies, when following less wet
periods. This study further confirms the conclusion that SIWSI anoma-
lies are more strongly related to short term variation in vegetation
water status, as compared to NDVI (Fig. 8).

The very high temporal resolution of observations from the SEVIRI
instrument onboard the geostationary MSG platform is important, as
it allows for a sufficient high frequency of observations to create a ro-
bust daily NBAR product. Without a high quality daily product, the hy-
pothesis that index anomalies capture short term variations in canopy
water status could not be confirmed. This is also considered in the find-
ings of (Fensholt, Huber, Proud, & Mbow, 2010a), where daily SIWSI
from both the SEVIRI (geostationary) and MODIS (polar orbiting) sen-
sors where compared, and covariation with surface layer soil moisture
was only found between the SEVIRI based SIWSI andmoisturemeasure-
ments. In an earlier study however, SIWSI based on daily MODIS obser-
vations was found strongly related to daily estimates of soil moisture in
northern Senegal in 2001. Although the same study concluded that for
the following, and much dryer year, this could not be confirmed. It
was argued that the severe dryness of the 2002 growing season lim-
ited vegetation growth to an extent, where the vegetation cover was
insufficient to provide information on the canopy water content
(Fensholt & Sandholt, 2003). The low spatial correlations found be-
tween NDVI and SIWSI for areas categorized as barren or sparsely
vegetated (according to the USGS LCCs) in this study also indicates
that sparse vegetation dampens the signal sensitivity to rapid chang-
es in canopy water status. Still, the SIWSI anomalies observed in the
northern and less vegetated parts of the Senegal River basin have
statistically significant positive trends in the wet 10-day period of
DOY 233–242, whereas this is not the case for NDVI anomalies for
the same period and area.

7. Conclusions

In this study we evaluated the two indices Normalized Difference
Vegetation Index (NDVI) and the Shortwave Infrared Water Stress
Index (SIWSI) derived from the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) onboard the geostationaryMeteosat SecondGeneration
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(MSG) platform. Themain focus is on daily anomalies derived from sea-
sonally detrended time series from the 2008 growing season in the
semi-arid sub-catchment of the Senegal River basin.

The non-detrended daily NDVI and SIWSI indices were found spa-
tially highly correlated to 10-day mean of MIKE SHE modeled actual
evapotranspiration (ETa) with average r = 0.73, whereas 10-day
summed rainfall estimates from RFE2 had a more modest correlation
to ETa (r = 0.55), thereby showing how the pronounced north/south
vegetation gradient in the river catchment, depending on long term
rainfall patterns, is a more important factor for evapotranspiration
than short term variations in rainfall.

The hypothesis that short term evolution of index anomalies are re-
lated to vegetationwater statuswas tested both spatially and temporal-
ly using the gridded rainfall estimates (RFE2) product andmodeled ETa.
For SIWSI moderate to strong coefficients of determination was found
between modeled actual evapotranspiration averaged over 10-days
and short term variations in seasonally detrended daily anomalies
(change assessed for periods of seven days), when anomaly variations
were aggregated by Land Cover Classes (LCCs), with R2 values of 0.65
for savanna, 0.60 for grassland, 0.72 for shrubland, and 0.58 for barren
or sparsely vegetated areas. This is consistently higher than for the
same method applied to NDVI anomalies (R2 values found are 0.57 for
savanna, 0.50 for grassland, 0.32 for shrubland, and 0.57 for barren or
sparsely vegetated areas).
The combination of the SWIR sensitivity to canopy water content
and the use of a daily Nadir view BRDF Adjusted Reflectance (NBAR)
product created from geostationary MSG SEVIRI observations, allows
for derivation of daily index anomalies holding information on short
term changes in canopy water status. Therefore the approach of
detrendingNIR/SWIR based indices and spatially aggregating the anom-
alies do offer the opportunity of improved detection of intra-seasonal
stress. This is also applicable in otherwise well-watered years for
semi-arid regions where vegetation growth is primarily water restrict-
ed. However, quite coarse spatial aggregation, in this case based on
USGS LCCs, is foundnecessary for a significant analysis outcome. This re-
gional scale study adds an important dimension by showing clear and
spatially coherent pattens of significant anomaly trends. Thereby
underlining the reliability of the results and adding to existing knowl-
edge from point-pixel based studies of SIWSI and NDVI in the context
of Sahelian vegetation (Fensholt & Sandholt, 2003; Fensholt, Huber,
Proud, & Mbow, 2010a; Olsen et al., 2013). It supports that intra-
seasonal variations in canopy water status can be derived from SIWSI
anomalies at the regional scale. Future research should test the applica-
bility of such information to improve regional scale NPP modeling for
semi-arid areas as suggested in (Fensholt et al., 2006). How to imple-
ment short term variations in SIWSI in a near real-time context, for po-
tential implementation in Famine Early Warning Systems (FEWS),
should also be studied further, as this is not currently feasible due to



Fig. 7 (continued).

Fig. 8. A–B: X-axis: 10-day averages of modeled actual evapotranspiration (mm/day). Y-axis: 7 day fitted change of NDVI anomalies (A) or 7 day fitted change of SIWSI anomalies (B).
Values are derived with 10-day time intervals, starting at DOY 192 and ending DOY 272 (2008), and averaged for each Land Cover Class (LCC).
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the need of seasonal detrending. Finally, the possibilities for combining
short term variations of anomalies fromNIR/SWIR indiceswith Thermal
Infrared (TIR) information should be examined,where geostationary re-
mote sensing also provides great potential for observing vegetation
stress.
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