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Abstract Extreme flood events are complex and inherently uncertain phenomenons.

Consequently forecasts of floods are inherently uncertain in nature due to various sources

of uncertainty including model uncertainty, input uncertainty, and parameter uncertainty.

This paper investigates two types of natural and model uncertainties in extreme rainfall–

runoff events in a semi-arid region. Natural uncertainty is incorporated in the distribution

function of the series of annual maximum daily rainfall, and model uncertainty is an

epistemic uncertainty source. The kinematic runoff and erosion model was used for

rainfall–runoff simulation. The model calibration scheme is carried out under the gen-

eralized likelihood uncertainty estimation framework to quantify uncertainty in the

rainfall–runoff modeling process. Uncertainties of the rainfall depths—associated with

depth duration frequency curves—were estimated with the bootstrap sampling method

and described by a normal probability density function. These uncertainties are presented

in the rainfall–runoff modeling for investigation of uncertainty effects on extreme

hydrological events discharge and can be embedded into guidelines for risk-based design

and management of urban water infrastructure.
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1 Introduction

Hydrological extreme value analysis is a key part of water resource safety assessment pro-

cedures approaches. The magnitude and frequency of hydrological extreme events such as

drought and flooding are both increasing with environmental changes such as climate change

[Intergovernmental Panel on Climate Change (IPCC) 2002]. In the past decades, damages

caused by extreme natural hazards have drastically increased worldwide (Goldstein et al.

2003). The disaster caused by these extreme events results in an increasing demand for

research on adequately modeling hydrological extreme events. Uncertainty analysis has

important roles in hydrological extreme value analysis. Uncertainty is defined as a measure of

imperfect knowledge or probable error that can occur during the data collection process,

modeling and analysis of engineering system, and prediction of a random process. Engineering

systems, such as wastewater treatment plants, soil remediation systems, water purification

systems, flood control systems, are subject to uncertainty but decisions on their planning,

design, operation, and management are often made without accounting for it (Sohrabi et al.

2003). There are comprehensive taxonomies of uncertainty in the literature which discuss

different types and sources of uncertainty (Haimes 1998; van Asselt and Rotmans 2002; Chen

and Chau 2006; Mirzaei et al. 2015; Goodarzi et al. 2012; Salarpour et al. 2013). For the

purpose of this paper, it is important to recognize two basic kinds of uncertainty that are

fundamentally different from each other: natural and epistemic uncertainty.

Natural uncertainty refers to quantities that are inherently variable over time, space, or

populations of individuals or objects. Variability exists, for example, in the amount of

annual rainfall in consecutive years, in the clay content of a field, or in the body weight of

adults. Epistemic uncertainty is related to our ability to understand, measure, and describe

the system under study. For example, if we use a mathematical model to describe a system,

epistemic uncertainty may consist of model (or structural) uncertainty and parameter

uncertainty (Cullen and Frey 1999).

The kinematic runoff and erosion model (KINEROS) was used for rainfall–runoff

simulation. The uncertainty analysis methods selected for use in KINEROS must be able to

handle propagation of uncertainty and variability of the model input parameters, taking

into account distributions of parameter uncertainty. The method will be used to provide

uncertainties of model outputs in terms of distributions of model outputs, joint distributions

of model inputs and outputs. For performing a thorough uncertainty and variability anal-

ysis, the generalized likelihood uncertainty estimation (GLUE) has a number of advantages

over other methods (Xu et al. 2010). The GLUE is used for assessing the uncertainty

associated with model predictions, which assumes that due to the limitations in model

structure, data and calibration scheme, many different parameter sets can make acceptable

simulations.

The GLUE technique introduced by Beven and Binley (1992) is an innovative uncer-

tainty method that is often employed with environmental simulation models. There are

now over 500 citations to their original paper which illustrate its applicability and accu-

rateness [e.g., Lindblom et al. (2011), Vázquez and Feyen (2010), Callies et al. (2008),

Blasone et al. (2008b), Beven et al. (2007, 2008), Mantovan and Todini (2006), Mantovan

et al. (2007), Mirzaei et al. (2015)]. The primary advantages of this method are the

reduction in the number of simulations required, the ability to use different ways of

specifying parameter distributions, the ability to handle very complex models, and the

propagation of variability, uncertainty, and parameter dependencies through the model—

that are reflected in the distributions of model outputs.
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The bootstrap method, a simple nonparametric technique, is proposed in this paper as it

is simple to describe and easy to implement. The bootstrap is a technique for determining

the accuracy of statistics in circumstances in which confidence intervals cannot be obtained

analytically or when an approximation based on the limit distribution is not satisfactory

(Efron and Tibshirani 1993; Davison and Hinkley 1997). Bootstrap techniques have

become very popular in many areas of environmental sciences, including frequency

analysis in climatology and hydrology (Dunn 2001; Hall et al. 2004; Ames 2006; Kyselý

and Beranová 2009; Twardosz 2009; Fowler and Ekström 2009).

This study is motivated by observed and modeled increases in critical design precipi-

tation events and seeks to better quantify the magnitude and uncertainty of extreme pre-

cipitation–runoff events. It is the intent of this research to increase our understanding of the

inherent uncertainties in statistical frequency analysis of extreme precipitation events and

the uncertainties as a result of the rainfall–runoff modeling. The main objective of this

study is the uncertainty analysis of extreme hydrological events in semi-arid regions. In

order to pursue the main objective, the specific objectives of the study were: (1) to quantify

the uncertainties in frequency analysis of extreme rainfall events which are associated with

depth duration frequency curves (DDF), (2) to quantify the uncertainty in the rainfall–

runoff modeling process using the calibration scheme carried out under the GLUE

framework, and (3) to represent these uncertainties in rainfall–runoff modeling for

uncertainty effects in discharge and volumes of extreme hydrological events. This research

work was demonstrated and applied to the Zayanderood basin in central Iran.

Fig. 1 Location map of Zayanderood basin in Iran (a), location map of study area in Zayanderood basin
(b) and map of study area (c)
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2 Study area

The west of the Zayanderood River catchment in central Iran, shown in Fig. 1, is used

throughout this study for the demonstration of the methodologies and the models devel-

oped in this study. This area was selected because it covers the main source of the

streamflow in the Zayanderood River and it has a reasonably dense network of rain-gauge

and runoff-gauge stations. This semi-arid region has an annual average precipitation of

611 mm and an annual average temperature of 11 �C; there is a seasonal distribution of

precipitation with the wet season being in autumn, winter and spring, and the dry season in

summer. The four selected stations have more than 50 years of daily rainfall data records.

Fig. 2 Locations of the rainfall and runoff gauging stations in the study area (after Mirzaei et al. 2013a)
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All the rainfall stations are depicted in Fig. 2. Table 1 lists the rainfall stations used in this

study.

3 Modeling uncertainty in DDF curves

Uncertainty in DDF curves which is usually disregarded in view of the difficulties asso-

ciated in assigning a value to it should be considered in the design of hydraulic structures.

To investigate the uncertainty in DDF curves, the bootstrapping method is used to calculate

the confidence bands of the DDF curves. Only the uncertainty due to the estimation of the

generalized extreme value (GEV) distribution parameters and the associated sampling

errors were evaluated in this study.

One of the simpler and frequently used models that is popularly utilized in statistics is

the classical regression model

Y ¼ Xbþ �

where Y ¼ Y1; . . .; Ynð Þt represents an observational vector of length n, X is a n 9 p known

matrix of explanatory variables, and b is a vector of unknown regression coefficients of

length p that characterizes the relationship between observations and explanatory variables.

Classically, the vector � is assumed to be a zero-mean Gaussian vector. In this study, X

and b were defined as:

X ¼

1

:
:
:
1

lnD1

:
:
:

lnD5

0
BBBB@

1
CCCCA
and b ¼ b0

b1

� �

where D is rainfall duration for 24, 48, 72, 96, and 120 h, and b0 and b1 are regression

coefficients of GEV parameters. The generalized least squares method was used to estimate

the regression coefficients b0 and b1.
Relations of the GEV parameters as a function of duration D (hours) were used to

construct rainfall DDF curves. Now that the GEV parameters are described as a function of

D, rainfall DDF curves are constructed by substituting these relationships into below

equation, so that the DDF curves are given by:

Table 1 Selected stations, their record length, latitude and longitude

Station name National
code

Study
code

Data period
from–to

Latitude
(N)

Longitude
(E)

Elevation
(m)

Chelgerd 42001 S1 1954–2009 50.13 32.45 2324

Damaneh 42004 S2 1954–2009 50.48 33.02 2300

Shahrukh
Palace

42003 S3 1958–2009 50.47 32.65 2098

Sade
Zayanderood

42007 S4 1955–2009 50.78 32.72 1990
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x̂ Tð Þ ¼ exp b̂0n þ b̂1nlnD
� �

� 1þ b̂0c þ b̂1clnD
� � 1� �ln 1� T�1ð Þ½ �k̂GLS

n o

k̂GLS

0
B@

1
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4 Monte Carlo sampling

Monte Carlo is a method for the calculation of parameter confidence intervals; two Monte

Carlo-based approaches are commonly seen in literatures: importance sampling and

Markov chain Monte Carlo (MCMC) simulation (e.g., Bates and Campbell 2001; Gal-

lagher and Doherty 2007). Importance sampling is a technique for randomly sampling from

a probability distribution and was implemented in GLUE by Beven and Binley (1992).

MCMC is one of the most important numerical techniques for creating a sample from the

posterior distribution, which has been widely used in hydrological modeling to quantify

parameter uncertainties (e.g., Makowski et al. 2002). Its underlying rationale is to set up a

Markov chain to simulate the true posterior distribution by generating samples from a

random walk. An obvious advantage of this method is that it does not require linearity

assumptions in model or even that model outputs do not need to be differentiable with

respect to parameter values (Gallagher and Doherty 2007). Because of its robust perfor-

mance, MCMC is often used to assess parameter uncertainties in combination with GLUE

Fig. 3 Flowchart to determine uncertainty intervals
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or Bayesian inference by estimating a probability density for model parameters condi-

tioned on observations. Blasone et al. (2008) found that using a MCMC sampling scheme

coupled with GLUE significantly improves the efficiency and effectiveness of the

methodology of GLUE.

5 Uncertainty analysis in modeling of extreme rainfall–runoff events

The input data and parameter set that users provide are usually the representation of the

average condition of a study site (for example, rainfall depth and hydraulic conductivity).

However, assigning a value to that representative variable inherently involves a certain

degree of uncertainty, which will directly affect the level of uncertainty of the model

prediction.

The structure of uncertainty analysis for extreme rainfall–runoff events is organized as

illustrated in Fig. 3. The process that is shown in Fig. 3 was done for five return periods

and five rainfall durations. Selected rainfall durations for this study are 24, 48, 72, 96, and

120 h. The number of samples for simulation was limited by the simulation time-con-

suming. Model run time was about 8 min for one simulation, so total time for the exercise

was about 130 h for 1000 samples. In this study, 1000 samples were selected for each

return period and rainfall duration.

After running KINEROS for all sample sets, the model output (runoff) was analysis for

each event and the predicted runoff and the upper and lower uncertainty were determined.

The KINEROS was applied and developed for 1000 input parameter sets to generate runoff

hydrograph data and uncertainty boundaries. All output hydrographs data were sorted

according to maximum peak discharge. Then for determination of 95 % probability pre-

diction uncertainty (95PPU), all outputs between 25 and 975 were selected for analysis.

The next step was provided for output hydrographs and 95PPU band for each event.

Table 2 Estimated GEV parameters for D = 24, 48, 72, 96 and 120 h in all stations, standard deviations
are estimated with the bootstrap and given between brackets (Mirzaei et al. 2013b)

D (h) S1 S2

n̂ ĉ k̂ n̂ ĉ k̂

24 34.90 (2.47) 0.552 (0.002) 0.019 (0.024) 8.45 (1.11) 1.049 (0.003) 0.140 (0.016)

48 56.43 (9.49) 0.601 (0.005) 0.015 (0.015) 13.21 (1.48) 1.060 (0.005) 0.005 (0.012)

72 81.52 (11.83) 0.555 (0.004) 0.014 (0.014) 22.37 (3.73) 1.074 (0.010) 0.120 (0.014)

96 92.28 (16.27) 0.543 (0.006) 0.021 (0.020) 24.72 (5.99) 1.070 (0.011) 0.080 (0.015)

120 118.29 (20.87) 0.600 (0.003) 0.016 (0.027) 30.83 (6.18) 1.061 (0.016) 0.100 (0.068)

D (h) S3 S4

n̂ ĉ k̂ n̂ ĉ k̂

24 11.27 (1.16) 1.117 (0.002) 0.181 (0.018) 9.86 (1.20) 0.698 (0.002) 0.088 (0.018)

48 17.34 (2.21) 1.075 (0.004) 0.159 (0.022) 14.47 (2.42) 0.671 (0.004) 0.141 (0.022)

72 22.53 (2.40) 1.129 (0.011) 0.145 (0.042) 20.05 (2.23) 0.638 (0.011) 0.118 (0.042)

96 28.63 (3.88) 1.197 (0.003) 0.170 (0.045) 23.36 (3.88) 0.701 (0.003) 0.101 (0.045)

120 34.87 (4.46) 1.124 (0.020) 0.186 (0.045) 30.50 (4.46) 0.715 (020) 0.119 (0.045)
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6 Results and discussion

6.1 GEV parameters estimation

Study area has 16 rainfall gauge stations (Fig. 2). For statistical analysis, stations that have

more than 50 years of data are studied. According to Table 1, only four stations have

longer than 50-year data. These stations included Damaneh, Shahrukh Palace, Chelgerd

and Sade Zayanderood that have 55, 51, 55, and 54 years recorded data, respectively. The

GEV parameters were estimated for 24-, 48-, 72-, 96-, and 120-h rainfall duration.

According to the equations in the GEV regression model, the regression coefficients were

estimated for the 104 bootstrap samples. Table 2 shows the averages and standard devia-

tions of the regression coefficients. In this paper, n, a and k are the location, scale, and

shape parameters, respectively, and k ¼ a=n. For k, the estimate of slope b1 was

approximately zero for most samples (for more information, refer to Mirzaei et al. 2013b).

6.2 DDF curves uncertainty estimation

The bootstrap method was employed to assess this uncertainty. This method considers only

the uncertainty due to the estimation of the GEV parameters and sampling errors. For each

of the 104 bootstrap samples, the relations between the GEV parameters and duration were

re-estimated using generalized least squares, so that 104 DDF curves could be constructed.

As mentioned before, DDF curves are constructed by equation, so that the DDF curves are

given by (Mirzaei et al. 2013b):for Station S1 is

x̂ Tð Þ ¼ exp 3:2149þ 0:3125lnDð Þ

� 1þ 0:5699þ 0:0009lnDð Þ
1� �ln 1� T�1ð Þ½ �0:0164

n o

0:0164

0
@

1
A

for Station S2

x̂ Tð Þ ¼ exp 1:1391þ 0:3031lnDð Þ

� 1þ 3:0658þ 0:00089lnDð Þ
1� �ln 1� T�1ð Þ½ �0:0857

n o

0:0857

0
@

1
A

for StationS3

x̂ Tð Þ ¼ exp 1:625þ 0:4045 lnDð Þ

� 1þ 1:1419þ 0:0009lnDð Þ
1� �ln 1� T�1ð Þ½ �0:1659

n o

0:1659

0
@

1
A

for Station S4

x̂ Tð Þ ¼ exp 1:453þ 0:4042lnDð Þ

� 1þ 0:6725þ 0:0034lnDð Þ
1� �ln 1� T�1ð Þ½ �0:1105

n o

0:1105

0
@

1
A
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By choosing a return period T, the rainfall depth x (mm) can be plotted as a function of

duration D using the above equations. Figure 6 presents the DDF curves for T = 5, 10, 20,

50, and 100 years. The curves show a strong increase in rainfall depth with D.

For each DDF curve, the rainfall depths were derived for durations between 24 and

120 h in steps of 1 h (Fig. 4).

6.3 Uncertainty analysis for long duration rainfall events

In this study, the flowchart in Fig. 3 was followed for uncertainty analysis. Return periods

of 5, 10, 20, 50, and 100 years were selected for understanding uncertainty in future

Zayanderood River stream flow. Stream flow hydrographs for each event were obtained

after 1000 simulations of rainfall–runoff model using Monte Carlo sampling method. This

study used irreversible MCMC algorithms for efficient sampling from the posterior dis-

tribution on the input model parameter space and probability density functions of rainfall

DDF curves. Then, the uncertainty band, the space between upper and lower of 95PPU,

was determined (Fig. 5).

To analyze the uncertainty in peak discharge, the lower and upper uncertainty bands are

plotted in Fig. 6. The peak discharge value and uncertainty band increased with increasing

return periods.

6.4 Uncertainty in peak discharge of extreme runoff events

Figure 7 presents values of peak surface runoff volumes for different rainfall depths and

durations. The figure shows that both the upper and lower uncertainty bands changed

negatively with the increase in rainfall duration. In fact, model accuracy in discharge

calculation grows by increasing rainfall duration.

Fig. 4 Rainfall DDF curves (solid lines) and 95 % prediction uncertainty (dashed lines) for the return
periods of 5, 10, 20, 50, and 100 years at stations S1, S2, S3, and S4 (Mirzaei et al. 2013b)
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It is notable that peak flow rates for each return period decreased with the increase in

duration. For example, peak discharge values of 5-year return period and 24-h rainfall

duration were 307 m3/s, reducing to 127 m3/s for 5-year return period and 120-h rainfall.

This change is very much obvious according to the concept of hydrograph This can be

explained with the S-curve concept where it is learned that after certain time of a con-

tinuous rainfall on a catchment, runoff flow rate will reach a constant value. After that,

flow will no more increase even though rainfall duration is further increased. Before

reaching this constant flow condition, peak flow rate will obviously increase with the

increase in rainfall duration but at a reduced rate. In other words, peak flow rate of

effective rainfall will decrease with the increase in duration.

5 yr. - 24 hr. 100 yr. - 24 hr.

5 yr. - 48 hr.

5 yr. - 72 hr.

5 yr. - 96 hr.

5 yr. - 120 hr.

100 yr. - 48 hr.

100 yr. - 72 hr.

100 yr. - 96 hr.

100 yr. - 120 hr.

Fig. 5 Storm hydrographs of 24-, 48-, 72-, 96-, and 120-h rainfall and 5- and 100-year return period, 95 %
prediction uncertainty (shaded area)
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For a given return period, upper uncertainty band and lower uncertainty band were

different in different rainfall durations. These results indicate that there is an influence of

rainfall duration on uncertainty boundaries although no specific trend was identified.

7 Conclusions

This paper studied the uncertainty in rainfall and input parameters of the KINEROS model

which affect the model output (runoff). Uncertainty in extreme rainfall was investigated

over various rainfall durations and return periods. Extreme rainfall events in the Zayan-

derood basin for rainfall durations of between 24 and 120 h were studied. Since regional

variability and extreme rainfall amounts were not independent, extreme rainfall analysis

was carried out for four main stations separately. GEV parameters of this time series were

estimated with the method of L-moments. Standard deviations and correlations of esti-

mated GEV parameters were obtained with bootstrapping. To take into account the cor-

relation between estimated GEV parameters for different durations, the generalized least

squares method was used to describe the variation of these parameters as a function of

Fig. 6 Peak discharge variation (solid lines) and 95 % confidence bands (dashed lines)
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duration. The relations were used to construct rainfall DDF curves. Finally, uncertainties in

DDF curves, due to sampling variability, were quantified with the bootstrap and described

with a normal distribution.

The highlighting conclusions of the study are: (1) stream hydrographs were derived

using Monte Carlo simulation for the KINEROS model. The study revealed that for peak

discharge and stream volume, the upper and lower band of uncertainty increased with

increasing return periods. (2) The amounts of uncertainty in peak discharge reduced for all

return periods with increasing rainfall duration. (3) It is concluded that for extreme events

Fig. 7 Predicted and uncertainty band of peak discharge for five different return periods and five different
rainfall durations (dimension of vertical axis is m3/s)
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simulation and using appropriate results for designing water resources projects, the

knowledge of input data uncertainty is needed, In fact, without any uncertainty analysis,

the peak discharge and stream flow volume of extreme events may be more than that has

been predicted by model in certain condition.
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