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ABSTRACT

Accurate and cost-effective mapping of karst rocky desertification (KRD) is still a challenge at the regional and national scale. Visual
interpretation has been utilised in the majority of studies, while an automated method based on pixel data has been investigated repeatedly.
An object-based method coupling with support vector machine (SVM) was developed and tested using Enhanced Thematic Mapper Plus
(ETM+) images from three selected counties (Liujiang, Changshun and Zhenyuan) with different karst landscapes in SW China. The
method supports a strategy of defining a mapping unit. It combined ETM+ images and ancillary data including elevation, slope and Normalized
Difference Vegetation Index images. A sequence of scale parameters estimation, image segmentation, training data sampling, SVM parameters
tuning and object classification was performed to achieve the mapping. A quantitative and semi-automated approach was used to estimate scale
parameters for segmenting an object at an optimal scale. We calculated the sum of area-weighted standard deviation (WS), rate of change
for WS, local variance (LV) and rate of change for LV at each scale level, and the threshold of the aforementioned index that indicated the
optimal segment level and merge level. The KRD classification results had overall accuracies of 85�50, 84�00 and 84�86 per cent for
Liujiang, Changshun and Zhenyuan, respectively, and kappa coefficients are up to 0�8062, 0�7917 and 0�8083, respectively. This approach
mapped six classes of KRD and offered a visually appealing presentation. Moreover, it proposed a conceptual and size-variable object
from the classification standard of KRD. The results demonstrate that the application of our method provides an efficient approach for
the mapping of KRD. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

The karst region in southwestern China is about 540,000 km2

including eight provinces, which lie at the heart of the eastern
Asia area, and form one of world’s three foremost karst cen-
tres. This unique geomorphological feature, characterised by
contiguous distribution of bare carbonate, makes it an ecologi-
cally fragile area in the context of climate change (Sweeting,
1995). Karst rocky desertification (KRD) has been identified as
the most severe environmental degradation that threatens
southwest China (Wang, 2002; Wang et al., 2004; Bai et al.,
in press). Negative environmental impacts include loss of
cultivated soil, water shortage, soil erosion and decreased
biodiversity. Meanwhile, the social and economic well-being
of the people in the region have also been jeopardised (Wang
et al., 2004). The deterioration of the environment in the
southwestern karst region has become a cause for concern
at the highest levels for the Chinese Government. The
National Reform and Development Commission has started
the implementation of a 3-year pilot project to control and re-
store KRD in 100 counties of karst region. To this end, studies
that accurately portray the location, quality and quantity of the
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KRD area in this region are urgently needed to serve as a basis
for understanding the current KRD status as well as developing
sustainable restoration practice.
Remote sensing technology has been the favoured type

of approach for mapping KRD (Zhou, 2001; Chen et al.,
2007; Huang and Cai, 2007; Liu et al., 2008; Li et al.,
2009; Bai et al., in press), thanks to its spatial explicit
and temporal dynamic attributes. Early work with satellite
imagery for local-scale KRD mapping relied on visual
interpretation. It utilised colour-related features and structural
elements such as size, pattern, configuration and association
to recognise surface features (Campbell, 2002). Also, the
interpreter tells signal from noise, in other words, distin-
guishing information against a ‘simplified’ environment
through human perception (Bruce et al., 2003). Because
the human brain and expertise are the best image processors,
visual interpretation by analysts shows high accuracy in
mapping rocky desertification.
Although visual interpretation of satellite images is

commonly used for identifying KRD, more recent work has
emphasised digital image classification, primarily because
the analysis is many times faster. Meanwhile, subjectivity
might be involved in visual interpretation and thus increases
the risk of omissions. To overcome these limitations, auto-
mated image classification methods including supervised
method, machine learning algorithm, rock-desertification
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index and spectral unmixing model have been extensively
applied in mapping KRD. Huang and Cai (2009) used
supervised maximum likelihood classification with different
input bands to map karst rock. Chen et al. (2003) built a
rock-desertification extraction model on the basis of spectral
characteristics of different rock-desertification classes. Yu
(2009) applied CART decision tree to extract rocky desertifi-
cation. Yan et al. (2009) classified rocky desertification on
the basis of neural network classification and spectrum. The
NDVI (Zhang et al., 2008) and band5/band4 (Tong, 2003)
of TM imagery were calculated to identify rocky desertifica-
tion. Xia et al. (2006) introduced a definition of vegetation line
and the Geometrical Rock-desertification Index with spectral
unmixing model to map rocky desertification. Yue et al.
(2008) used the spectral unmixing model on the basis of
the Monte Carlo approach to extract KRD information
with EO-1 HyperionW. Yue et al. (2011) developed a
KRD synthesis index for the unique spectral features to
observe non-vegetation land cover types.
The automatic methods mentioned earlier are based on the

pixel and extract useful information from individual pixels,
which are substantively inhibited by contributions of signals
from surrounding pixels. Many researchers have claimed
that pixel-based classification has a relatively low accuracy
in terms of classification results (Muller et al., 1993; Ivits
et al., 2005; Yu et al., 2006; Van de Voorde et al., 2007).
This is particularly true in karst areas, where the pixel-based
classification method shows lower classification accuracy
because of larger terrain difference and more broken surface
block (Tong, 2003). It is suggested that surrounding pixels
should be taken into consideration for automatic classification.
On the other hand, object-based method provides an inno-

vative way for analysing digital imagery (Blaschke, 2010).
Whereas pixel-based image analysis is based on the infor-
mation in each pixel, object-based image analysis (OBIA)
is based on information from a set of similar pixels called
objects or image objects. More specifically, image objects
are groups of pixels that are similar to one another based
on a measure of spectral properties (i.e., colour, size, shape
and texture), as well as context from a neighbourhood
surrounding the pixels (Tormos et al., 2012). Because of this
feature, object-based processing techniques are becoming
more popular compared with traditional pixel-based image
analysis when information of surrounding pixels is needed
for classification (Gamanya et al., 2009; Blaschke, 2010).
Many studies comparing OBIA and pixel-based classification
approaches revealed a higher accuracy result with object-
based method (Willhauck et al., 2000; Yan et al., 2006;
Myint et al., 2011; Whiteside et al., 2011). See Blaschke
(2010) for a detailed discussion on the object-based method.
The application of OBIA in mapping rocky desertification,
however, has been limited. Xiong et al. (2008) started to
use the object-based method to extract outlines of rocky
desertification areas but just manually classified different
KRD levels.
Another limitation of current digital mapping lies in the

scale issues, which is not very clear in previous studies.
Copyright © 2012 John Wiley & Sons, Ltd.
The vegetation/soil cover and bedrock exposure are basi-
cally the classification criteria for the rocky desertification
degree. The preceding criteria should be calculated in the
given units. In other words, the KRD mapping is performed
in a specific scale. But there is no consistent rule for defining
the scale of mapping unit to compute the aforementioned
rocky desertification characteristics. Hu et al. (2010) empha-
sised the consideration of the scale in the classification standard
of KRD. The area of units was different in different studies
(Tong, 2003; Li et al., 2009; Chen and Wang, 2010). Li
et al. (2010) indicated differences among assessment results
with different grids.
The object-based method can be used as the mapping unit

defining strategy. The object of KRD is to present a concep-
tual object such as burned areas (Mitri and Gitas, 2004)
or tornado damaged areas (Myint et al., 2008) in other
object-based methods using multi-spectral images. The concept
is from the classification standard of KRD. The conceptual
object of KRD is a mixture of different surface features with
similar vegetation/soil cover and bedrock exposure. But can
the object-based method using mid-resolution image fulfil the
required accuracy?
The objective of this study was to develop a cost-effective

and time-saving mapping technique with an objective
mapping unit defining strategy, which could take scale
issues into consideration. We will investigate the applica-
bility and performance of our method for mapping KRD
with Enhanced Thematic Mapper Plus (ETM+) images
coupled with ancillary data.

STUDY AREA AND DATA

Study Area

The three selected sites represent different KRD landscapes
with different proportion of KRD classes. More explanation
about the class types of KRD are presented in the Methods
section. Also the three sites have a marked diversity of en-
vironmental and social characteristics, such as geology, to-
pography and climate. Liujiang County is located in
Guangxi Province, and the other two counties are in Guizhou
Province (Figure 1). Details are as follows.

Site 1: Liujiang County
This county is dominated by karst hill landscape, where
relief amplitude is small and the relative elevation is usually
between 100 and 150m. The total area is 2539 km2 with
elevation ranging from 37 to 664m. The terrain slopes from
east and southwest to the centre. Karst areas cover about 97
per cent of the county. Two major KRD types in this area are
light KRD and moderate KRD.

Site 2: Changshun County
This county covers an area of 1552 km2 within karst
peak-cluster depression landscape, which contains a com-
bination of karst cones and depressions between cones.
Its elevation is between 661 and 1572m. More than
97 per cent of the land is karst area. The proportion of
LAND DEGRADATION & DEVELOPMENT, 26: 158–167 (2015)



Figure 1. The location of study sites in (a) Liujiang, (b) Changshun and (c) Zhenyuan. This figure is available in colour online at wileyonlinelibrary.com/journal/ldr.

Table I. Landsat image description

County Path Row Date

Liujiang 125 43 2/11/2010
Changshun 127 42 31/10/2010
Zhenyuan 126 41 9/11/2010
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KRD in the county is up to 30 per cent. Among the
three, Changshun County suffers the most serious KRD,
making it one of the most KRD affected counties in
Guizhou (Wang, 2010).

Site 3: Zhenyuan County
The total area of Zhenyuan County is 1880 km2 with a karst
trough valley landscape, where the valley is formed by karst
erosion. The elevation ranges from 287 to 1301m. Only
45 per cent of the land is karst area. The KRD areas cluster
together. Severe KRD is the largest class of KRD recorded for
the county and it especially common in the west.

Satellite Data and Preprocessing

The ETM+ imaging was chosen because it has a relatively
wide coverage and a short repeat cycle, which are suitable
to mapping KRD at a regional scale. The images used are
strip-repaired ETM+ images, which are provided by the
International Scientific Data Service Platform, Computer
Network Information Center, Chinese Academy of Sciences
(http://datamirror.csdb.cn). Six spectral bands in the visible,
near-infrared and shortwave infrared at 30-m nominal pixel
size were used in this study. Table I presents details of paths,
rows and acquisition dates for each county.
Preprocessing included geometric correction and atmosphere

correction. Geometric correction incorporates the digital
elevation model (DEM) with 30 ground control points taken
from a 1:50,000 topographic map (provided by the Institute
Copyright © 2012 John Wiley & Sons, Ltd.
of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences) producing a root-mean-
square error of less than 0�5 pixel for each image. The
FLAASH module in the Environment for Visualizing Images
(ENVI)W software (ITT Visual Information Solutions, 2009)
was used for atmosphere correction.

Ancillary Datasets

The elevation and slope were taken into account for this
study, because topographical factors would influence the
KRD distribution (Huang and Cai, 2007). The Normalized
Difference Vegetation Index (NDVI) image was chosen
because of the vegetation cover as one standard of the
KRD. The elevation images are provided by the Interna-
tional Scientific Data Service Platform, Computer Network
Information Center, Chinese Academy of Sciences (http://
datamirror.csdb.cn). A slope image (degree) was generated
by the DEM image. The six spectral bands, vegetation index
image and topographic index images were combined to
LAND DEGRADATION & DEVELOPMENT, 26: 158–167 (2015)
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Table II. Image layers used in object-based classifications

Spectral bands
Vegetation

index
Topographic

index

Band 1 Blue NDVI Elevation
Band 2 Green Slope (degrees)
Band 3 Red
Band 4 Near infrared
Band 5 Shortwave
infrared
Band 7 Shortwave
infrared
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a data set consisting of nine individual layers (Table II). The
six spectral bands were used as input data to the image seg-
mentation processing, and all the layers were used for clas-
sification of the KRD.
METHODS

Categorising Framework of Karst Rocky Desertification

Non-karst areas were ruled out for mapping the KRD on the
basis of the lithology distribution map, and karst areas were
classified no KRD, potential KRD and KRD with four types
(slight, moderate, severe and extremely severe) as shown
in Table III. This classification standard was based on the
bedrock exposure and the coverage of vegetation plus soil
within mapping unit (Li et al., 2009). The KRD classes are
the focus in a related study; four types of KRD within the
field are shown in Figure 2.
A total of nine classes were identified in the support

vector machine (SVM) classification. This is because no
KRD areas include four classes with significantly different
object features. The four classes are built-up area, water, bare
soil (mainly harvested farmlands) and high vegetation cover
surface. After the classification, we grouped the aforemen-
tioned four classes into no KRD to map the final KRD result.

Image Segmentation and Object Feature Selection

Image segmentation was a crucial step in object-based
classification. Numerous image segmentation algorithms
were developed and assessed (Neubert and Herold, 2008;
Neubert et al., 2008). The segmentation was performed by
the ENVI Feature Extraction Module version 4.6 (ITT
Visual Information Solutions, 2008) in this study. It involved
two processes: (i) segment the image and (ii) merge the image.
The two scale parameters were segment level and merge level
Table III. Classification standard of karst rocky desertification

No karst rocky desertification (no KRD)
Potential karst rocky desertification (potential KRD)
Light karst rocky desertification (light KRD)
Moderate karst rocky desertification (moderate KRD)
Severe karst rocky desertification (severe KRD)
Extremely severe karst rocky desertification (extremely severe KRD)

Copyright © 2012 John Wiley & Sons, Ltd.
with a range from 0 to 100. The larger the two scale para-
meters were, the coarser the object was.We should ensure that
the segment was not over-segmented or under-segmented.
Therefore, we plotted some index against the image segment
and merge level with one step size. Finally, we estimated the
scale parameter for an optimal object size from the curve.
The first process should ensure that features of interest

were not grouped into segments represented by other
features, so we took homogeneity of each object into
consideration to identify the segment level. The homogene-
ity was defined as sum of area-weighted standard deviation
(WS) of each object for each segment level. We chose the
segment level when the WS curve started steepening.

WS ¼
XN

i¼1
ai � sið Þ

XN

i¼1
ai

Where: N is number of objects; ai is area of each object; si is
standard deviation of each object value.
To assess the dynamics of WS, we used a measure called

rate of change for WS (ROC-WS).

ROC-WS ¼ WS� WS� 1ð Þ
WS� 1

Where: WS is the WS at target level and WS� 1 is the WS at
the next lower level.
If objects are formed by similar features, the ROC-WS

has a stable growth with increasing segmentation level.
Until objects are grouped into segments that are represented
by other features, the homogeneity of objects decreases
significantly. We hypothesised that a significant increase in
ROC-WS plot indicated that the object was under-segmented
and the segmentation should be stopped.
The second process was a refined procedure. The

relatively homogeneous objects were merged into a larger
variance in the total image. Kim et al. (2008) estimated
the optimal object size by making advances of local variance
(LV). LV was defined as the mean standard deviation of the
objects through segmentation to explore the heterogeneity
of all the objects for each scale level.

LV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

m� m�ð Þ2
vuut

Where: m is the mean of each object value and �m indicates
all objects’ mean.
Bedrock exposure (%) Vegetation and soil cover (%)

<20 >80
20–30 70–80
31–50 50–69
51–70 30–49
71–90 10–29
>90 <10

LAND DEGRADATION & DEVELOPMENT, 26: 158–167 (2015)



Table IV. Object feature selection

Categories Description

Spectral
features

MINBAND_x Minimum value of the pixels
comprising the object

MAXBAND_x Maximum value of the pixels
comprising the object

AVGBAND_x Average value of the pixels
comprising object

STDBAND_x Standard deviation value of the
pixels comprising object

Textural
features

TX_RANGE Average data range of the pixels
comprising the region inside the
kernel (a kernel is an array of
pixels used to constrain an
operation to a subset of pixels)

TX_MEAN Average value of the pixels
comprising the region inside
the kernel

TX_VARIANCE Average variance of the pixels
comprising the region inside
the kernel

TX_ENTROPY Average entropy value of the
pixels comprising the region
inside the kernel. ENVI EX
computes entropy, in part, from
the Max Bins in Histogram
preference

Figure 2. Karst rocky desertification: (a) extremely severe, (b) severe, (c) moderate and (d) light. This figure is available in colour online at wileyonlinelibrary.
com/journal/ldr.
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The optimal segmentation would actually occur at the
scale just before the levelling off of the graph. Drǎguţ
et al. (2010) used the ROC-LV to assess the dynamics of
LV; the peaks of ROC-LV indicated that the image could
be segmented in the most appropriate manner.

ROC-LV ¼ LV � LV � 1ð Þ
LV � 1

Where: LV is the LV at target level and LV� 1 is the LV at
the next lower level.
The mean of six spectral bands reflectance was used for

the calculation of WS, ROC-WS, LV and ROC-LV. Thus
we segmented the image at the optimal scale. In the next
step, the Feature Extraction Module calculated the object
features including spectral, textural and spatial features
(ITT Visual Information Solutions, 2008). We chose only
spectral and textural features for the next classification
(Table IV).

Support Vector Machine

As one of the modern and robust supervised machine learn-
ing algorithms, the SVM can better solve the problem of
small training set sizes, which is a popular machine learn-
ing algorithm for classification (Chang and Lin, 2011). In
this work, we used the LIBSVMW package (Chang and
Lin, 2011) for supervised classification and its extension
LIBSVM-farutoUltimateW Version for tuning of LIBSVM
parameters (software available at http://www.ilovematlab.
cn) in the MATLABW program environment. The kernel
function used in this work was the radial basis function
(RBF) kernel. We chose the C-SVC for mapping KRD.
Overall classification accuracy has been influenced by the
parameters used in the SVM (Burges, 1998). The two
Copyright © 2012 John Wiley & Sons, Ltd.
tuning parameters using the RBF kernel for LIBSVM are
‘cost’ (C) and ‘sigma’ (s). A larger C corresponds to
assigning a higher penalty to errors (Burges, 1998), and
the s affected the shape of the separating hyperplane
(Huang et al., 2002). The extension package tuned both
of the parameters on the basis of the Grid Search algorithm.
LAND DEGRADATION & DEVELOPMENT, 26: 158–167 (2015)
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A repeated 20-fold cross-validation was used to create
parameters on the basis of the training data set.

Sample Data and Accuracy Assessment

We chose objects of the segment as sampling units for
training model and accuracy assessment. A training data
set was required for machine learning and tuning parameters
in the SVM classification. All training data were chosen
representatively by simple random sampling from the
segment image to create a training set. The training data
set including all nine classes were about 5 per cent of the
image, which were classified from visual interpretation.
We collected 81, 86 and 54 field data for visual interpreta-
tion in Liujiang, Changshun and Zhenyuan, respectively.
The field data were collected as the classification standard
shown in Table III within an area of ~0�01 km2.
The fitting degree of boundaries was not assessed, but we

focused on assessing the classification accuracy. The testing
data from visual interpretation were derived from a stratified
Figure 3. WS and ROC-WS as a function of the segment level in (a) Liujiang, (b)
level in (d) Liujiang, (e) Changshun and (f ) Zhenyuan. This figure is

Copyright © 2012 John Wiley & Sons, Ltd.
random sampling over the classification results. The number
of ground reference data of Liujiang, Changshun and
Zhenyuan was 1000, 800 and 700, respectively.
Confusion matrices and kappa statistics were used for

accuracy assessment (Congalton, 1991). A confusion matrix
provided the overall accuracy (OA) (i.e. the percentage of
correctly classified types), the producer’s accuracy (PA)
and the user’s accuracy (UA). The PA means the probability
that a classified type actually represents that category in
reality; and the UA indicates the probability that a classified
type represents for which it has been assigned (Congalton
and Green, 2009). The kappa coefficients and conditional
kappa (CK ) were also calculated.

RESULTS

Segment Results

In three sites, the curve of WS, ROC-WS, LV and ROC-LV
yielded similar variation trends (Figure 3). Variations of
Changshun and (c) Zhenyuan; LV and ROC-LV as a function of the merge
available in colour online at wileyonlinelibrary.com/journal/ldr.

LAND DEGRADATION & DEVELOPMENT, 26: 158–167 (2015)
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WS and ROC-WS were fuzzy in the fine segment level because
theWS stayed stable. TheWS increased with the segment level,
and the ROC-WS increased as well. The ROC-WS enhanced the
visualisation ofWS changing trend.We defined the threshold as
the pint at whichWS curve obviously started to steepen forming
a first break arose in the ROC-WS curve. In our study, the
segment level of Liujiang, Changshun and Zhenyuan were
61, 56 and 66, respectively (Figure 3a–c).
The LV decreased at a very fine scale and increased

quickly as the merge level increased, whereas the ROC-LV
showed an upward fluctuating trend. The peak means that
segments correspond to ground truth, but also it is induced
by the segment image background (i.e. complex classes
landscape) (Drǎguţ et al., 2010). Therefore, it showed several
peaks in the ROC-LV. In any case, we set the threshold as
the obvious break in ROC-LV curve whereas the LV curve
levelled off relatively. Because the homogeneity reduced
quickly in a very coarse scale, we obscured the curve on a
coarse scale. Finally, the merge level of Liujiang, Changshun
and Zhenyuan was identified as 75, 80 and 76, respectively
(Figure 3d–f).
With the aforementioned scale parameters, we performed

two steps for segmenting and merging images to produce the
optimal size objects. Portions of image segmentation results
are shown in Figure 4, which shows that objects within the
segmentation follow the spectral boundaries closely.

Accuracy Assessment

The classification results are shown in Figure 5. The no
KRD category dominated the majority of the area of three
sites. The potential, slight and moderate KRD cover larger
sizes, compared with severe and extremely severe KRD,
which is scattered in the three counties. One exception is
that KRD in Zhenyuan covers a considerable area.
Although there were biases in visual interpretation, the

total accuracy assessment results can be reliable because
visual interpretation has been used in most KRD studies. A
summary of the accuracy assessment of the object-based
classifications for three sites is presented. OAs of Liujiang,
Changshun and Zhenyuan are 85�50, 84�00 and 84�86 per
cent, respectively. Meanwhile, kappa coefficients are
0�8062, 0�7917 and 0�8083 (Figure 6). Although three sites
represent three different karst landscapes, the assessment
Figure 4. A section of segment result in (a) Liujiang, (b) Changshun and (c) Zhe
journal/l

Copyright © 2012 John Wiley & Sons, Ltd.
results were similar at last. The accuracy assessment of
Changshun is a little poor by contrast. All these indicate that
our method is suitable for mapping KRD within different
karst landscapes on the whole. The CK of severe KRD in
Zhenyuan especially provided a significantly higher accu-
racy of 0�83 than the other two. For other different types
of KRD, the assessment result within the same type of
KRD for three sites does not have a significant difference
(Table V).
The PAs, UAs and CKs for each class are shown in

Table V. For different classes, a better performance is
achieved in the classes with a larger area. The accuracy
assessments of no KRD are the highest (CKs are 0�93,
0�87 and 0�91 for Liujiang, Changshun and Zhenyuan;
and UAs are 96�32, 92�16 and 94�34 per cent, respectively).
Less accurate results are observed from the potential
KRD and light KRD with PAs and UAs of about 80 per
cent. CKs are 0�78, 0�76 and 0�82 for potential KRD in
threes sites, and CKs of light KRD are 0�82, 0�80 and
0�77, respectively. The classifications of moderate KRD,
severe KRD and extremely severe KRD have the lowest
accuracy (CKs range from 0�70 to 0�76) except for the
severe KRD in Zhenyuan because of its cluster distribution.
In addition, all the PAs of extremely severe KRD in three
sites are 100 per cent whereas the PAs are 72�22, 72�97
and 73�68 per cent, respectively. The gaps between PAs
and UAs of moderate KRD and severe KRD showed a
similar characteristic. However, the gap between PAs and
UAs of no KRD in Liujiang and Zhenyuan has an opposite
characteristic. In any case, it indicates that the object-based
classification with SVM is accurate and effective for
mapping KRD.
DISCUSSION

There have been numerous attempts at mapping KRD using
high-resolution or multi-spectral images. Because of large
terrain differences and broken surfaces, it is still a challenge
to achieve a better accuracy. In the pixel or sub-pixel map-
ping method, the pixel is the mapping target of interest
(Tong, 2003; Xia et al., 2006; Yue et al., 2008; Yan et al.,
2009; Yu, 2009), rather than actual image objects. In contrast,
the object-based method mapping the actual image objects
nyuan. This figure is available in colour online at wileyonlinelibrary.com/
dr.

LAND DEGRADATION & DEVELOPMENT, 26: 158–167 (2015)



Figure 5. Results of object-based classification for karst rocky desertification using SVM in a) Liujiang, b) Changshun, c) Zhenyuan. This figure is avail-
able in colour online at wileyonlinelibrary.com/journal/ldr.
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offered a more generalised visual appearance such as the
manual interpretation (Stuckens et al., 2000).
For the mapping effect, merging pixels (Tong, 2003;

Chen and Wang, 2010) or filter by sliding windows (Yu,
2009) are required in the pixel-based method. To a
certain extent, the mapping unit is chosen subjectively
and arbitrarily. As a result, it easily includes uncertainties.
However, our approach mapped KRD in objects which
are derived without subjectivity. Through a quantitative
estimation of an optimal scale, we performed the segmenta-
tion for forming objects. An object is a variable unit
Figure 6. Overall accuracies and kappa coefficients for the three sites.

Copyright © 2012 John Wiley & Sons, Ltd.
with the expectation that it will divide the image into
(i) relatively homogeneous and (ii) statistically significant
groups of pixels (Blaschke, 2010).
The errors in mapping KRD mainly resulted from

confusion between classes because of their similar spectral
behaviour. From the KRD classification standard, the KRD
classes were an ordinal classification series with a gradient
of the bedrock exposure and the coverage of vegetation plus
soil. Thus it was easily confused when the KRD classification
feature of the object is in the threshold of two adjacent classes
except for no KRD and extremely severe KRD. For no KRD
and extremely severe KRD, separating them from adjacent
classes was much easier because of the relative pureness with
vegetation/soil and bedrock, respectively.
Furthermore, the spectral responses of karst rock and

built-up areas are very similar, so it was challenging to
separate these two categories (Huang and Cai, 2009). A
similar situation happened between the tiny areas with bare
soil and severe KRD or extremely severe KRD areas.
Under the circumstances, the ancillary data could be a big
help to assist in the classification. For example, the variations
of elevation in objects were calculated for classification. Thus
the built-up area and soil with relatively consistent elevation
and low slope can be distinguished from the karst rock with
variable elevations in an object. This variation feature
cannot be reflected in a pixel. Therefore, it is an advantage
for the object-based classification compared with the pixel-
based method.
But tiny plots of harvested sloping farmland can still be

confused with severe KRD or extremely severe KRD areas.
LAND DEGRADATION & DEVELOPMENT, 26: 158–167 (2015)



Table V. Accuracy of object-based classifications including the PA, UA and CK for each class

Liujiang Changshun Zhenyuan

PA (%) UA (%) CK PA (%) UA (%) CK PA (%) UA (%) CK

No KRD 82�25 96�32 0�93 87�85 92�16 0�87 79�05 94�34 0�91
Potential KRD 91�89 81�73 0�78 80�00 80�00 0�76 82�11 84�78 0�82
Light KRD 71�88 84�56 0�82 75�00 83�48 0�80 80�16 81�45 0�77
Moderate KRD 97�22 72�92 0�70 76�70 79�00 0�76 93�86 76�43 0�72
Severe KRD 95�24 76�92 0�75 88�41 76�25 0�74 95�24 85�11 0�83
Extremely severe KRD 100�0 72�22 0�71 100�0 72�97 0�71 100�0 73�68 0�73
PA, producer’s accuracy; UA, user’s accuracy; CK, conditional kappa.
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Confusion even occurs in some moderate KRD areas. As a
result, moderate KRD, severe KRD and especially ex-
tremely severe KRD have been slightly overestimated from
no KRD, which are reflected in the gap between PA and UA
for the aforementioned classes. In addition, over-segment
or under-segment induced errors as well.
Moreover, the limited shadows in our study sites with

high relief were not classified directly because of lacking
effective topographic correction. In our study, training and
testing data for shadow objects were classified by the NDVI
index and the surrounding classes. However, the limited
misclassified shadows do not have much effect on KRD
categories. This should be investigated in future studies.
To improve the classification result, the existing geographic

information system (GIS) thematic map coupled with object-
based classification may give a higher accuracy (Durieux
et al., 2008; Tormos et al., 2012). For example, the synchro-
nous land use map can be used to extract tiny harvested sloping
farmland from karst rock. Another idea is to optimise the
segmentation process, which at present is only based on
spectral information. With ancillary data, it may reduce the
risks of over-segmentation and under-segmentation. It would
be interesting in the near future to use more ancillary data,
which influence the KRD, to optimize our classification.
CONCLUSIONS

An accurate and quick method for mapping KRD is required
for a variety of implications at a regional scale. An object-
based method with SVM was used for the aforementioned
need in three typical karst sites. We integrated ETM+
images and ancillary data, and used a number of spectral
and textural features for classification. The method provided
a strategy of defining mapping unit. We estimated the two
scale parameters for image segment, and mapped KRD in
conceptual objects at an optimal scale. Compared with
pixel-based method, it is an advantage for object-based
classification to calculate the features within objects for
better result. With better visual effects and the consideration
of scale, it provided a quick and cost-effective way for
mapping KRD. Our approach can fulfil the accuracy require-
ment for three sites with different landscapes. There are
some limitations in our method, which need to be improved
in the future works. Tiny harvested sloping farmland
Copyright © 2012 John Wiley & Sons, Ltd.
especially was still confused with the KRD areas; also the
limited shadows were not effectively processing. Considering
aforementioned limitations, suggestions include combination
with auxiliary GIS data and optimisation of the segmentation
process. The improvement mentioned earlier should be inves-
tigated in the future works.
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