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Highlights 

ANFIS model applied to modeling soil water content in extreme arid areas 

The best fit of ANFIS model are compared with two artificial neural networks (ANN) 

ANFIS model performed better than ANN in soil water content modeling 

ANFIS model can be used as a tool for the modeling of soil water content. 

SUMMARY  

Modeling of soil water content (SWC) is one of the most studied topics in hydrology due to its 

essential application to water resources management. In this study, an adaptive neuro fuzzy 

inference system (ANFIS) method is used to simulate SWC in the extreme arid area. In- situ SWC 

datasets for soil layers, with depths of 40cm (layer1), 60cm (layer 2) below surface was taken for 

the present study. The models analyzed different combinations of antecedent SWC values and the 

appropriate input vector has been selected based on the analysis of residuals. The performance of 

the ANFIS models in training and validation sets are compared with the observed data. In layer 1, 

the model which consists of six antecedent values of SWC, has been selected as the best fit model 

for SWC modeling. On the other hand, which includes two antecedent values of SWC, has been 

selected as the best fit model for SWC modeling at layer 2. In order to assess the ability of ANFIS 

model relative to that of the ANN model, the best fit of ANFIS model of layer 1 and layer 2 

structures are also tested by two artificial neural networks (ANN), namely, Levenberg–Marquardt 
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feedforward neural network(ANN-1) and Bayesian regularization feedforward neural 

network(ANN-2). The comparison was made according to the various statistical measures. A 

detailed comparison of the overall performance indicated that the ANFIS model performed better 

than both the ANN-1 and ANN-2 in SWC modeling for the validation data sets in this study. 

Keyword: Adaptive neuro fuzzy inference system; Neural networks; Soil water content; Modeling, 

Ejina basin 

1. Introduction 

Soil water content (SWC) is a key parameter that controls several hydrological processes and 

provides valuable information for water resources planning and management. Soil water modeling 

is very important for hydrology, weather and climate studies, water resource management, reliable 

irrigation design, and determining contaminants and nutrients’ fate and transport. In arid area, 

SWC is one of the major control factors on the diversity, structure and function in ecosystem 

(Robinson et al., 2008). It provides the plant-available transpirable pool of water for its survival, 

the type of vegetation depends to a large extent on the amount and spatial distribution of soil 

moisture that is available to plants (Breshears and Barnes, 1999). 

Various deterministic and stochastic models are available, which are utilized to simulate SWC. 

The deterministic models for soil water are commonly based on Richard’s equation (Khan et al., 

2003; Ragab et al., 2005; Shani et al.; 2007). The accuracy of soil moisture estimated by these 

models depends on the model physics, the number and configuration of soil layers, as well as on 

the temporal and spatial resolution of the input data (Elshorbagy and Parasuraman, 2008). Such 

models may require sophisticated mathematical tools, a significant amount of calibration data, and 

some degree of expertise and experience with the model. On the other hand, stochastic models are 

based on the direct relationship between the input and output data without having the complete 

physical understanding of the system. Much work has been done in deterministic models for 

simulating SWC. Recently, stochastic models such as artificial neural networks (ANNs) have 

attracted great interest due to their simple, fast and comparable performance in most cases 

compared with deterministic models (Zou et al., 2010). 

Artificial neural networks (ANNs) approaches have been successfully applied in a number of 

diverse fields, rainfall–runoff simulation (Nourani et al., 2009; Ouarda and Shu, 2009; Talei et al., 



  

2010; Wu and Chau, 2011), groundwater modeling (Banerjee et al., 2011; Chang et al., 2010; Kuo 

et al., 2004; Yoon et al., 2011), river flow forecasting (Adamowski and Sun, 2010; Chen and 

Chang, 2009; Chokmani et al., 2008; Misra et al., 2009; Nayak et al., 2004; Noori et al., 2011; 

Nour et al., 2006; Shu and Ouarda, 2007), and water quality modeling (Chan et al., 2007; Chaves 

and Kojiri, 2007a,b; Singh et al., 2009; Yan et al., 2010). A comprehensive review of the 

application of ANNs to hydrology can be found in the literature (ASCE Task Committee, 2000a, b; 

Maier and Dandy, 2000; Maier et al., 2010). However, the application of ANN to SWC modeling 

is limited in the literature (Elshorbagy and Parasuraman, 2008). To the knowledge of the author, 

few studies have been carried out to utilize the ANFIS technique in SWC modeling.  

In arid land, since most of the fine roots (≤2 mm diameter) of desert species are the soil depth 

of 40-60 cm (Jackson et al.1996, 1997), we might expect that plant water uptake is limited by the 

SWC during this layers under conditions of high evaporative demand. The variation of SWC 

among this layer is very complicated owning the liquid and vapor transport or hydraulic 

redistribution of soil water by roots (Yu et al., 2013). In addition, the SWC is exceedingly low in 

arid regions. Therefore, simulations and predictions SWC within the plant root zone based on 

limited measured data is the challenge in this complicated environment. It is not clear whether 

ANFIS still have a good performance; this provided an impetus for the present investigation. 

The main purpose of this study is to analyze the performances of an adaptive neuro-fuzzy 

(ANFIS) technique in SWC modeling using the antecedent SWC values data from two 

experimental soil layer, at depths of 40cm (layer1) and 60cm (layer 2) below surface in the 

extreme arid area of Ejina basin. The modeling accuracy of ANFIS model is compared with two 

different ANN techniques, namely, ANN-1 and ANN-2. 

2. Materials and methods 

2.1 Study area and data 

Ejina basin, in the lower reaches of Heihe River as shown in Fig. 1, is one of the most arid areas 

in the world. The area covers 3×10
4
 km

2
, extending between latitudes 40

o
20’-42

o
30’ N and 

longitudes 99
o
30’ –102

o
00’ E. Owing to being in the hinterland of Asian continent, the region has 

an obvious characteristic of a continental climate that is extremely hot in summer and severely 



  

cold in winter, where the mean annual precipitation is 42 mm. The major part of the rainfall (about 

60–70%) occurs during July to September. The mean annual potential evaporation is as high as 

3,755 mm. Due to high variability and sparse precipitation, no perennial runoff originates from the 

area.  

For the purpose of investigating SWC in Ejina basin, columns at two representative depths i.e., 

40 and 60 cm were installed (41
o
58’53.95’’N, 101

o
09’17.69’’E，) located near Ejina City (Fig. 1). 

The soil texture profiles were silt loam soil with a clay interlayer. The SWC was continuously 

monitored using the EnviroSCAN, ICT Australian firm for the period May, 2004 to October, 2004. 

The measurement range of the equipment is between 0 to 100% Vol. and the accuracy is 1% after 

calibrating. The length of the probe is 20cm and the diameter is 32mm. The measurement depth 

varies from 40cm to 60 cm; moreover, each measurement depth is the same as the probe's length. 

The SWC for the two depths was recorded at 3-hour interval, providing 960 datasets. In this study, 

900 data sets were selected as the available data. The data were divided into two sets: a training 

data set consisting of 630(70%) data sets and validation data set of 270(30%) data sets. The former 

was utilized to train and the later was applied to test models. 

2.2 ANFIS 

Adaptive neuro-fuzzy inference system (ANFIS), first introduced by Jang (1993), is a universal 

approximator and as such is capable of approximating any real continuous function on a compact 

set to any degree of accuracy (Jang et al., 1997). ANFIS is functionally equivalent to fuzzy 

inference systems (Jang et al., 1997). Specifically the ANFIS system of interest here is 

functionally equivalent to the Sugeno first-order fuzzy model (Jang et al., 1997; Drake, 2000). 

Below, the hybrid learning algorithm, which combines gradient descent and the least-squares 

method, is introduced. 

As a simple example we assume a fuzzy inference system with two inputs x and y and one 

output z. The first-order Sugeno fuzzy model, a typical rule set with two fuzzy If-Then rules can 

be expressed as 

Rule 1 : If x is A1 and y is B1; then f1= p1x +q1y + r1                             (1) 

Rule 2 : If x is A2 and y is B2; then f2= p2x+ q2y + r2                             (2) 

where p1, q1, r1 and p2, q2, r2 are the parameters in the then-part (consequent part) of the first-order 



  

Sugeno fuzzy model. The architecture of ANFIS consists of five layers (Fig. 2), and a brief 

introduction of the model is as follows. 

Layer 1: Each node of this layer generates membership grades to which they belong to each of the 

appropriate fuzzy sets using membership functions. 

1, ( )i AiO xµ=      for i=1,2                                         (3) 

1, 2 ( )i BiO yµ −=    for i=3,4                                          (4) 

where x, y are the crisp input to the node i; Ai and Bi-2 are the fuzzy sets associated with this node, 

characterized by the shape of the membership functions (MFs) in this node. Ai and Bi-2 are the 

fuzzy set associated with this node, characterized by the shape of the MFs  in this node and can 

be any appropriate functions that are continuous and piecewise differentiable such as Gaussian, 

generalized bell shaped, trapezoidal shaped and triangular shaped functions. The bell-shaped MF 

is used in this study 

2
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( )

1 [( ) / ] i
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                                       (5) 

where {ai, bi,ci} is the parameter set that changes the shapes of the MF with maximum equal to 1 

and minimum equal to 0. 

Layer 2: This layer consists of the nodes labeled ∏which multiply incoming signals and sending 

the product out. For instance, 

2, 2( ) ( )i i Ai BiO w x yµ µ −= = i=1,2                                (6) 

Layer 3: Every node in this layer is a fixed node labeled N. The ith node calculates the ratio 

between the ith rule’s firing strength to the sum of all rules’ firing strengths: 

3,

1 2

i
i i

w
O w

w w
= =

+
  i=1,2                                    (7) 

Layer 4: Node i in this layer computes the contribution of the ith rule towards the model output, 

with the following node function: 

4, ( )
i i i i i i

O w f p x q y r= + +                                     (8) 

where w
___

i is the output of layer 3 and {pi, qi, ri} are the parameters set 



  

Layer 5: The single node in this layer computes the overall output of the ANFIS as: 

∑

∑
∑ ==

i i

i ii

i

i

ii
w

fw
fwO5,

                                         (9) 

The distinguishing characteristic of the approach is that ANFIS applies a hybrid-learning 

algorithm, the gradient descent method and the least-squares method, to update parameters. The 

gradient descent method is employed to tune premise non-linear parameters {ai,bi,ci}, while the 

least-squares method is used to identify consequent linear parameters {pi,qi, ri}. As shown in Fig. 

2, the circular nodes are fixed (i.e., not adaptive) nodes without parameter variables, and the 

square nodes have parameter variables (the parameters are changed during training). The task of 

the learning procedure has two steps: In the first step, the least square method identifies the 

consequent parameters, while the antecedent parameters (MFs) are assumed to be fixed for the 

current cycle through the training set. Then, the error signals propagate backward. Gradient 

descent method is used to update the premise parameters, through minimizing the overall 

quadratic cost function, while the consequent parameters remain fixed. The detailed algorithm and 

mathematical background of the hybrid-learning algorithm have been in detail introduced by Jiang 

(1993). 

In each application, different numbers of MFs were tried and the one that gives the minimum 

squared error was selected. Two bell-shaped MFs for the ANFIS models were found enough for 

modeling SWC.  

2.3 ANFIS model development 

In the development of ANFIS, the selection of appropriate input variables is important since it 

provides the basic information about the system being modeled. The current study analyzed 

different combinations of antecedent SWC values and the appropriate input vector was selected, 

based on the analysis of residuals. The ANFIS model was constructed and the analysis was started 

with one antecedent SWC in the input vector. The input vector is then modified by successively 

adding SWC at one more time lag, and a new ANFIS model is developed each time. The number 

of MFs assigned to each input of the ANFIS was initially set to two. The goodness of fit statistics 

was computed during training and validation for each ANFIS model and the best model is selected 

based on the analysis of residuals. Six ANFIS models and input structure in model structure of soil 



  

water content modeling (Table 1). 

In order to assess the ability of ANFIS models relative to that of a neural network model, two 

ANN models were constructed using the same input parameters as the ANFIS model. Two types of 

three layer ANN models, each with one input layer, one hidden layer, and an output layer, were 

developed in this study. The first model (called ANN-1 model) employed the 

Levenberg–Marquardt algorithm whereas the second model (called ANN-2) employed the 

Bayesian regularization algorithm to train the investigated ANN architectures. 

2.4 Artificial neural network (ANN) 

Artificial neural network (ANN) is a massively parallel distributed information processing 

system that has certain performance characteristics resembling biological neural networks of the 

human brain (Haykin, 1999). A neural network is characterized by its architecture that represents 

the pattern of connection between nodes, its method of determining the connection weights and 

the activation function. The most commonly used neural network structure is the feedforward 

hierarchical architecture. A typical three-layered feedforward neural network is comprised of a 

multiple elements also called nodes, and connection pathways that links them (Hagan, 1995; 

Haykin, 1999). The nodes are processing elements of the network and are normally known as 

neurons, reflecting the fact the neural network method model is based on the biological neural 

network of the human brain. A neuron receives an input signal, processes it, and transmits an 

output signal to other interconnected neurons. 

In the hidden and output layers, the net input to unit i is of the form  

1

k

ji j i

j

Z w y θ
=

= +∑
                                    (10)

 

Where, wji is the weight vector of unit i and k is the number of neurons in the layer above the layer 

that includes unit i. yj is the output from unit j, and yi  is the bias of unit i. This weighted sum Z; 

which is called the incoming signal of unit i, is then passed through a transfer function f to yield 

the estimates y
^

i for unit i. The sigmoid function is continuous, differentiable everywhere, and 

monotonically increasing. The sigmoid transfer function, fi, of unit i, is of the form 

1

1
i Z

y
e

∧

−
=

+                                        (11)

 



  

A training algorithm is needed to solve a neural network problem. Since there are so many types 

of algorithms available for training a network, selection of an algorithm that provides the best fit 

to the data is required. Levenberg–Marquardt and Bayesian Regularization learning algorithms are 

used increasingly due to the better performance and learning speed with a simple structure.  

2.4.1 Levenberg–Marquardt algorithm 

The Levenberg–Marquardt algorithm (LMA), is similar to the quasi-Newton method in which a 

simplified form of the Hessian matrix (second derivative) is used. The Hessian matrix can be 

approximated as: 

TH J J=                                       (12) 

and the gradient can be computed as 

T
g J e=

                                       (13)
 

Where, J is the Jacobian matrix which, contains first derivatives of the network errors with respect 

to the weights and biases, and e is a vector of network errors. One iteration of this algorithm can 

be written as 

1

1 [ ]T T

k kx x J J I J eµ −

+ = − +
                          (14)

 

Where, µ  is the learning rate and I is the identity matrix (Dedecker et al., 2004). During training, 

the learning rate µ  is incremented or decremented by a scale at weight updates. When µ is zero, 

this is just Newton’s method, using the approximate Hessain matrix. When µ is large, this 

becomes gradient descent with a small step size.  

2.4.2 Bayesian regularization algorithm 

Bayesian regularization is an algorithm that automatically sets optimum values for the 

parameters of the objective function. In the approach used, the weights and biases of the network 

are assumed to be random variables with specified distributions. In order to estimate regularization 

parameters, which are related to the unknown variances, statistical techniques are being used. The 

advantage of this algorithm is that whatever the size of the network, the function won’t be 

over-fitted. Bayesian regularization has been effectively used in literature (Porter et al., 2000; 

Coulibaly et al., 2001a, b; Anctil et al., 2004; Krishna et al., 2008). A more detailed discussion of 

the Bayesian regularization can be found in the literature (MacKay, 1992). 



  

2.5 Network performance evaluation 

The performances of the models developed in this study were assessed using various standard 

statistical performance evaluation criteria. The statistical measures considered were root mean 

square error (RMSE), mean absolute error (MAE), and correlation of coefficient (R). 

The root mean square error (RMSE) can be calculated as follows: 

2

, mod ,

1

1
( )

n

observed i eled i

i

RMSE SW SW
n =

= −∑
                               (15)                                                    

The mean absolute error (MAE) can be calculated as follows: 

, mod ,

1

1 n

observed i eled i

i

MAE SW SW
n =

= −∑
                                    (16)

 

Coefficient of correlation (R) is defined as the degree of correlation between the measured and 

predicted values:  

, mod , mod
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                 (17)                                               

Where, n is the number of input samples; SWobserved,i and SWmodeled,i are the measured and network 

output value from the ith elements, respectively. observedSW and modeledSW  are their average, 

respectively. 

It appears that while assessing the performance of any model for its applicability in modeling 

SWC, it is not only important to evaluate the average prediction error but also the distribution of 

prediction errors. The statistical performance evaluation criteria employed so far in this study are 

global statistics and do not provide any information on the distribution of errors. Therefore, in 

order to test the robustness of the model developed, it is important to test the model using some 

other performance evaluation criteria such as average absolute relative error (AARE) and 

threshold statistics for an absolute relative error (ARE) level of x% (TSx) (Jain and Indurthy, 2003; 

Nayak et al., 2004). The AARE not only gives the performance index in terms of predicting flows 

but also the distribution of the prediction errors. 

The AARE and TSx can be calculated as follow: 



  

, mod ,

1 ,

1 n
observed i eled i

i observed i

SW SW
AARE

n SW=

−
= ∑

                                 (18)

 

100%x

X
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                                                    (19)

 

where, nx is the number of data points for which the ARE is less than x%, n the total number of 

data points computed. Clearly, lower AARE values and higher TSx values would indicate good 

model performance. 

3. Results and discussion 

3.1 Layer 1 

The ANFIS models are compared based on their performance in training sets and validation sets. 

The results are summarized in Table 2. From Table 2, it is apparent that all of the models 

performed similarly as the values of RMSE and MAE don’t vary significantly, and all R are also 

very close to unity. It also shows that the Model 6, which consists of six antecedent SWC in input, 

has the smallest value of the RMSE (4.72440E-04) and MAE (3.35676E-04) and higher value of R 

(0.99994) than other models in the training period. It also has the lower value of the RMSE 

(1.55592E-04) and higher value of R (0.99303) than other models in the validation period. Thus, it 

is selected as the best-fit model for describing the time series of SWC in the layer 1. 

In order to assess the ability of ANFIS model relative to the neural network model, two ANN 

models are developed using the input combinations of Model 6 (x[t-1] x[t-2] x[t-3] x[t-4] x[t-5] 

x[t-6]). The ANN-1 model was trained using the Levenberg–Marquardt training algorithm, and the 

optimal number of neuron in the hidden layer was identified using a trial and error procedure by 

varying the number of hidden neurons from 2 to 20. Further, the optimal network architecture was 

selected based on the one with minimum of RMSE. The final ANN architecture consists of twelve 

nodes. Therefore an ANN-1 with six input neurons, twelve hidden neurons and one output neuron 

(6-12-1) was adopted as the best structure. In order to have a true comparison, the structure and 

the number of hidden neurons in ANN-2 model were maintained similar to that of ANN-1 model 

(6-12-1) except that in ANN-2 model, the training algorithm was a Bayesian regularization. 

The performances of the ANFIS and the ANN models in terms of the RMSE, MAE and R at 



  

training and validation stages of layer 1 are presented in Table 3. It was found that the difference 

between the values of the statistical indices of the training and validation set does not vary 

substantially. However, the ANFIS model performed a bit better than both ANN-1 and ANN-2 

model. Concretely, ANFIS model produced a lower RMSE and MAE as well as higher R, the 

former being the best. The second best performance was ANN-2 model, trained with the Bayesian 

regularization algorithm, The ANN-1 was found to be the worst of all approaches investigated in 

this study. 

Fig. 3 and Fig.4 show the scatter plots of both the observed data and the modeled obtained by 

using the ANFIS, ANN-1 and ANN-2 model of the validation period. The Fig. 3, and Fig. 4 reveal 

that both the model showed good prediction accuracy of the SWC. As seen from the fit line 

equations, the ANFIS model show more accuracy than ANN models, the performance of the 

ANN-2 is better than the model ANN-1. 

Analyzing the results from Table 4, the AARE for the ANFIS model is significantly lower 

(0.068%) compared to the ANN-1 (0.132%) and ANN-2 (0.087%) during validation, highlighting 

its superiority over the ANN-1 and ANN-2 models.  

The statistics of ARE levels during validation in layer 1were obtained by the ANFIS, ANN-1 

and ANN-2 model. A maximum of 42.96% had AREs less than 0.05% (TS0.05 during validation) 

and 98.52% had AREs less than 0.2% (TS0.2) from the ANFIS model (Table 4); and the 

corresponding values for ANN-1 and ANN-2 model were 17.41%, 34.08% and 77.78%, 94.07%, 

respectively. Therefore, ANFIS model was the most effective model in terms of modeling SWC 

accurately during validation set as shown in TS and AARE statistics. The second best performance 

was obtained by using the ANN-2 model, and the ANN-1 was found to be the worst of all 

approaches investigated in layer 1. 

3.2 Layer 2 

The RMSE, MAE and R statistics of the different ANFIS model test results for the layer 2 are 

given in Table 5. It was found that all of the models performed similarly as the values of RMSE 

and MAE don’t vary significantly, and all R are also very close to unity in the training period. It 

also shows that the Model 2, which consists of two antecedent SWC in input, has the smallest 

value of the RMSE (7.30003E-04), MAE (6.87646E-04) and higher value of R (0.96422) than 



  

other model in the validation set, so, it is selected as the best-fit model for describing the time 

series of SWC in the layer 2. 

The performances of the ANFIS and the ANN models in terms of the RMSE, MAE and R at 

training and validation stages of layer 2 are presented in Table 6. Like layer 1, the difference 

between the values of the statistical indices of the training and validation set does not vary 

substantially, and the ANFIS model performed a bit better than both ANN-1 and ANN-2 model. 

However, unlike layer 1, the second best performance was ANN-1 model, trained with the 

Levenberg–Marquardt algorithm, and the ANN-2, was found to be the worst of all approaches 

investigated in the layer 2. 

Fig. 5 and Fig.6 show the scatter plots of both the observed and the modeled SWC obtained by 

using the ANFIS, ANN-1 and ANN-2 model of the validation period. The Fig. 5, 6 reveal that both 

the models showed good prediction accuracy for high values of SWC but were unable to maintain 

their accuracy for lower values of flow. The reason for the low accuracy of the models at low 

SWC event may be that the series of SWC of training set is highly skewed and shows 

heteroscedasticity, and the low SWC values are not contained in the training set (Fig. 7).  

The AARE for the ANFIS model is significantly lower (0.245%) compared to the ANN-1 

(0.368%) and ANN-2 (0.481%) during validation, highlighting its superiority over the ANN-1 and 

ANN-2 models in layer 2.  

The statistics of ARE levels during validation in layer 2 were obtained by the ANFIS, ANN-1 

and ANN-2 model. A maximum of 94.81% had AREs less than 0.4% (TS0.4 during validation) 

and 100% had AREs less than 0.6% (TS0.6) from the ANFIS model (Table 7 ); and the 

corresponding values during testing from ANN-1,ANN-2 model were 62.22%, 17.77% and 

97.78%, 91.11%, respectively. Therefore, ANFIS model was the most effective model in terms of 

modeling SWC accurately in layer 2 during validation, the second best performance was obtained 

for ANN-1 model, and the ANN-2 was found to be the worst of all approaches investigated in 

layer 2. 

Comparing the performances of the ANFIS and ANN models, RMSE and MAE values of 

ANFIS models are lower than those of two ANN models. In addition, values of R of ANFIS model 

are also higher than those of two ANN models. Thus, it can be concluded that, the performance of 



  

ANFIS method is better than ANN method according to the criteria. The results demonstrate that 

ANFIS method is superior to the ANN method in the modeling of SWC. 

4. Conclusion  

This study investigated the applicability of ANFIS method for SWC modeling in the extreme 

arid areas of Ejina basin. SWC was studied at two depths, i.e., 40cm and 60cm below surface. The 

results of ANFIS models and observed values were compared and evaluated based on their 

training and validation performance. The results demonstrated that ANFIS can be applied 

successfully to estimate accurate and reliable SWC. According to results, in layer 1, Model 6, 

which consists of six antecedent values of SWC, has been selected as the best fit model for SWC 

modeling. On the other hand, Model 2, which includes two antecedent values of SWC, has been 

selected as the best fit model for SWC modeling at layer 2. 

In order to assess the ability of ANFIS model relative to the neural network model, two ANN 

models were investigated, namely, ANN-1 and ANN-2 model, which were developed using the 

input combinations as the selected ANFIS model. The comparison was made according to the 

various statistic measures. ANFIS model was found to perform much better than the ANN models 

in SWC modeling for both the considered soil layers. The results suggested that ANFIS model 

provides accurate estimation of SWC and can be successfully applied for SWC forecasting. 

ANFIS model can be particularly relevant for forecasting SWC without getting deeper into 

underlying physical relationships or when there are limited input data for driving numerical 

models. Further, the results presented here were promising and ANFIS model can be successfully 

applied to forecasting SWC with complicated pedologic environment within the plant root zone.  
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Table 1 Model structure of soil water content modeling 

ANFIS model Input structure 

Model 1 x(t)=f(x[t-1]) 

Model 2 x(t)=f(x[t-1] x[t-2])  

Model 3 x(t)=f(x[t-1] x[t-2] x[t-3]) 

Model 4 x(t)=f(x[t-1] x[t-2] x[t-3] x[t-4]) 

Model 5 x(t)=f(x[t-1] x[t-2] x[t-3] x[t-4] x[t-5]) 

Model 6 x(t)=f(x[t-1] x[t-2] x[t-3] x[t-4] x[t-5] x[t-6]) 

where x(t) corresponds to the soil water content at time t. 

Table 2. The RMSE, MAE, R statistics of each model in training and validation periods for layer 

1. 

Model 

Training   Validation   

RMSE MAE R RMSE MAE R 

Model 1 7.10017E-04 5.23268E-04 0.99987  1.59697E-04 1.24363E-04 0.99258  

Model 2 6.46695E-04 4.65151E-04 0.99990  1.73071E-04 1.38964E-04 0.99187  

Model 3 6.19431E-04 4.39292E-04 0.99990  1.55891E-04 1.22903E-04 0.99292  

Model 4 5.49523E-04 3.89852E-04 0.99992  1.56393E-04 1.23247E-04 0.99294  

Model 5 4.97502E-04 3.47539E-04 0.99994  1.55751E-04 1.23088E-04 0.99298  

Model 6 4.72440E-04 3.35676E-04 0.99994  1.55592E-04 1.23517E-04 0.99303  

 



  

Table 3. Performance evaluation statistics of various models for Layer 1 

Model  

Training Validation 

RMSE MAE R RMSE MAE R 

ANFIS 4.72440E-04 3.35676E-04 0.99994  1.55592E-04 1.23517E-04 0.99303  

ANN-1 5.24431E-04 3.81576E-04 0.99993  2.80875E-04 2.40068E-04 0.99012  

ANN-2 5.10757E-04 3.61107E-04 0.99993  1.94260E-04 1.57868E-04 0.99189  

Table 4. TS and AARE values of various models for layer 1 

Model TS0.02 TS0.05 TS0.1 TS0.2 AARE 

ANFIS 20.74  42.96  75.09  98.52  0.068  

ANN-1 9.63  17.41  39.26  77.78  0.133  

ANN-2 14.44  34.08  62.22  94.07  0.087  

Table 5. The RMSE, MAE, R statistics of each model in training and validation periods for layer 

2. 

Model 

Training   Validation   

RMSE MAE R RMSE MAE R 

Model 1 3.38432E-03 1.14000E-03 0.96988  7.37677E-04 6.92189E-04 0.95935  

Model 2 3.06935E-03 1.09409E-03 0.97529  7.30003E-04 6.87646E-04 0.96422  

Model 3 2.96621E-03 1.01525E-03 0.97694  1.25540E-03 1.20939E-03 0.94122  

Model 4 2.92679E-03 1.00745E-03 0.97756  2.03115E-03 1.98093E-03 0.93133  

Model 5 2.86284E-03 9.43480E-04 0.97854  1.99533E-03 1.94822E-03 0.94553  

Model 6 2.74206E-03 8.71469E-04 0.98033  3.18405E-03 3.10152E-03 0.89629  

Table. 6 Performance evaluation statistics of various models for layer 2 

Model  

Training Validation 

RMSE MAE R RMSE MAE R 

ANFIS 3.06935E-03 1.09409E-03 0.97529  7.30003E-04 6.87646E-04 0.96422  

ANN-1 3.12913E-03 1.08432E-03 0.97431  1.07182E-03 1.03294E-03 0.96580  

ANN-2 3.12722E-03 1.09142E-03 0.97434  1.37918E-03 1.34787E-03 0.96389  

 

 



  

Table 7. TS and AARE values of various models for layer 2 

Model TS0.3 TS0.4 TS0.5 TS0.6 AARE 

ANFIS 82.96  94.81  98.12  100.00  0.245  

ANN-1 17.41  62.22  92.22  97.78  0.369  

ANN-2 4.07  17.77  57.78  91.11  0.481  
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Fig. 2. Architecture of the ANFIS 
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Fig.3 Results of the observed and modeled soil water content values in validation set of layer 1. 

a,b,c is ANFIS, ANN-1 and ANN-2 model, respectively 
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Fig.4 Comparison of the observed and modeled soil water content values in validation set of 

layer 1 
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Fig. 5 Results of the observed and modeled soil water content values in validation set of layer 2. 
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Fig.6 Comparison of the observed and modeled soil water content values in validation set of 

layer 2 

 



  

0 200 400 600

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

S
o

il
 w

a
te

r 
co

n
te

n
t

 

Fig.7 Results of the observed soil water content in the training data set of layer 2 



  

Highlights 

ANFIS model applied to modeling soil water content in extreme arid areas 

The best fit of ANFIS model are compared with two artificial neural networks (ANN) 

ANFIS model performed better than ANN in soil water content modeling 

ANFIS model can be used as a tool for the modeling of soil water content. 

 


