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Abstract Managing natural groundwater resources is challenged by nitrate pollution

resulting from agricultural activities. This issue is emerging as an important environmental

concern that needs to be addressed through effective groundwater management. Ground-

water assessment is an important aspect of groundwater management, particularly in arid

and semi-arid regions. This study focused on the Kerman Plain, which is exposed to

intensive agricultural activities and land exploitation that result in intense land pollution.

The effects of nitrate pollution may be controlled by applying specific measures. Demp-

ster–Shafer theory (DST) was applied in this study to develop a new methodology for

assessing pollution risk. Applying this theory as a pioneering approach to assessing

groundwater pollution risk is the novel component of this research. This approach provides

a major advantage by dealing with varying levels of precision related to information. The

spatial association between DRASTIC parameters including D (depth of water), R (net

recharge), A (aquifer media), S (soil media), T (topography), I (impact of vadose zone) and

C (hydraulic conductivity) and underground nitrate occurrence was evaluated by applying

bivariate DST to assign mass functions. Dempster’s rule of combination using GIS was

then applied to determine a series of combined mass functions for multiple hydro-

geological data layers. The uncertainty of system responses was directly addressed by the

proposed methodology. Finally, the modified DRASTIC map with the highest validity and

accuracy was selected and combined with the damage map. The comparison between

nitrate distribution and vulnerability and the risk maps exhibit high similarity between

different vulnerability degrees and nitrate concentrations. Long-term planning of preven-

tive measures and associated developments can be aided by the regions with low and very

low risks located in the northeast, northwest, and central regions.
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1 Introduction

A significant environmental concern is associated with risk assessment and management of

water quality. Government regulations and scientific investigations are focused on these

environmental concerns, thus implying that human health and other associated activities

are under constant threat from groundwater pollution. Further attentions should be given to

issues related to the groundwater pollution because such issues are diverse and compli-

cated, affecting groundwater quality in different ways.

In particular, arid and semi-arid regions are dependent on groundwater as a major water

source (Neshat and Pradhan 2014). Methods for cleaning and restoring contaminated water

to its natural quality are typically costly and complicated. In many cases, an alternative

water source is not an option in terms of feasibility. Therefore, protecting groundwater

from pollutants is a viable solution.

The probability of pollutants seeping through the ground and reaching groundwater

sources is determined through groundwater vulnerability assessment reports. The paths

followed by nutrients reaching surface water are also reflected in groundwater. Thus,

surface water can pose an ecological threat in the form of excess nitrogen (Tesoriero et al.

2009). Surface water does not contain nitrates. The movement of contaminants from

surface water to groundwater can be sufficiently indicated by nitrate, which is particularly

useful in agricultural areas (Javadi et al. 2011; Neshat et al. 2013). Variable of concen-

trations on nitrate may be found in groundwater. According to recent studies, nitrate

concentration in drinking water can increase to dangerous levels, even when nitrate

ingestion is below the WHO guideline of 50 mg/L.

The occurrence of groundwater pollution can be expressed as a probability of the spatial

occurrence of nitrate concentration over a set of hydrogeological factors that use the

statistical properties of measured points for interpolation, that is, geostatistical interpola-

tion technique (e.g., kriging). A predicted value for an unmeasured location can be derived

from ordinary kriging (OK) technique by weighting the surrounding measured values. The

spatial autocorrelation of measured points is quantified via the geostatistical technique. OK

is also among the most common interpolating methods in agriculture practices (Mishra

et al. 2010).

The concepts of lower and upper probabilities found in multi-valued mapping were

proposed by Dempster (1967). Shafer (1976) further elaborated on the concept and ex-

tended it to current D–S theory of evidence. A range is used to present probabilities in

DST. This range includes belief (Bel) and plausibility (Pls) functions, wherein the smallest

probability is represented by the Bel function based on available evidence, whereas the

highest probability is denoted by the Pls function. The sum of the Bel function and the

uncertainty is called the Pls function. Therefore, DST is a more generalized form of

probability theory. DST is also flexible when accepting uncertainties and can combine

beliefs extracted from multiple sources of evidence, which is a major advantage of this

approach (Thiam 2005).
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Various uncertainties may plague assessment because of incomplete, inaccurate, and

contradictory data related to groundwater pollution. Such uncertainties should be formu-

lated in a geographic information system by categorizing them (Malpica et al. 2007). The

DST can be used for assessing risk under uncertainty. As such, uncertainties associated

with single-point probabilities are captured in this approach (Chowdhury et al. 2009).

2 Previous works

Groundwater significance was assessed at a global scale in light of expanding industrial

and agricultural activities. This topic has attracted many researchers (Cucchi et al. 2008;

Manos et al. 2010; Sorichetta et al. 2011; Anane et al. 2012; Fijani et al. 2013; Pacheco and

Fernades 2013; Pavlis and Cummins 2014; Neshat et al. 2014).

Information related to whether the concentration of a specific contaminant was more

than the threshold value was extracted from the isoprobability map (Assaf and Saadeh

2009; Chen et al. 2013). Baalousha (2010) applied the DRASTIC approach to preparing a

vulnerability map for a study area. Kriging variance was then used to verify the spatial

distribution of the sites. Geostatistical techniques, such as indicator kriging (IK) and or-

dinary kriging (OK), have been used by researchers to execute various applications such as

creating isoconcentration maps of groundwater contaminants (Stigter et al. 2006). There

are various forms of kriging: ordinary kriging, simple kriging, universal kriging, and

cokriging as well as residual kriging (Bayat et al. 2014). The probability that groundwater

resources might be polluted by contaminants which are introduced into the ground surface

is expressed as specific vulnerability or pollution risk. This is revealed by the groundwater

intrinsic vulnerability and the contaminant loading which is employed to the specific point

of the hydrogeological region. The contaminant loadings are defined by extent, the phy-

sicochemical features and the procedure of different contaminants of distribution in an

area. The COP methodology was applied by Dimitriou et al. (2008) in vulnerability and

risk mapping, along with the European Cooperation in Science and Technology Action

620, which is a project of the European Union. The information obtained has been indi-

cated in various studies on groundwater pollution risk assessment. The objective of pro-

tecting carbonate aquifers was achieved through the aforementioned mapping. The

DRASTIC model was used by Leone et al. (2009) to assess the risks and vulnerability of

agricultural potential and nitrogen pollution. The degree of risk that affects the study area

was determined by Saidi et al. (2011) by combining the hydrogeological parameters of the

DRASTIC method and hazard assessment. Risk mapping was assessed by Wang et al.

(2012) by applying a combination of intrinsic vulnerability, groundwater values, and

hazards. A specific groundwater vulnerability in central Florida was created by Van

Beynen et al. (2012), using a new GIS-based index, the Karst Aquifer Vulnerability Index

(KAVI), integrates geologic layers applied in intrinsic groundwater vulnerability models

(GVMs) and over an epikarst layer specific to karst with land use coverage. A probability-

based DRASTIC model of aquifer vulnerability was used by Chen et al. (2013) on the

Choushui River alluvial fan. The evaluated vulnerability index was used to ascertain

various risk categories of contaminants. The nitrate pollution categorical map was further

expanded by applying a methodology based on nonparametric and nonlinear methods of

indicator kriging (Chica–Olmo et al. 2014). Monte Carlo Simulation was also performed

for groundwater pollution risk estimation in an agriculture region (Neshat et al. 2015).
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Various topics used DST in the environmental sector. Mineral potential mapping has

been conducted through this model in knowledge-based approaches (Moon 1990; An et al.

1992). DST was also used in the data-driven mineral potential mapping method of Car-

razan and Hale (2002). The data-driven DST model has been successfully applied in many

Fig. 1 Location of study area
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studies, such as mineral potential mapping (Carranza 2011; Carranza and Sadeghi 2010),

pre-eruption prediction of lahar-inundation zones (Carranza and Castro 2006), geothermal

potential mapping (Carranza et al. 2008), groundwater potential mapping (Nampak et al.

2014), and land subsidence susceptibility (Pradhan et al. 2014). Ghosh and Carranza

(2010) used the data-driven DST model to map rockslide-prone areas located in Darjeeling

Himalaya (India). Land-cover estimation and monitoring techniques have also been de-

fined in various studies (Cayuela et al. 2006). Successful implementation of landslide

susceptibility mapping has also been observed in several studies (Mohammady et al. 2012;

Tien Bui et al. 2012, 2013; Feizizadeh and Blaschke 2012; Jebur et al. 2015).

In the present study, DST was chosen as a novel approach to assessing groundwater

pollution risk in Kerman Plain, Iran. This study focused on the southeast part of Iran, given

that surface water scarcity in this area made groundwater as the primary source. Agri-

cultural regions constitute most of the study area, and such regions are frequently exposed

to fertilizers.

This paper is organized as follows: First, the best validation result for groundwater

vulnerability (modified DRASTIC) in the Kerman Plain was selected. Interpolation of the

last nitrate samples (May 2012) was then executed by applying ordinary kriging (OK).

Maximum probability was determined by considering the uncertainty from nitrate. Finally,

the groundwater pollution risk map was produced.

3 Study area and data

An arid/semi-arid region located in the Kerman Plain was selected for this study (Fig. 1).

The study area is approximately 978 km2 and lies in the southeastern part of Iran. The

altitude of this region ranges from 1633 m to 1980 m above sea level. In 2011, the average

annual rainfall in the area amounted to 108.3 mm. A hot and dry summer is prevalent in

this region, along with a relatively rainy winter as well as a short spring and autumn. At

least 2 months, typically January and February, are glacially related within a typical water

year. However, according to water organizations in Kerman, this phenomenon has de-

creased in recent years because of climate change. Groundwater is an essential water

source for cultivating pistachio, which is a primary agricultural product that supports the

economy of Kerman Plain.

According to a geological survey of Iran, Cretaceous and Eocene conglomerates, intrusive

rocks, Eocene and Neogene volcanism products, and Neogene or younger sediments con-

stitute the geology of Kerman Plain. Marl and conglomerate rocks in the south and in a small

region in the northwest are the main materials that constitute the aquifer media. The regions

across the north and the northeast are based on fine–medium sand. Silt and clay deposits

constitute the central regions. Sand deposits with an extremely low fine-grained material

ratio, called gravel and sand, are found in considerable quantity. A mixture of gravel, sand,

silt, and clay represents the glacial till, whichwas introduced byAller et al. (1987). This study

deals mostly with clay loam, gravel, non-shrinking loam, non-aggregated clay, sandy loam,

and silty loam in the study area. In the north and south sections of the study area, sand with

high permeability is investigated as the available soil media layer.

This study deals with depths ranging from 15 m to more than 30 m in the Kerman Plain.

Three categories of depths are used, namely, 15–23 m, 23–30 m, and[30 m. The third

category is frequently formed the study area. Irrigation return flow is denoted by two

classes that are less than 30 m, provided that the study area is located in arid and semi-arid
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regions. The main groundwater recharge sources in the area are based on rainfall infil-

tration, irrigation return flow, and absorption wells. Approximately 186.06 million cubic

meters per year of total recharge is estimated in the study area (Neshat et al. 2014).

Fig. 2 Hydrogeological parameters of the Kerman plain
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A topographic map is used to extract the topography from a digital elevation model

(1:25,000). Slopes vary from 0 % to more than 18 %. Silt clay and sand gravel are found in

the vadose zone in the western regions, whereas gravel and sand are located in a small

region in the northeast. The study area displays a maximum conductivity of 3880 lmoh/

cm, whereas the average of electrical conductivity (EC) is 2700 lmoh/cm and the mini-

mum EC is approximately 1100 lmoh/cm. The maximum EC is exhibited in the southeast

region of the study area.

4 Methodology

4.1 Groundwater vulnerability mapping

Aquifer characteristics, geology, and hydrogeology define the properties of groundwater

vulnerability, which is a relatively dimensionless property. To create an effective

monitoring network for groundwater resource management, groundwater vulnerability has

an important role in defining the critical zones of an aquifer. Figure 2 illustrates the seven

layers of DRASTIC parameters. Groundwater assessment can be conducted through var-

ious methods (Pacheco and Fernandes 2013). The DRASTIC method is the most com-

monly used technique to analyze groundwater vulnerability (Antonakos and Lambrakis

2007).

The DRASTIC method was modified in this study to assess groundwater vulnerability

(Neshat et al. 2013). The following statistical processes were used for modification.

1. The Wilcoxon rank-sum nonparametric statistical test (Wilcoxon 1945) was applied to

revise the rating scale of each parameter through the nitrate samples obtained in May

2010.

2. Single-parameter sensitivity analysis (SPSA) was conducted to revise the weight

factors (Napolitano and Fabbri 1996).

3. The modified DRASTIC map was validated through nitrate samples obtained in May

2011, and subsequently, in May 2012. Pearson’s correlation factor was used in the

modified DRASTIC map and the original DRASTIC map. Hence, the former exhibited

higher accuracy than the latter, thus making the modified DRASTIC map the obvious

choice for this study (Neshat et al. 2013).

SPSA offers useful information on the effect of weighting values allocated to each

parameter and helps analysts judge the importance of subjectivity (Babiker et al. 2005).

The following equation is the final combined linear equation used for modified DRASTIC:

Modified DRASTIC ¼D Wicoxonð ÞD SPSAð Þ þ R Wicoxonð ÞR SPSAð Þ þ A Wicoxonð ÞA SPSAð Þ

þ S Wilcoxonð ÞS SPSAð Þ þ TWilcoxonT SPSAð Þ þ I Wilcoxonð ÞI SPSAð Þ

þ C Wilcoxonð ÞC SPSAð Þ:

ð1Þ

The SPSA was also applied to evaluate the impact of each DRASTIC parameter on

groundwater vulnerability by comparing actual and theoretical weights applied in

DRASTIC. The modified DRASTIC model exhibited the highest accuracy compared with

various optimizations of the DRASTIC model in the study area.
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Given that the information related to this section has already been discussed by Neshat

et al. (2013), this paper did not include an in-depth explanation in this section. Figure 3

illustrates the modified DRASTIC map.

4.2 Pollution

The first contamination effect caused by intense agricultural activities and widespread use

of fertilizers in this region was identified as nitrate concentration. Nitrate concentration

enters the soil from the surface and seeps its way to groundwater. Ordinary kriging (OK) is

widely used method, when an interpolation is purely according to sample data, which

needs dense sample data for an accurate interpolation (Wang et al. 2013). A total of 27

agricultural wells were used for sampling and analysis.

The last nitrate sample was collected in May 2012 and was subjected to OK interpo-

lation to obtain nitrate concentrations in all pixels for the area that would help acquire the

pollution parameters to assess risk in the Kerman Plain. The kriging method provided

results with minimum estimation error variance, because it performed good spatial esti-

mation from the sampling points (Baalousha 2010). Actual measurements on the field are

not required for the kriging variance of estimate, which is the best linear unbiased esti-

mator available for evaluating an unknown field. The OK interpolation equation is as

follows:

Z� x0ð Þ ¼
Xn

i¼1

nkiZ xið Þ: ð2Þ

Fig. 3 Modified DRASTIC map
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The estimated value is denoted by Z*(x0), where n denotes the number of points. Z(xi) is

the measured value at pointxi, and ki is the kriging weight.

The spatial distribution of nitrate concentration in the study area is shown in Fig. 4.

4.3 Dempster–Shafer theory (DST)

The belief (Bel) function was used in this study to present the probability by considering

the uncertainties in the DRASTIC parameters of the nitrate concentration obtained in May

2012. Three relevant representations of belief were used in the Bel function framework: the

Bel, the plausibility (Pls), and the basic probability assignment (m or bpa). Initial judg-

ments are frequently explained through basic probability, whereas the final judgments on

groundwater pollution risk are expressed through Pls.

The evidence is mathematically represented through DST. DST takes an alternative

approach to estimating those probabilities. It evaluates the closeness of the evidence in

proving the truth of the hypothesis, rather than the probability that the hypothesis is true.

The definitions of all possible hypotheses were used to initiate DST, which is denoted as

H and called a frame of discernment. The sample space considered in the probability is

equal to this value. A set of mutually exclusive and exhaustive propositions comprises the

frame of discernment H ¼ Ai; i ¼ 1; 2; 3; . . .f g.
The function m: 2H ! 0; 1½ � denotes the basic probability. The set of all subsets of A is

denoted by 2H, which also includes the empty set and ‘A’ itself.

Equation (3) is satisfied by this function, which is called the mass function, where ; is

an empty set and A is any subset of H.

m ;ð Þ ¼ 0 ð3Þ

Fig. 4 Spatial distribution of nitrate concentration over the study area
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X

A�H

m Að Þ ¼ 1

This finding implies that no Bel should be fixed to an empty set and that the total Bel

should amount to one. The Bel and Pls functions are defined according to the mass

function. Equation (4) represents Bel, which is committed to a proposition H, as follows:

Bel Hð Þ ¼
X

A�H

m Að Þ: ð4Þ

The possible maximum Bel level is denoted by the Pls, but can also represent the

maximum level to which the hypothesis cannot be disbelieved, provided that sufficient

evidence that contradicts the hypotheses is available. The bpas relevant to the subsets of

the hypothesis (H) complement is subtracted to acquire the Pls (Gorsevski et al. 2005). The

sum of the probability masses assigned to all sets with non-empty intersections to the

propositions is equivalent to the Pls (Baraldi and Zio 2010). The following expression

defines the Pls function (Gorsevski et al. 2005):

Pls Hð Þ ¼
X

A\H 6¼;
m Að Þ: ð5Þ

The Pls and Bel functions are the upper and lower boundaries, respectively, of the class

of probability assignments on H that expresses the following characteristics;

Bel Hð Þ � Pls Hð Þ; ð6Þ

Pls Hð Þ ¼ 1� Bel H�ð Þ;

where the negation of H is denoted by H-, whereas the disbelief function (Dis) is denoted

by Bel (H-). The belief of the proposition is denoted by Dis, which is false on the given

evidence and expressed as follows:

Dis ¼ 1� Pls or 1� Unc� Bel: ð7Þ

Equation (8) provides the degree of uncertainty (Unc) regarding H:

Unc Hð Þ ¼ Pls Hð Þ � Bel Hð Þ: ð8Þ

The difference between Bel and Pls is expressed as Unc, which is quantified as the

amount of evidence that is not assigned to any specific subset when the degree of

uncertainty is zero (An et al. 1992). Pieces of evidence related to individual hypothesis

were collected by DST. Carranza and Hale (2002) and Carranza et al. (2008) explained that

Bel þ Unc þ Dis ¼ 1: ð9Þ

4.4 Combining data by using DST

DST has been identified among the emerging spatial data integration models based on the

evidence provided by Shafer (1976). A mathematical framework is provided by DST to

represent and combine information.
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A frame of discernment can be specified according to DST of evidence, as follows:

m : 2H ! ½Tp;H; ;; T�
p �: ð10Þ

The target proposition is denoted by Tp, provided that nitrate C50 mg/L is at each pixel

p, whereas T�
p denotes an opposite target proposition, such that nitrate C50 mg/L is not

involved at each pixel p.

Information is combined with mathematical theory of evidence by applying Dempster’s

rule. Two mass functions are represented by m1 and m2, respectively, whereas Dempster’s

rule of combination defines the combined mass function.

m Hð Þ ¼ m1� m2 ¼
P

Ai\Bj m1ðAiÞ:m2 Bj

� �

1� k
; ð11Þ

where k ¼
P
Ai\Bj

m1 Aið Þ:m2 Bj

� �
\1.

The basic mass probability related to conflict is represented by k. The products of the

bpas of all sets are summed up to fulfill this objective, provided that the intersection is null.

This rule is not continuous, but commutative and associative.

The normalization factor is given by the denominator in Dempster’s rule, 1-k.

The total probability is defined by the constant k in Eq. (11), which is associated with

the disjoint subsets of H. A measure of conflict between two pieces of evidence is provided

by this constant. Two pieces of evidence contradict each other when k = 1, but their basic

probability cannot be orthogonally summed up.

An area subjected to groundwater pollution study may contain seven multiple spatial

layers of DRASTIC. Each layer is regarded as evidence Ei (i = D, R, A, S, T, I, C) for the

target proposition Tp. The probability ratio k(Tp)Eij to support the positive target propo-

sition is defined by Eq. (12) when Eij is provided. Eij denotes the jth class attribute of

evidence Ei in the presence of the frequency distribution functions of the positive and

opposite target propositions.

k Tpð ÞEij ¼
N L\Eijð Þ

N Lð Þ
N Eijð Þ�N L\Eijð Þ

N Að Þ�N Lð Þ

ð12Þ

The number of nitrate occurrence pixels is denoted by N(L \ Eij) within the range, and

greater than 50 mg/L is obtained in Eij. The total number of all nitrate occurrence pixels is

denoted by N(L), which lies within the range of C50 mg/L. The number of pixels in Eij is

given by N(Eij), and the number of pixels in the entire study area A is denoted by N(A). The

proportion of nitrate occurrence in the given attribute Eij is denoted by the numerator,

whereas the proportion of nitrate\50 mg/L areas in the given attribute Eij is presented by

the denominator. The value of the likelihood ratio may vary from 0 to infinity. The

following expression defines the probability ratio to support the opposite target

proposition:

k T�
p

� �
Eij ¼

N Lð Þ�N L\Eijð Þ
N Lð Þ

N Að Þ�N Lð Þ�N Eijð ÞþN L\Eijð Þ
N Að Þ�N Lð Þ

: ð13Þ
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The mass function can be derived through the standardization procedure applied on the

two likelihood ratio functions. The sum of the likelihood ratio values of all class attributes in

the given evidence Ei is used to divide the likelihood ratios. This step also estimates relative

importance within class attribute values while applying standard conditions in Eq. (3):

m Tp
� �

Eij ¼
k Tp
� �

EijP
j k Tp
� �

Eij

; ð14Þ

m T�
p

� �
Eij ¼

T�
p

� �
Eij

P
j T�

p

� �
Eij

;

Fig. 5 Overall methodology used in the study
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m Hð ÞEij ¼ 1� m Tp
� �

Eij � m T�
p

� �
Eij:

The belief function of the positive target proposition can be directly extracted from the

mass function m(Tp)Eij by considering the frame of discernment in Eq. (10). Equation (15)

can evaluate the Pls function, as follows:

Pls ¼ 1� m T�
p

� �
Eij: ð15Þ

Figure 5 depicts the overall methodology used in this study.

5 Results and discussion

The groundwater risk assessment depended on three factors: groundwater vulnerability;

pollution; and the probability of pollution occurrence.

Risk ¼ Vulnerability	 Pollution	 Pollution Occurrence Probability

The modified DRASTIC map provided more reliable result with the highest accuracy

compared with the original DRASTIC model and other modification methods applied in

the study area. In addition, kriging interpolation was used to produce a continuous map of

the spatial distribution of nitrate concentration based on the weighted average of the

measured sample locations. DST was applied, and the probability of pollution occurrence

in the area with considering uncertainty was also identified.

Fig. 6 Damage index map
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Table 1 Values of DST for classes of DRASTIC parameters

Parameter Range Number
of class
pixel

Number of
nitrate
pixels C 50

Belief Disbelief Uncertainty Plausibility

Depth of
water(m)

15–23 9739 0.00 0.00 0.45 0.55 0.55

23–30 53,976 1710 0.22 0.45 0.33 0.55

[30 4,299,424 455,616 0.78 0.10 0.11 0.90

Net recharge
(mm)

0–50.8 769,651 8117 0.04 0.41 0.55 0.59

50.8–101.6 1,946,202 197,401 0.37 0.35 0.28 0.65

101.6–177.8 1,647,349 251,809 0.59 0.24 0.17 0.76

Aquifer media Marlstone 280,921 100,800 0.73 0.17 0.10 0.83

Sandstone 8213 595 0.10 0.21 0.69 079

Fine medium
sand

682,918 0.00 0.00 0.25 0.75 0.75

Silt and clay 295,422 0.00 0.00 0.22 0.78 0.78

Gravel sand 3,095,728 355,931 0.17 0.15 0.68 0.85

Soil media 56,748 0.70 0.13 017 0.87

Gravel 110,911 0.00 0.00 0.18 0.82 0.82

Silty loam 746,310 0.00 0.00 0.18 0.82 0.82

Clay loam 739,032 6337 0.00 0.18 0.82 0.82

Loam 867,112 392,764 0.29 0.03 0.68 0.97

Sand 1,292,821 0.00 0.00 0.16 0.84 0.84

Non-
shrinking

337,955 1477 0.00 0.15 0.84 0.85

Sandy loam 269,090

Topography
(slope %)

0–2 1,003,466 2084 0.00 0.26 0.73 0.74

2–6 1,462,183 63,732 0.05 0.26 0.69 0.74

6–12 1,432,714 276,128 0.24 0.11 0.65 0.89

12–18 340,736 80,202 0.31 0.17 0.51 0.83

[18 124,255 34,972 0.40 0.19 0.42 0.81

Vadose zone
impact

Marlstone
Shale

277,285 100,740 0.67 0.17 0.16 0.83

Sand Gravel 557,511 7929 0.02 0.24 0.75 0.77

Conglomerate 9094 1082 0.16 0.21 0.64 0.80

Sand Gravel
w Silt

2,994,564 347,575 0.15 0.15 0.69 0.84

Silt/Clay 524,748 0.00 0.00 0.24 0.76 0.76

Hydraulic
conductivity
(m/day)

\ 4 769,651 251,809 0.81 0.16 0.03 0.84

4–12 1,551,690 8117 0.01 0.50 0.49 0.50

12–28 2,041,790 197,401 0.18 0.33 0.49 0.67
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5.1 Damage map

Damage must be identified and quantified to obtain a groundwater pollution risk map. The

study area is primarily associated with agricultural activities, and thus assessment should

focused on the threats from these activities. The nitrate concentration map derived from

interpolation of nitrate concentration was multiplied by the modified DRASTIC map in the

study area to obtain the damage map (Fig. 6).It is can be described as follow;

Damage ¼ Vulnerability	 Pollution

Five categories were used for the damage index. The southern region and a small section of

the northern region exhibited the highest damage index. Therefore, these areas should be

focused on during risk assessment.

5.2 Applying DST to groundwater pollution risk assessment

The results are represented by DST through a range of probabilities by using natural

variability and model uncertainty (Sentz and Ferson, 2002; Helton 2008). Spatial inte-

gration of the damage map and the probability occurrence of pollution by using DST were

conducted to obtain the basic groundwater pollution risk map. Afterward, the results were

reclassified.

The sum of the lower probability and uncertainty occurrence leads to the highest

probability of pollution occurrence. In the DRASTIC parameters (Table 1), the depth of

water within the range of [30 m exhibited the highest Bel and low Unc values, thus

indicating the highest probability of pollution occurrence. Therefore, aggregating prob-

abilities by considering the uncertainty was indicated as Pls, which was used in risk

assessment. Meanwhile, the recharge parameter within the range of 101.6–177.8 mm ex-

hibited high Bel value and the lowest uncertainty value, thus indicating the highest

probability of pollution occurrence.

Marlstone–shale and gravel–sand indicated the highest Pls value for the aquifer media.

The former showed high Bel and low Unc values, whereas the latter presented low Bel and

high Unc values. Based on the interpretation of the Bel values for the soil type parameter,

gravel presents a high probability of groundwater pollution occurrence. However, sand has

the highest probability because of the sum of the Bel and the Unc values. The Bel values

for the remaining categories are relatively low and indicate a low probability of ground-

water pollution. In the case of the topography parameter, slope angles with values more

than 18 % have a high Bel, thus indicating the highest probability of pollution, followed by

slope angles ranging from 12 to 18 %, and then those from 6 to 12 %. For the impact of the

vadose zone parameter, marlstone–shale exhibits the highest possibility of nitrate pollution

occurrence, thus suggesting a higher probability of pollution occurrence than other vadose

zone types.

Dempster’s combination rule was applied to investigate additional information sources

to simulate the process of forming a Bel function regarding groundwater pollution oc-

currences. The combination results indicated that nitrate C50 mg/L observations are the

most appropriate indicators of pollution occurrences. Eqs in (12)–(15) consider the spatial

relationship of an evidential data layer with a nitrate concentration C50 mg/L and the

relationship between the subsets of each DRASTIC parameter within an evidential data

layer.
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The integrated results derived from DST are shown in Fig. 7. The Bel values in areas

with low disbelief values are high, as shown in the comparison between the Bel map and

the Dis map. Areas with a high degree of Bel and a low degree of Dis for pollution

occurrence are vulnerable to groundwater pollution. Information that supports uncertainty

of pollution occurrence was missing from the uncertainty map. The difference between Pls

and Bel functions is called uncertainty. Areas with low Bel values exhibit high uncertainty

values. Areas with high Bel and uncertainty values also present high values in the Pls map.

Fig. 7 Integration results derived from DST
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5.2.1 Risk mapping

In this research, the groundwater pollution risk map was deduced mainly from the com-

bination of the damage and the probability occurrence of pollution that considers uncer-

tainty. The DST approach was used to conduct evaluation probability with regard to

uncertainty. Probability-based evaluation was successfully used to characterize the

uncertainties of the parameters. The value of risk and pollution resulting from the presence

of nitrates in groundwater was estimated as C50 mg/L. The integrated map of the degrees

of plausibility produced cautionary information that represents potentially polluted areas

(information that provides support for the proposition that nitrate C50 mg/L is sufficient)

and the areas that require spatial evidence (information on spatial evidence that provides

support for the proposition that nitrate C50 mg/L is insufficient). Therefore, the afore-

mentioned map was applied to multiply the damage map and produce the final risk map.

Combining the damage and probability maps, it is used to produce the groundwater

pollution risk map of the Kerman Plain. Equation (16) indicates that the damage is denoted

by Di, and the probability of occurrence is denoted by Pi:

Risk ¼
XR

i¼1

Pi 	 Di: ð16Þ

The risk map and the percentages of each class in the study area is illustrated in Figs. 8

and 9, respectively. The very low and low risk areas cover 75 % of the entire plain, which

comprises the northeast, northwest, and central parts of the study area, thus indicating good

correspondence of the spatial distribution of nitrate concentration. Moderate pollution risk

Fig. 8 Risk map classification
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(13.6 % of the plain) for groundwater is also depicted in regions close to the high- and very

high risk zones in the study area. The high- and very high risk areas cover approximately

11.3 % of the plain and comprise the southern part, particularly, the southeast and

southwest portions, and a small section of the northern part. Groundwater resources with

high permeability located in the northern and southern regions of the study area under a

permeable surface consist of gravel and sand. Marlstone–shale formations and higher slope

ranges are other indicators that are relevant to a high risk level.

6 Conclusion

Spatial analysis of groundwater pollution is relevant to agricultural activities, which requires

robust methods. This study introduced a new way to assess groundwater pollution risk and

design a monitoring system for future. It combined groundwater vulnerability, pollution, and

probability with respect to uncertainty within a new framework. We attempted to represent

how the probability measurement with incomplete information in the role of uncertainty can

be used by environmental resource managers. The outcomes indicated that the development

of risk assessment based on probability and uncertainty was possible.

The probability and uncertainty for a spatial distribution of polluted areas that exceed a

threshold value were provided through DST technique in the Kerman plain. Charac-

terization of the uncertainties of parameter classifications and ratings is understood through

this framework, thus providing a new perspective into this aspect.

Identification of groundwater pollution risk due to applying of fertilizers demonstrates

the areas in which we would focus efforts to reduce risk by using advanced techniques of

fertilization in agricultural lands. Risk map optimizes the qualitative monitoring system.

The maps indicate five priority zones diagnosed for the construction of a monitoring

system. Moreover, high-risk zones that exhibited an increase may enhance monitoring.

Applying this methodology is recommended by the authors if the objective is to develop

a risk map of areas that are vulnerable to pollution. Furthermore, aside from nitrate, other

pollutants can also be identified in other regions, thus urging analysts to search for other

factors that lead to pollution of groundwater resources.
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