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Short-term forecasting of soil temperature using artificial neural network
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ABSTRACT: Soil temperature is one of the most important meteorological parameters that plays a critical role in land surface
hydrological processes. In the current study, artificial neural network (ANN) models were developed and tested for 1 day
ahead soil temperature forecasting at 5, 10, 20, 30, 50 and 100 cm depths. Antecedent soil temperatures plus concurrent and
antecedent air temperatures were used as inputs for the ANN models. Soil and air temperature data were collected from two
Iranian weather stations located in humid and arid regions for the period 2004–2005. The models’ accuracies were evaluated
using the Nash–Sutcliffe co-efficient of efficiency, the correlation co-efficient, the root mean square error and the mean bias
error between the observed and forecasted soil temperature values. The Nash–Sutcliffe co-efficient of efficiency values >0.94
and correlation co-efficient >0.96 for all the ANN models show that the models can be applied successfully to provide accurate
and reliable short-term soil temperature forecasts.
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1. Introduction

Soil temperature and its variation at various depths are unique
parameters useful in understanding both the surface energy
processes and regional environmental and climate condi-
tions (Hu and Feng, 2002). Moreover, soil temperature plays
an important role in hydrological and meteorological mod-
elling (Bilgili et al., 2013), and for understanding regional
eco-environmental conditions and climate change (Wu et al.,
2013). However, measured records of soil temperature are often
not available for a given site-specific project (Lei et al., 2011;
Wu et al., 2013).

Current techniques for detecting soil temperature, such as
gamma attenuation, soil heat flux, time-domain reflectometry
and ground penetration radar, are expensive, bulky and present
mostly surface measurements, but do not provide profound ver-
tical temperature profiles. Additionally, their results can be influ-
enced significantly by the noisy environment, thus requiring
complex and expensive signal processing (Jackson et al., 2008).
The physically based models for soil temperature estimation need
specific technical skills to set up and run and their input parame-
ters are, in general, not easily available (Plauborg, 2002).

Soil temperature regimes are controlled by a number of fac-
tors, including site climate and topography, the quantity and
structure of above-ground biomass and soil physical properties
(Bond-Lamberty et al., 2005). For this reason, estimation and
modelling of soil temperature are rather difficult, especially near
the ground surface where the soil temperature variations are the
highest (Mihalakakou, 2002). This has led to a number of stud-
ies to explore simple and powerful tools for such estimation
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and modelling. The successful application of artificial neural
networks (ANNs) to model dynamic systems in areas of science
and engineering suggests that the ANN approach has become one
of the commonly used and powerful alternative techniques to deal
with time series forecasting (Yadav et al., 2011). An ANN is a
non-linear mathematical structure that is capable of representing
arbitrarily complex non-linear processes that relate the inputs and
outputs of any system (Hsu et al., 1995).

In recent years, several studies have reported that the ANN
with its ability to model non-linear relationships may offer a
promising alternative for soil temperature modelling. Although
several applications of ANNs for this type of modelling exist
(George, 2001; Mihalakakou, 2002; Bilgili, 2010; Ozturk et al.,
2011; Tabari et al., 2011; Bilgili et al., 2013; Wu et al., 2013;
Hosseinzadeh Talaee, 2014; Kim and Singh, 2014; Kisi et al.,
2014), they have so far been restricted to the research environ-
ment. The outcomes of such researches are encouraging, as the
ANN method has been found to be very useful in providing
important information regarding the non-linear characteristics of
soil temperature and its predictability. Some of these studies used
meteorological data as inputs for the ANN models (e.g., George,
2001; Mihalakakou, 2002; Bilgili, 2010; Tabari et al., 2011; Hos-
seinzadeh Talaee, 2014). Another study by Bilgili et al. (2013)
estimated soil temperatures of a target station using only the soil
temperatures of neighbouring stations without any consideration
of the other variables or parameters related to soil properties. Wu
et al. (2013) developed ANN models for spatiotemporal interpo-
lation of soil temperature at a depth of 10 cm in a complex terrain
region with latitude, longitude, elevation, topographic wetness
index and normalized difference vegetation index as inputs.

In the present research, concurrent and antecedent air tempera-
ture with time lags of 1 and 2 days, and antecedent soil tempera-
ture with lag times of 1, 2 and 3 days were used as inputs for the
ANN models. Furthermore, the influence of site climate condi-
tions on the accuracy of the soil temperature forecasts was inves-
tigated by conducting the research in different climatic regions.
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Table 1. Performance evaluation criteria.
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i are the observed and forecasted soil temperature values at time t,

respectively, and yo and yf are the mean of the observed and forecasted soil
temperature values corresponding to n patterns.

The main objective of the present study was to predict 1 day
ahead soil temperature at six depths of 5, 10, 20, 30, 50 and
100 cm using the ANN approach at humid and arid locations.

2. Methods

2.1. Multilayer perceptron

There are many types of the ANNs for various applications
available in the literature, of which the multilayer perceptron
(MLP) is the simplest and therefore most commonly used ANN
architecture (Berberoglu et al., 2000; Tabari et al., 2010; Kisi
et al., 2012, 2013a, 2013b; Kim et al., 2013; Rezaeianzadeh
et al., 2013, 2014; Shiri et al., 2013, 2014a, 2014b; Tabari and
Hosseinzadeh Talaee, 2013). The MLP consists of three layers
of neurons: (1) an input layer, (2) an output layer and (3)
intermediate (hidden) layer(s). Each neuron has a number of
inputs (from outside the network or the previous layer) and a
number of outputs (leading to the subsequent layer or out of the
network). A neuron computes its output response based on the
weighted sum of all its inputs according to an activation function
(Dawson et al., 2006). The MLP network can mathematically be
represented as follows:

y = f

(
n∑

i=1

wipi + b

)
(1)

where wi represents the weight vector, pi is the input vector
(i= 1, 2… n), b is the bias, f is the activation function and y is
the output. The most common activation function, and the one

Figure 1. Autocorrelation function of soil temperature series at different depths at the study stations.
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implemented in the present study, is the sigmoid function and is
described as follows:

f (x) = 1
1 + exp (−x)

(2)

The characteristics of the sigmoid function are that it
is bounded above and below, it is monotonically increas-
ing and it is continuous and differentiable everywhere
(Hecht-Nielsen, 1990). Sigmoid functions share a similar
S-shape that is essentially linear at its centre and non-linear
towards its bounds that are approached asymptotically
(Yonaba et al., 2010).

2.2. Levenberg–Marquardt training algorithm

Training of the ANN is the process of adjusting the weights
and biases in order for the network to produce the desired
output in response to every input pattern in a predetermined
set of training patterns (Yonaba et al., 2010). A wide range of
algorithms has been developed for training the ANN to achieve
the optimum model performance, while ensuring generalization
and computational efficiency. The Levenberg–Marquardt (L-M)
algorithm is one of the most appropriate higher order adaptive
algorithms known for minimizing the mean square error (MSE)
of an ANN. It is a member of a class of learning algorithms
called ‘pseudo second order methods’. Standard gradient descent
algorithms use only the local approximation of the slope of the
performance surface (error vs weights) to determine the best
direction to move the weights for lowering the error. When
the performance function has the form of a sum of squares (as
is typical in training feed-forward networks), then the Hessian
matrix can be approximated as:

H = JTJ (3)

and the gradient can be determined as:

g = JT e (4)

where J is the Jacobian matrix that contains first derivatives of
the network errors with respect to weights and biases, e is the
vector of network errors and JT denotes the transpose of the
Jacobian matrix. The Jacobian matrix can be computed through
a standard back-propagation technique that is much less complex
than computing the Hessian matrix.

The L-M algorithm uses this approximation to the Hes-
sian matrix (matrix of second derivatives) in the following
Newton-like update:

xk+1 = xk −
[
JTJ + 𝜇I

]−1
JTe (5)

When the scalar 𝜇 is zero, the L-M method becomes Newton’s
method, using the approximate Hessian matrix. When 𝜇 is large,
the method becomes a gradient descent one with a small step
size. Newton’s method is faster and more accurate near an error
minimum, so the aim is to shift towards Newton’s method as
quickly as possible. This is achieved by decreasing 𝜇 after each
successful step (reduction in performance function) and increas-
ing only when the tentative step increases the performance
function. In this way, the performance function will always
be reduced at any iteration of the algorithm. A key advantage
of the L-M approach is that it defaults to the gradient search
when the local curvature of the performance surface deviates
from a parabola, which often happens in neural computing
(NeuroSolutions, 2003; Kisi, 2007).

Table 2. Input vectors used for implementation of ANN models.

Model Input vectors

I ST (t − 1)
II ST (t − 1), ST (t − 2)
III ST (t − 1), ST (t − 2), ST (t − 3)
IV ST (t − 1), ST (t − 2), ST (t − 3), T(t)
V ST (t − 1), ST (t − 2), ST (t − 3), T(t), T(t − 1)
VI ST (t − 1), ST (t − 2), ST (t − 3), T(t), T(t − 1), T(t − 2)

ANN, artificial neural network; ST, soil temperature; T , air temperature; t, time.

Table 3. The optimum number of neurons in a hidden layer for each ANN
model.

Soil
depth (cm)

Model Station Soil
depth (cm)

Model Station

Zahedan Sari Zahedan Sari

5 I 21 21 30 I 21 21
II 14 14 II 14 14
III 8 10 III 10 9
IV 8 8 IV 8 8
V 7 5 V 7 7
VI 5 5 VI 6 5

10 I 21 21 50 I 21 21
II 14 14 II 13 14
III 10 10 III 10 10
IV 8 9 IV 8 7
V 7 7 V 6 7
VI 6 7 VI 6 6

20 I 21 21 100 I 22 21
II 14 14 II 14 15
III 10 9 III 10 12
IV 7 7 IV 7 9
V 6 7 V 7 7
VI 6 6 VI 6 5

ANN, artificial neural network.

3. Application and results

A 2 year daily data record (1 January 2004–31 December 2005)
of the soil and air temperatures used in the present study was
measured by the Islamic Republic of Iran Meteorological Orga-
nization (IRIMO) at two synoptic stations in Iran. The data were
collected from the Sari (36 ∘ 33 ′ N, 53 ∘ 00 ′ E; 23 m a.s.l.) and
Zahedan (29 ∘ 28 ′ N, 60 ∘ 53 ′ E; 1370 m a.s.l.) stations. Accord-
ing to the Koppen climate classification, the Sari weather station
is located in a humid (Cfa: wet in all seasons) climate region in
the northern part of Iran and the Zahedan station is situated in
an arid (BWh: hot arid desert) climate region in the southeastern
part of the country. The mean monthly temperature at Sari station
varies from 9 ∘C in January to 28 ∘C in August, with an annual
mean of 18 ∘C. At Zahedan station, mean air temperature ranges
between 7 ∘C in January and 29 ∘C in July, with an annual mean
of 18 ∘C. At Sari station, July with an average precipitation of
19 mm and October with an average precipitation of 147 mm
are the driest and wettest months, respectively. The annual pre-
cipitation is 790 mm. Monthly precipitation at Zahedan station
ranges between <1 mm in June and 21 mm in January, with an
annual average of 90 mm. Soil temperature regimes at Rasht and
Zahedan locations are thermic and hyperthermic, respectively,
while soil moisture regimes at the locations are udic and aridic,
respectively. The soil textures at Rasht and Zahedan locations
are mainly silt clay and sandy loam, respectively.

© 2014 Royal Meteorological Society Meteorol. Appl. (2014)
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Table 4. Performance of the ANN models for 1 day ahead soil temperature forecasting at humid Sari station.

Soil depth (cm) Model r RMSE (∘C) MBE (∘C) E Soil depth (cm) Model r RMSE (∘C) MBE (∘C) E

5 I 0.974 1.879 −0.071 0.949 30 I 0.996 0.613 −0.135 0.991
II 0.969 2.061 −0.127 0.940 II 0.997 0.549 −0.015 0.993
III 0.974 1.919 −0.046 0.948 III 0.997 0.546 −0.068 0.993
IV 0.987 1.435 −0.507 0.971 IV 0.998 0.416 0.009 0.996
V 0.989 1.241 −0.293 0.978 V 0.998 0.415 0.021 0.996
VI 0.989 1.251 −0.165 0.978 VI 0.998 0.389 −0.003 0.996

10 I 0.985 1.377 −0.068 0.969 50 I 0.998 0.311 −0.091 0.997
II 0.985 1.363 0.053 0.969 II 0.999 0.259 −0.049 0.998
III 0.985 1.365 −0.048 0.970 III 0.999 0.271 −0.023 0.997
IV 0.992 1.046 −0.287 0.983 IV 0.999 0.219 0.038 0.998
V 0.994 0.873 −0.176 0.988 V 0.999 0.211 0.026 0.998
VI 0.995 0.836 −0.159 0.989 VI 0.999 0.204 0.017 0.999

20 I 0.994 0.779 −0.063 0.988 100 I 0.996 0.431 0.219 0.984
II 0.995 0.719 0.039 0.989 II 0.998 0.289 0.118 0.993
III 0.995 0.735 −0.048 0.989 III 0.998 0.283 0.088 0.993
IV 0.998 0.512 −0.106 0.995 IV 0.998 0.299 0.149 0.993
V 0.997 0.507 −0.057 0.995 V 0.998 0.297 0.162 0.993
VI 0.997 0.533 −0.043 0.994 VI 0.998 0.294 0.148 0.993

ANN, artificial neural network; r, correlation co-efficient; RMSE, root mean square error; MBE, mean bias error; E, co-efficient of efficiency.

Table 5. Performance of the ANN models for 1 day ahead soil temperature forecasting at arid Zahedan station.

Soil depth (cm) Model r RMSE (∘C) MBE (∘C) E Soil depth (cm) Model r RMSE (∘C) MBE (∘C) E

5 I 0.985 1.735 −0.101 0.969 30 I 0.994 0.985 −0.229 0.987
II 0.985 1.753 −0.156 0.969 II 0.996 0.830 0.006 0.991
III 0.986 1.659 −0.183 0.972 III 0.995 0.921 −0.148 0.989
IV 0.990 1.405 −0.119 0.980 IV 0.998 0.621 0.007 0.995
V 0.990 1.387 −0.146 0.981 V 0.997 0.663 −0.019 0.994
VI 0.991 1.356 −0.121 0.981 VI 0.997 0.669 −0.026 0.994

10 I 0.988 1.498 −0.131 0.975 50 I 0.997 0.648 0.017 0.992
II 0.989 1.438 −0.103 0.977 II 0.997 0.589 0.050 0.994
III 0.988 1.459 −0.095 0.976 III 0.996 0.677 −0.009 0.992
IV 0.994 1.092 −0.206 0.987 IV 0.996 0.665 0.024 0.992
V 0.994 1.088 −0.159 0.987 V 0.998 0.550 0.100 0.995
VI 0.994 1.056 −0.174 0.988 VI 0.997 0.557 −0.004 0.994

20 I 0.993 1.087 −0.279 0.986 100 I 0.979 1.208 0.431 0.938
II 0.995 0.976 −0.004 0.989 II 0.977 1.213 0.418 0.934
III 0.993 1.073 −0.070 0.986 III 0.979 1.182 0.450 0.942
IV 0.997 0.735 −0.100 0.993 IV 0.977 1.207 0.510 0.939
V 0.997 0.743 −0.128 0.993 V 0.977 1.209 0.521 0.939
VI 0.997 0.701 −0.172 0.994 VI 0.981 1.166 0.523 0.944

ANN, artificial neural network; r, correlation co-efficient; RMSE, root mean square error; MBE, mean bias error; E, co-efficient of efficiency.

Soil temperatures at depths of 5, 10, 20, 30, 50 and 100 cm
were measured by mercury-in-glass thermometers (accuracy of
±0.2 ∘C) read by the observer. For soil temperature measure-
ments at shallow layer (i.e. 5, 10, 20 and 30 cm depths), the
thermometer with its stem bent at a right angle is placed into the
ground and does not need to be removed for readings. For soil
temperature measurements at 50 and 100 cm, straight thermome-
ters are placed underground. These thermometers are removed
and replaced for each observation.

For a given depth/station, the data were divided into different
groups: training data set, cross-validation data set and testing data
set. The first 60% of the data (438 daily values starting from
1 January 2004) were used for training, the following 15% of
the data (112 daily values) were for cross-validation and the rest
(181 daily values) were testing data. Once the available data have
been divided into their subsets (i.e. training, cross-validation and
validation), it is important to pre-process the data in a suitable
form before they are applied to the ANN (Shahin et al., 2008).

Data pre-processing is necessary to ensure all variables receive
equal attention during the training process (Maier and Dandy,
2000). Moreover, pre-processing usually speeds up the learning
process. Pre-processing can be in the form of data scaling,
normalization and transformation (Masters, 1993).

Because of the use of sigmoid functions in the ANN model,
the data must be normalized into the range [0, 1] before applying
the ANN methodology. It was found to be useful to normalize
the time series to the range [0.05, 0.95] to avoid the problem of
output signal saturation that can sometimes be encountered in
ANN applications (Smith, 1993). Thus, the data were normalized
within the range 0.05–0.95 as follows:

Xn = 0.05 + 0.9
Xo − Xmin

Xmax − Xmin
(6)

where Xn and Xo are the normalized and the original inputs at
a given depth/station, and Xmin and Xmax are the minimum and
maximum of input ranges at a given depth/station, respectively.

© 2014 Royal Meteorological Society Meteorol. Appl. (2014)
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Figure 2. Time series comparison of the observed and artificial neural network (ANN) forecasted daily soil temperature series at 50 cm depth in the
testing period at humid Sari station.

Once the ANN models have been successfully executed, model
outputs in the form of normalized values are converted to soil
temperatures by inverse transformation.

The performances of the ANN models were evaluated using
the root mean square error (RMSE), the mean bias error (MBE),
the co-efficient of efficiency (Nash and Sutcliffe, 1970) and the
correlation co-efficient (r) between the observed and forecasted
values. The definition of these evaluation criteria is provided in
Table 1.

The autocorrelation of the whole dataset time series was anal-
ysed for evaluating the effects of antecedent soil temperatures
at different depths. The autocorrelation statistics for lag 1 to
lag 10 for soil temperatures at different depths at the study
stations are shown in Figure 1. As shown, the autocorrelation
co-efficients at the considered lags are high and statistically sig-
nificant for all soil depths considered. The gradually decaying

pattern of the autocorrelation function confirms the dominance
of the autoregressive process. A closer look at the autocorrela-
tion co-efficients for different depths indicates a stronger mem-
ory of the soil temperature time series in the deeper soils than
that in the shallower ones. As can be seen from Figure 1, at
the humid location, the soil temperature at 50 cm depth has the
highest autocorrelation co-efficient at lag 1, and thereafter (from
lag 2 to lag 10) the soil temperature at 100 cm depth shows the
highest autocorrelation. At the arid location, the presence of a
dominant autoregressive process is more obvious at 100 cm depth
compared with other depths. These autocorrelations as a signal
of high persistence are beneficial for the development of simple
ANN models.

The input combinations of the ANN models tried in this work
are presented in Table 2. Because the present study aimed to
develop simple ANN models for soil temperature forecasting,

© 2014 Royal Meteorological Society Meteorol. Appl. (2014)



H. Tabari et al.

Figure 3. Time series comparison of the observed and artificial neural network (ANN) forecasted daily soil temperature series at 50 cm depth in the
testing period at arid Zahedan station.

in addition to antecedent soil temperatures, only air temperature
as the most effective variable for soil temperature (Tabari et al.,
2011; Hosseinzadeh Talaee, 2014) was added to the input vector
of the ANN models. As shown in Table 2, six input combinations
were evaluated for the ANN models, of which the first three
combinations are based on antecedent soil temperatures and the
rest are based on antecedent soil temperatures plus concurrent
and antecedent air temperatures.

One of the important issues in the training of an ANN is to
avoid overfitting, as it reduces its capacity for generalization. If
too many neurons are included in the network, it will have too
many parameters and may overfit the data. In contrast, if too
few neurons are used, the network might not be able to detect
the signal and variance of a complex data set fully (Kisi, 2008).

Therefore, in this work, different values were considered for the
number of neurons in the hidden layer. The optimum number of
neurons was determined via a trial and error process in which
the training of the ANN starts with a small number of neurons
and then additional neurons are gradually added to obtain the
lowest forecasting errors. The optimal number of neurons in the
hidden layer for each input combination is presented in Table 3.
The best way to avoid overfitting is to use plenty of training
data. For noise-free data, if at least five times as many training
cases as there are weights in the network are included, overfitting
is unlikely (Kisi, 2008). For the most complex ANN model in
this work (model VI for 10 cm soil depth at Sari station) with 6
inputs, 7 hidden and 1 output nodes, 49 weights (6× 7+ 7= 49)
were used. In the present study, 438 daily soil temperature values

© 2014 Royal Meteorological Society Meteorol. Appl. (2014)
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Scatter plot of the observed and artificial neural network (ANN) forecasted daily soil temperature series at 50 cm depth in the testing period
at humid Sari station.

were used for training of the ANN models that can be considered
sufficient to avoid overfitting, according to Kisi (2008). However,
Wang et al. (2005) showed that even when the ratio of the number
of training data sets to the number of weights in the network
is as high as 50, a very slight overfitting can still be observed
in some cases. Thus, in the present study, 15% of the data
were considered as cross-validation data to avoid overtraining of
the ANN by monitoring the validation error during the training
process.

The performance evaluation criteria of the ANN models for
1 day ahead soil temperature forecasting at different depths
are given in Tables 4 and 5. As shown, the Nash–Sutcliffe
co-efficient of efficiency of all the ANN models for both sta-
tions are higher than 0.94, indicating the high efficiency of the
models for 1 day ahead soil temperature forecasting. Accord-
ing to Shamseldin (1997), a co-efficient of efficiency ≥0.9 is
generally considered very satisfactory. In addition, there is a
strong correlation (r > 0.96) between the forecasted and observed
soil temperature values in all the cases. From the soil sur-
face to the depth of 30 cm, all ANN models underestimated
soil temperature values. Below that depth, they overestimated
the values. In both stations, the ANN model VI performed
best at most of the soil depths. Generally, the performance
level of the ANN models increased with the increase of the
soil depth.

The inclusion of air temperature improved the results, espe-
cially in the shallower soils, which are more influenced by
meteorological changes. It should be noted that at the depth of
100 cm, adding air temperature to the inputs of the ANN models
(from model III to models IV and V) deteriorated the perfor-
mances. When additional antecedent air temperature data were
added to the input, the performance of the network improved. As
there is a time lag of more than 2 days between air temperature
and soil temperature at 100 cm depth, use of air temperature
data from the preceding several days is recommended for soil
temperature forecasting in the deeper soil layers. As shown in
Tables 4 and 5, air temperature with a greater time lag is needed
for soil temperature forecasting at 100 cm depth at the humid
location than at the arid location.

At 5 cm soil depth, the ANN model V had the best performance
(r = 0.989, RMSE= 1.241 ∘C, MBE=−0.293 ∘C and E = 0.978)
at the humid location, while the ANN model VI yielded the most
accurate soil temperature forecasts at the arid location (r = 0.991,
RMSE= 1.356 ∘C, MBE=−0.121 ∘C and E = 0.981). This indi-
cates that only the concurrent and the previous day air temper-
atures are effective for soil temperature forecasting at 5 cm soil
depth at the humid location, whereas the air temperature with
2 day time lag slightly improved the performance of the ANN
models at the arid location. In other words, inclusion of the
concurrent air temperature to the inputs for the ANN had the

© 2014 Royal Meteorological Society Meteorol. Appl. (2014)



H. Tabari et al.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Scatter plot of the observed and artificial neural network (ANN) forecasted daily soil temperature series at 50 cm depth in the testing period
at arid Zahedan station.

strongest effect on the results of soil temperature forecasts at 5 cm
depth at the humid location. The Nash–Sutcliffe co-efficient of
efficiency increased from 0.948 in the ANN model II to 0.971
in the ANN model III. When the concurrent air temperature was
included in the input pattern, the forecasting error at 5 cm soil
depth at the humid location decreased by 0.5 ∘C (from 1.919 to
1.435 ∘C).

The performance of ANN models for 1 day ahead soil temper-
ature forecasting at 50 cm depth in the testing period is demon-
strated in the time series of Figures 2 and 3. It is obvious from
the hydrographs that the ANN models’ forecasts closely follow
the corresponding observed values. A closer look at the two time
series (i.e. observed and forecasted) for Sari station (Figure 2)
reveals that the ANN not only very well captures the major trends
in the soil temperature series but also reasonably preserves the
minor fluctuations. As can be seen, even extreme values are very
well forecasted and the forecasted values are much closer to
and almost indistinguishable from the observed values. The good
agreement between the observed and forecasted series can also be
revealed by plotting the scatter diagrams, as shown in Figures 4
and 5. As seen from the scatterplots, the ANN models’ perfor-
mances are accurate and good, where all data points are quite
near the line of agreement.

The unitless Nash–Sutcliffe co-efficient of efficiency allows
for a true comparison of the accuracy of the ANN models in

the two climatic regions. Use of the RMSE measure for this
purpose may lead to misunderstanding of the results, since the
higher RMSE values of the arid location compared with that of
the humid location may be due to the higher soil temperature
values in the former climate. The comparison of the models’
performances at the studied stations indicates that the efficiency
of most of the ANN models for soil temperature forecasting at 5
and 10 cm depths at the arid location was higher than that at the
humid location, although the difference was not large. For the
other soil depths, the ANN models showed better performances
at the humid location.

4. Discussion and conclusions

The development of artificial neural network (ANN)-based soil
temperature forecasting aids for a humid and an arid synoptic
station has been outlined. Six input vectors were employed for
the ANN based on antecedent soil temperatures, and concurrent
and antecedent air temperatures. Daily soil temperatures were
recorded at six depths of 5, 10, 20, 30, 50 and 100 cm at two syn-
optic stations in Iran. The results indicated that all of the devel-
oped ANN models exhibited good forecasting ability. The soil
temperature time series showed a statistically significant auto-
correlation at all soil depths considered, indicating that the time
series have high predictability, and their future values can be
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forecasted very well from the past values. Furthermore, soil tem-
peratures at the deeper layers, which are more effectively insu-
lated by overlying soil material and are less influenced by vari-
able surface conditions (Braley and Zarling, 1991; Schaetzl and
Tomczak, 2001), revealed a stronger autocorrelation compared
with the shallower soils. At the humid location, the presence of
moisture at the deep soil layer disturbed the serial structure of
the soil temperature time series and led to lower autocorrelation
co-efficient at 100 cm depth in comparison with the arid location.

The performance level of the ANN models generally increased
with the increase of the soil depth. This is due to the stronger
memory of the soil temperature time series in the deeper soil
layers, which increases its predictability. As the soil temperature
at the deeper horizons is less influenced by short-term changes
in surface meteorological conditions, its diurnal fluctuation is
lower. In such situations, the observed soil temperature values
at these depths are generally smooth and easier to forecast.
Furthermore, inclusion of air temperature to the inputs of the
ANN models increases the network’s efficiency, particularly for
the shallower soils. For deeper soils, use of air temperature
with a time lag of more than 2 days leads to an improved
forecasting performance. Owing to the higher predictability of
the soil temperature time series (i.e. stronger autocorrelation) at
the humid location, the forecasts for this location are generally
better than those obtained at the arid location. Overall, the
ANN models developed here for 1 day ahead soil temperature
forecasting showed encouraging results. The results suggest that
this method could provide a useful tool for solving similar types
of problems in soil science and hydrology.

In the present study, short-term (1 day ahead) soil temperature
forecasting was done at six soil depths for two synoptic stations.
Further study is needed to test the developed ANN models at
different locations. Moreover, it would be useful to test long-term
forecasting of soil temperature based on previous measured
series as well.
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