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SUMMARY 

Both drought and aridity indicate imbalance in water availability. While drought is a natural 

temporal hazard, aridity is a constant climatic feature. This paper investigates the changes in 

drought characteristics across different aridity zones with and without consideration of 

potential evapotranspiration (PET), as a means to better assess drought in a warming climate. 

Two drought indexes are employed: (1) Standardized precipitation index (SPI), which is 

solely based on precipitation; and (2) Reconnaissance drought index (RDI), which, in 

addition to precipitation, takes PET into account. The two indexes are first employed to 

observed precipitation and PET data for the period 1960–2009 from the CRU (Climate 

Research Unit, University of East Anglia) TS 3.1 database. The results indicate that although 

all the aridity zones experience both downward and upward drought trends, no significant 
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trend is found over large parts of the zones. However, the agreement between SPI and RDI 

reduces from the hyper-arid zone on one extreme towards the humid zone on the other. In the 

three more humid zones (i.e. semi-arid, sub-humid, and humid), the indexes exhibit different 

trends, with RDI showing more decreasing trends (i.e. becoming drier). While SPI generally 

shows more drought prone areas than RDI for the pre-1998 period, the opposite is observed 

for the post-1998 period. Given the known changes to PET in observed records, and also 

expected increases as global warming intensifies, these results suggest that RDI will be 

consistently different to the SPI as global warming intensifies. This hypothesis is further 

tested for historic and future climate projections from the CSIRO (Commonwealth Scientific 

and Industrial Research Organisation, Australia) Mk3.6 global climate model (GCM), with 

use of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and RCP8.5 

(Representative Concentration Pathways). In this case, PET is calculated using FAO56-PM 

model for assessment of RDI. The results suggest that agreement between SPI and RDI is 

affected and decreases remarkably over time (between 1850 and 2100). All these lead to the 

conclusion that, in the face of climate change, PET, an important component in the 

hydrologic cycle, should not be ignored in drought modeling. 

Key Words: Drought, Aridity, Standardized precipitation index, Reconnaissance drought 

index, Climate change 

 

1. Introduction 

Population growth, better living standards, increase in agricultural and industrial activities, 

degradation in water quality, and many other factors continue to influence and increase our 

demands for freshwater around the globe. The significant spatial and temporal variability of 

water resources often result in water deficiencies in different regions and at different times. 

As a result, water planning and management is often a challenging task in many regions, and 
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has the potential to lead to conflicts between different stakeholders (e.g. nations, water use 

sectors); see, for example, Sivakumar (2011a) for a recent account. This problem becomes far 

more complicated during periods of droughts. It is particularly in this context that there are 

serious concerns about the impacts of climate change on our water security, socio-economic 

development, and environmental sustainability, since climate change is anticipated to result 

in increases in the frequency, duration, and severity of droughts (and other hydroclimatic 

extremes). It is also reasonable to assume that the impacts of climate change will be realized 

far more in the arid (hyper-arid, arid, and semi-arid) regions, where the availability of rainfall 

and soil moisture is already very low. 

Drought is a natural and recurring feature of climate, and occurs in virtually all 

climatic regimes; see Mishra and Singh (2010, 2011) for comprehensive reviews of drought 

concepts and modeling. The primary cause of any drought is a deficiency in rainfall and, in 

particular, the timing, distribution, and intensity of this deficiency in relation to the existing 

water storage, demand, and use. Therefore, drought is a prolonged period of water deficit, 

and typically occurs when an area receives precipitation below usual levels for several 

months (Gocic and Trajkovic, 2014). There are three well-known types of drought: (1) 

meteorological or climatological drought; (2) hydrological drought; and (3) agricultural or 

vegetative drought (Tallaksen and van Lanen, 2004). Meteorological drought results from a 

shortage of precipitation, and can be defined as a drying relative to the mean state. 

Hydrological drought follows meteorological drought, and is a deficiency in the volume of 

water supply. Agricultural or vegetative drought occurs when, because of insufficient soil 

moisture, supply of moisture for crops reduces. With regard to the existence of different types 

of drought, a wide range of drought identification and assessment indexes have been 

introduced in the literature, including: Palmer drought severity index (PDSI) (Palmer, 1965); 

Surface water supply index (SWSI) (Shafer and Dezman, 1982); Standardized precipitation 
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index (SPI) (McKee et al., 1993); Reconnaissance drought index (RDI) (Tsakiris and 

Vangelis, 2005); and copula-based joint deficit index (JDI). The indexes have also been used 

in different contexts (e.g. Chen and Chan, 2007; Özger et al., 2010). These indexes usually 

depend on some combination of precipitation, temperature, potential evaporation (PE) or 

evapotranspiration (PET), soil moisture and/or streamflow. Each of these indexes is relevant 

to a specific type of drought. 

It is important to point out that the concept of drought is sometimes not properly 

distinguished from that of aridity. As a result, both drought and aridity are sometimes 

considered synonymous and treated in the same way. For example, areas suffering from 

drought may not be recognized properly from regions with simply arid or hyper-arid climatic 

features. The fact that both drought and aridity can be defined from similar parameters (e.g. 

precipitation, available water or humidity) only adds to this confusion. However, there is an 

important difference between the two. Drought is a natural hazard, and is essentially a 

temporal anomaly from normal conditions. Aridity, on the other hand, is a climatic feature, 

and is a constant imbalance in the water availability consisting of low average annual 

precipitation, with high spatial and temporal variability, resulting in overall low moisture and 

low carrying capacity of the ecosystems (Sanderson, 1992). While statistical indexes defined 

as anomalies from normal conditions are useful when investigating droughts, absolute 

methods must be considered in the definition of arid climate regions (Damberg, 2013). 

The effects of climate change are global in scope and vary from region to region, and 

thus have important implications for hydrology (especially extremes) and water resources at 

global, regional, and local scales; see, for example, Mishra and Singh (2009), Sivakumar 

(2011b), and Yang and Yang (2012) for comprehensive accounts of the challenges in 

assessing the impacts of climate change on water resources. Since drought is a regional 

phenomenon, the impacts of climate change on droughts may differ across the world. 
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Therefore, on one hand, it can be presumed that drought occurrence and trends  exhibit 

various patterns in different climatic features or aridity zones. On the other hand, although all 

the aridity zones are relatively vulnerable to droughts, the potency of each zone to confront 

droughts is different. For instance, under the same level of severity of drought, arid zones are 

in a more vulnerable position when compared to humid zones. Therefore, finding general 

patterns and tendencies of droughts in each climatic zone is important for a more accurate 

assessment of climate change impacts on water resources. This provides the motivation for 

the present study. 

The objective of this paper is to assess the spatio–temporal variation trends of drought 

events in different climatic zones (defined by aridity) around the globe. Two drought indexes 

are employed: the Standardized Precipitation Index (SPI), and the Reconnaissance Drought 

Index (RDI). The SPI, arguably a more popular drought index, is based solely on 

precipitation, and measures how much precipitation for a given period of time has deviated 

from historically established norms. The RDI uses PET, in addition to precipitation, as a key 

variable for assessing the severity of drought. It is hypothesized that the outcomes from the 

use of these two indexes will become increasingly different as the assessment focused on a 

warmer climate where PET can be expected to increase (Johnson and Sharma, 2010). To put 

the analysis in a proper perspective, the two indexes are first employed to past observed data 

from the CRU (Climate Research Unit, University of East Anglia) TS 3.1 database, and their 

performances are compared for an informed assumption on their capability to represent 

droughts. This assumption and also the hypothesis that the outcomes will increasingly differ 

in markedly warmer climates are then tested on raw historic and future simulations from the 

CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia) Mk3.6 

global climate model (GCM), with use of the fifth phase of the Coupled Model 

Intercomparison Project (CMIP5) (Taylor et al., 2012). 
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The rest of this paper is organized as follows. Section 2 describes the data and 

methodology used. Section 3 presents the results, with particular emphasis on the drought 

trends in different aridity zones and SPI and RDI relationships in the past and future. Section 

4 discusses the results, followed by a set of conclusions in Section 5. 

 

2. Materials and Methods 

In this study, precipitation observations and PET data derived from real observations are used 

to obtain SPI and RDI time series and to identify droughts during the last five decades (1960–

2009) worldwide. The Mann-Kendall test is applied to detect probable trends and 

(dis)similarities in the SPI and RDI series. The findings are then examined for the future 

through CMIP5 simulations. The datasets and methods used here are described below. 

 

2.1. Observed data 

This study uses high spatial resolution (0.5° × 0.5°) gridded monthly data CRU TS 3.1, an 

observational data source, from the Climatic Research Unit, University of East Anglia. The 

CRU TS 3.1 dataset covers the period 1901−2009 and data are available over land areas 

excluding Antarctica. The CRU TS3.1 provides a monthly time series of global gridded data 

based on observations from more than 4000 stations (Belda et al., 2014). The dataset includes 

six mostly independent climate variables (mean temperature, diurnal temperature range, 

precipitation, wet-day frequency, vapour pressure, and cloud cover). Maximum and minimum 

temperatures are arithmetically derived from these. Secondary variables (frost day frequency 

and PET) are estimated from the six primary variables (Harris et al., 2014). The method used 

here for the calculation of PET is a variant of the Penman–Monteith formula (see Harris et 

al., 2014). 
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2.2. Drought indexes 

2.2.1. Standardized precipitation index (SPI)  

Computation of the SPI involves fitting a gamma probability density function (PDF) to a 

given time series of precipitation. This is performed separately for each month (or any other 

temporal basis of the raw precipitation time series) and for each location in space. The 

gamma distribution is defined by its probability density function as: 
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for n observations.  

Integrating the probability density function with respect to xk yields the following 

expression G(xk) for the cumulative probability: 
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The gamma distribution is undefined for xk = 0. Since precipitation distribution may contain 

zeros, in order to account for zero value probability, the cumulative probability may be 

written as: 
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where q is the probability of zero precipitation. The cumulative probability, H(xk), is then 

transformed to the standard normal random variable Z with mean zero and variance one, 

which is the value of SPI. Following the approximate conversion provided by Abramowitz 

and Stegun (1965), Z, and hence SPI, is expressed as: 
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with c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 

0.001308. Positive SPI values indicate greater than median precipitation, and negative values 

indicate less than median precipitation. Since SPI is normalized, wetter and drier climates can 

be represented in the same way, and wet periods can also be monitored using SPI. 
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2.2.2. Reconnaissance drought index (RDI) 

The RDI can be expressed in three forms: the initial value ( ka ), normalized RDI (RDIn), 

and standardized RDI (RDIst). The initial value ( ka ) is presented in an aggregated form 

using a monthly timestep and may be calculated on a monthly, seasonal or annual basis. It 

is calculated in a time basis of k (months) using the following equation: 
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where Pij and PETij are precipitation and PET of the j-th month of the i-th year and N is the 

total number of years of the available data. The normalized RDI (RDIn) is computed using: 
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where ka  is the arithmetic mean of ka  values. The initial formulation of the standardized 

RDI (RDIst) (Tsakiris and Vangelis, 2005) used the assumption that ka values follow the 

lognormal distribution, and thus:                                              

  

 (13) 

 

where ky is )ln( )(i
ka , ky  is the arithmetic mean of ky  and 

ykσ̂  is its standard deviation. 

However, through analysis of various data from several locations and different timescales, it 

has been shown that, although ka  values follow both lognormal and gamma distributions, 

gamma distribution shows the best fit in most locations and timescales (Tsakiris et al., 2008). 

Therefore, the calculation of RDIst could be performed better by fitting the gamma 

probability density function to the given frequency distribution of ka , following the 

yk

k

i

ki

kst

yy
RDI

∧

−
=

σ

)(
)(

)(



  

10 

 

procedure described below. Similar to the SPI computation by the gamma approach, this 

approach also solves the problem of calculating RDIst for small timesteps, such as monthly, 

which may include zero-precipitation values ( ka  = 0), for which Eq. (13) cannot be applied 

(Tsakiris et al., 2008). For this purpose, the RDI calculation is the same as that for SPI and 

Eqs. (1) to (10) can be applied by replacing xk by ka  values. The present study employs this 

method to assess RDI. For this study, xk (to ascertain SPI) and ka  (to assess RDI) values are 

aggregated over the same temporal window. For the purposes of the trend assessments 

reported later, k is assumed equal to 12, such that both SPI and RDI represent annual 

aggregated values. As SPI and RDIst perform in a similar manner, their results can be 

interpreted in a similar manner as well. Therefore, the values of RDIst  could be compared to 

the same thresholds as that of the SPI technique, as shown in Table 1. 

Insert Table 1 here 

 

2.3. Mann–Kendall test 

In this study, in order to detect the significant trends in SPI and RDI time series, the Mann–

Kendall test, developed by Mann (1945) and Kendall (1975), is used. Testing the significance 

of observed trends in hydrologic and climatic time series has received a great deal of 

attention recently. The rank-based Mann–Kendall (MK) test is the most widely used 

nonparametric method for trend detection. Being a nonparametric test, the MK test can be 

applied to data no matter what the probability distribution is. Distribution-free tests have the 

advantage that their power and significance are not affected by the actual distribution of the 

data. This is in contrast to parametric trend tests, such as the regression coefficient test, which 

assume that the data follow the Normal distribution, and so their power can be greatly 

reduced in the case of skewed data (Hamed, 2009). 
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Consider a time series { }NiX i ,...,2,1| =  with a record length N. According to Salas 

(1993) and Yu et al. (1993), the null hypothesis H0 states that the data {Xi} are a sample of n 

independent and identically distributed (iid) random variables. The alternative hypothesis 

(H1) of a two-sided test is that the distribution of Xi and Xj are not identical for ji, ≤  N with 

ji ≠ . Each value Xi = 1,2,…,N – 1 is compared with all subsequent values of 

{ }NiijX j ,...,2,1| ++=  and sum of the times of Xi > Xj. The number of positive differences for 

all the differences considered, p, is given by: 
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The Mann–Kendall statistic, S, is calculated as: 

( )( )
1)

1

4
( −

−
=

NN

p
S .        (15) 

Under the 
0H  hypothesis, the distribution of S is normal in the limit as ∞→N  (Yu et al., 

1993). The mean and variance of S are calculated as: 
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For 10>N , the test is conducted using a normal approximation (Hirsch et al., 1993). The 

standardized test statistic, Z, is calculated as: 
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Hisdal et al. (2001) accentuated that the hypothesis H1 of an upward or downward 

trend cannot be rejected at a significance level α  if 
)2/1( α−> ZZ , where 

)2/1( α−Z  is 2/1 α−  

quintile of the standard normal distribution. A positive value of Z indicates an upward trend, 

while a negative value of Z indicates a downward trend. A value of 96.1>Z  indicates a 

significant upward/downward trend (at a significance level of 05.0=α ), and 576.2>Z
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indicates an extremely significant trend (at a significance level of 01.0=α ) (Zhai and Feng, 

2008). In this study, a significance level of α = 0.05 is used. 

 

2.4. GCM data 

2.4.1. Experimental description 

The CSIRO Marine and Atmospheric Research and the Queensland Climate Change Centre 

of Excellence (QCCCE) are contributing to CMIP5 using the CSIRO Mark 3.6 (Mk3.6), a 

coupled atmosphere-ocean global climate model. In the present study, the relationships 

between SPI and RDI in current climate and the future are assessed using simulations and 

projections of this model. The Mk3.6 climate model is a substantial upgrade from its recent 

predecessors Mk3.0 and Mk3.5, which were used to contribute to CMIP3. The new Mk3.6 

version differs from its recent predecessors by the inclusion of an interactive aerosol scheme, 

which treats sulphate, dust, sea salt, and carbonaceous aerosol (Rotstayn et al., 2012). It is a 

coupled atmosphere-ocean model with dynamic sea ice. It also has a soil-canopy scheme with 

prescribed vegetation properties. The ocean, sea-ice and soil-canopy models are unchanged 

between Mk3.5 and Mk3.6 (Rotstayn et al., 2013). The ocean model is based on version 2.2 

of the Modular Ocean Model, and has 31 vertical levels and horizontal resolution of 

approximately 0.9375° (latitude) by 1.875° (longitude). The atmospheric model is a spectral 

model (T63) that utilizes the flux form of the dynamical equations. The atmospheric model 

has 18 vertical levels and horizontal resolution of approximately 1.875° × 1.875° (spectral 

T63) (Rotstayn et al., 2013; Syktus et al., 2011). 

Recently, the research community has developed a set of scenarios (Representative 

Concentration Pathways, RCPs) to improve understanding of the complex linkages between 

human activities and the climate system (van Vuuren et al., 2011), which are used in the Fifth 

Assessment Report (AR5) of the IPCC and are intended to represent four scenarios of future 
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global development, including greenhouse gas (GHG) emissions, land use, and the resulting 

atmospheric GHG concentrations, and corresponding atmospheric radiative forcing. The four 

pathways lead to radiative forcing levels of 8.5, 6, 4.5 and 2.6 W/m2 by the end of the 

century. The level of CO2 concentration at the end of the 21st century and its trajectory 

during the century vary substantially between RCPs. RCP6.0 and RCP8.5 show 

monotonically increasing values, while RCP2.6 and RCP4.5 show a peak concentration and 

stabilized concentration, respectively. Each of the RCPs covers the 1850–2100 period, and 

extensions have been formulated for the period thereafter (up to 2300). RCP8.5 W/m2 has 

been developed by the International Institute for Applied Systems Analysis (IIASA)/Model 

for Energy Supply Strategy Alternatives and their General Environmental Impact 

(MESSAGE) modeling team in Austria (Riahi et al., 2007). This corresponds to a world 

where greenhouse gas emissions continue to rise resulting in atmospheric CO2 concentration 

that exceeds 900 ppm by 2100. In the present study, we use the atmospheric data, including 

precipitation, maximum and minimum temperature, relative humidity, wind speed, and cloud 

cover for the period 1850–2100 provided by the CSIRO Mk3.6 model based on RCP8.5. 

2.4.2. PET assessment 

To assess RDI using GCM simulations, PET needs to be calculated based on climatic 

parameters provided by the above GCM for both historic and future simulations. Reference 

evapotranspiration (ETo) is defined as the potential evapotranspiration of a hypothetical 

surface of green grass of uniform height, actively growing and adequately watered (Xu and 

Singh, 2005). An accurate estimation of ET is very useful for appropriate water management. 

ETo can be computed as a function of weather parameters. Numerous methods, such as 

temperature-based, radiation-based, and their combinations, have been used to estimate ETo. 

The Penman–Monteith (P–M) method is recommended by FAO as the sole method to 

calculate reference evapotranspiration wherever the required input data are available 
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(Droogers and Allen, 2002). The FAO56-PM model, which is a physically-based approach 

and incorporates thermodynamic and aerodynamic aspects, has proved to be a relatively 

accurate method in both humid and arid climates and can be used globally without any need 

for additional adjustments of parameters (Yin et al., 2008). Therefore, the PM model is used 

here to assess PET based on CSIRO Mk3.6 data. As per this method, the reference 

evapotranspiration can be estimated as follows: 

[ ]
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where ETo is the reference evapotranspiration [mm day-1], ∆  is the slope of vapor pressure 

curve, Rn is the net radiation at the surface [W m-2], G is the soil heat flux density [W m-2], γ  

is the psychometric constant, T is the mean daily air temperature at the height of 2 m, u2 is the 

wind speed at 2-m height, es is the saturated vapor pressure, and ea is the actual vapor 

pressure [kPa]. The reference surface is assumed to be a flat surface that is completely 

covered by grass with an assumed uniform height of 0.12 m, a fixed surface resistance of 70 

sm-1, and an albedo of 0.23 (Allen et al., 1998). 

 

3. Results and discussion 

3.1. Global aridity zones 

Figure 1 shows the distribution of the five aridity zones worldwide based on the UNESCO 

aridity index (UNESCO, 1979), determined by Asadi Zarch et al. (2014). As the figure 

shows, the hyper-arid zone is found only in northern Africa and a small part of southwestern 

Asia, southern Africa, and South America, while the remaining four zones are generally 

found in all the continents, with the humid zone occupying much of the world. Therefore, on 

one hand, aridity zones are distributed around the world and follow no specific pattern based 

on latitude, longitude, altitude, and other geographic and topographic factors. On the other 
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hand, however, the literature shows that during recent decades droughts have occurred in 

almost all the regions. Hence, it can be concluded that occurrence of drought is probable over 

all the five aridity zones. However, there is a lack of global comparison of droughts occurred 

in these zones to determine whether drought behaviors and patterns over all the zones are the 

same or not. This paper, therefore, aims to investigate drought and its trends in different 

aridity zones. To this end, Figure 1 is used to delineate the boundaries of the aridity zones for 

zone-by-zone drought analysis. 

 

Insert Figure 1 here 

 

3.2. Drought trend analysis: Mann-Kendall test 

The Z values derived from the application of the Mann-Kendall (MK) test to the SPI and RDI 

time series corresponding to each aridity zone for the period 1960–2009 are mapped to show 

the spatial distribution of drought trends in different aridity zones. Figure 2 (left) shows the 

results of the MK test for SPI in the five aridity zones, while Figure 2 (right) shows the MK 

results for RDI. As mentioned before, for α < 0.05, a Z parameter value of less than –1.96 

shows a significant decreasing trend, while a value of more than 1.96 indicates a significant 

increasing trend, and a value between –1.96 and 1.96 shows no significant trend. It should be 

noted that, in drought trend analysis based on SPI or RDI, increasing trends indicate a 

tendency to become more humid, while decreasing trends indicate a tendency to become 

more dry. The Z parameter values for both SPI and RDI show that, although drought had no 

significant tendency over large parts of the aridity zones, some areas of all the five aridity 

zones experienced both significant downward and upward drought trends during the study 

period. The results obtained for both SPI and RDI  are consistent with the results reported in 

the IPCC Fifth Assessment Report (IPCC, 2013). 
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Insert Figure 2 here 

 

         Table 2 shows the area of each climatic zone as well as the areal extent of different 

types of trend (downward, upward, and non-significant) in every climatic zone for both SPI 

and RDI. The table indicates that climatic feature over half of the world is humid, while 

hyper-arid is the dominant climate over just 4.5% of the world. Sub-humid, semi-arid and 

arid zones cover almost the same percentage of area of the world (13–15%). The table also 

indicates that the prominent observed drought trend tendency in all climatic zones based on 

both SPI and RDI is the non-significant trend. Based on SPI, the largest non-significant 

drought trend area is in the semi-arid zone with 87%, while the largest non-significant RDI 

trend is indicated by the arid zone with more than 89%. Both of the drought indexes show the 

hyper-arid zone having the lowest tendency of non-significant percentage area: 77.2% with 

SPI and 80.1% with RDI. 

 

Insert Table 2 here 

 

Based on SPI, no significant differences between areal extent of increasing and 

decreasing trends are observed in the semi-arid and sub-humid zones (less than 1%), while 

the other zones exhibit remarkable differences. While SPI downward trends are observed in 

less than 1% of the hyper-arid and arid zones and around 3% of the humid zone, between 12 

and 14.5% of these zones exhibit SPI upward trends. On the other hand, based on RDI, 

except the humid zone, for which both increasing and decreasing trends have almost the same 

area (around 8%), all the other zones indicate major differences between upward and 

downward trends. While a significant decreasing trend is found over just around 2% of the 

hyper-arid and arid zones, 10% of these zones are identified with a significant increasing 
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trend, which reveal that the two zones are becoming wetter. Conversely, the semi-arid and 

sub-humid zones exhibit more increasing trends (around 10%) than decreasing ones (about 

4%), which indicate a tendency towards more dryness. It is interesting to note that the 

percentage of decreasing trend for RDI is higher than that for SPI in all the aridity zones, 

while the situation is converse when the increasing trend is considered. 

 

3.3. SPI and RDI areal extent 

Table 3 shows the year-wise percentage of area covered by drought for the period 1960–

2009. Areas with SPI and RDI equal to or less than –1 are considered as areas suffering from 

drought. Based on Table 1, SPI and RDI values equal to or less than –1 can be classified as 

moderately dry (–1 to –1.49), severely dry (–1.5 to –1.99) or extremely dry (–2 and less). 

Based on SPI, the year 1965 was the driest year with around 26% under drought condition. 

However, based on RDI, the year 1990 was the driest year with around 30% of the world 

covered by drought. The wettest year based on SPI was 2006 (around 8% drought prone 

areas) and based on RDI was 2008 (around 10% drought prone areas). On average, 16.6% 

and 15.7% of the world experienced drought annually, according to SPI and RDI, 

respectively. It is interesting to note that between 1960 and 1997, the drought area percentage 

of SPI was generally higher than that of RDI, while the converse was the case for the period 

1998–2009, except for 2000. 

 

Insert Table 3 here 

 

Figure 3 shows, for instance, the global drought map obtained using SPI (left) and 

RDI (right) for a dry year (1972) and a wet year (2008). As can be seen, there are some clear 

differences between the droughts identified by the two indexes for the dry year (1972). This 
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is also consistent with the results in Table 3, with approximately 7% (27.5% versus 20.9%), 

between the area covered by drought based on SPI and RDI. However, for the wet year 

(2008), the two indexes generally show similar spatial patterns of drought, with a very small 

difference between them, i.e. just around 1% (9.0% versus 9.7%). It can be concluded, 

therefore, that to identify and capture all drought events appropriately, there is a need for 

drought indexes that optimally use the available information, since droughts do not occur 

frequently in most regions, especially in the humid and sub-humid zones. 

 

Insert Figure 3 here 

 

Figure 4 shows the areal extent of droughts in the five aridity zones over the study 

period. It is clear that for the period before 1997, except the hyper-arid and arid zones, SPI 

percentages are more than RDI ones, especially in the sub-humid and humid zones (which 

totally cover around 68% of the world), while from 1998 onwards, in most cases, drought is 

generally more extended based on RDI rather than SPI. Therefore, the observed global 

relationships for drought areal extent, presented by SPI and RDI, shown in Table 3, can be 

found in most aridity zones. Among the aridity zones, the hyper-arid zone exhibits the highest 

year-by-year drought area percentage fluctuations and the humid zone presents the lowest. 

Therefore, to reduce the impacts of drought, especially in the hyper-arid and arid zones that 

naturally face water scarcity, a better knowledge of droughts, through improving our 

understanding of the characteristics and relationships of drought, is necessary. 

 

Insert Figure 4 here 

 

3.4. GCM simulation and projections 
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The SPI and RDI are calculated for the periods 1850–2005 and 2006–2100 using past and 

future simulations from CSIRO Mk3.6 based on RSP8.5. To assess RDI, global PET is 

calculated using the Penman-Monteith method based on CSIRO Mk3.6 climatic parameters 

for 1850–2100. Figure 5, for example, presents the classified SPI and RDI values (based on 

Table 1) for the year 1850, the first year of the study period of the current climate. The maps 

present major similarities between SPI and RDI, and there exist no remarkable changes 

between them in many parts around the globe.  

  

Insert Figure 5 here 

 

Figure 6, for example, presents the global SPI and RDI drought classes for the year 

2100, the last year of the study period of future climate using simulations of the CSIRO 

Mk3.6 model. Unlike 1850, when there is a significant agreement in the drought classes 

obtained using the two indexes, the SPI and RDI indexes for the year 2100 clearly show 

different drought classes in considerable parts of the world. In 2100, SPI shows that some 

regions are more wet than those shown by the RDI, but this pattern may also be different for 

the other years. 

 

Insert Figure 6 here 

 

Although Figures 5 and 6 exhibit a reduction in agreement between SPI and RDI from 

1850 to 2100, more comprehensive comparisons are required to verify if this is indeed the 

case. Since SPI and RDI values should be classified based on Table 1 to be more usable in 

water resources assessment and management, including for drought classification, a drought 

class comparison between the two indexes is done for three separate periods: 1951–2000, 
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2001–2050, and 2051–2100. To this end, SPI and RDI are calculated for each of the three 

periods separately. Therefore, there is one SPI and one RDI time series for each land grid cell 

with the time series including 50 annual drought values, and the calculations are carried out 

for each grid cell for SPI and RDI separately. As mentioned earlier (see Table 1), SPI and 

RDI have eight drought classes. In general, if the two indexes do not show the same drought 

class(es), they may probably exhibit the adjusted classes, although in some cases the 

difference may even be more than one class. To highlight this, a weighted drought class 

comparison, which calculates the difference based on the number of drought classes between 

the two classes added by one, is applied. It is obvious that if the indexes show the same 

class(es), the weighting is not applied and the difference is considered as zero. Based on the 

weighted drought class comparison method, the difference is one for adjacent classes, and is 

more than one for farther classes. For example, the difference is one if one of the indexes 

shows drought as severely dry and the other as moderately dry, while if one exhibits severely 

dry and normal is presented by the other, then the difference is three. For easy interpretation 

of the results for the three periods, the class change between the two indexes for each period 

is averaged. To find out whether the drought class difference between SPI and RDI has 

increased with time or not, the averaged values for each of the above three periods are 

mapped in Figure 7. The figure clearly shows that the class difference between SPI and RDI 

increases from the first period towards the third one. The mean value for 1951–2000, 2001–

2050, and 2051–2100 is 0.246, 0.264, and 0.373, respectively.  

 

Insert Figure 7 here 

 

It should be noted that Figure 7 only shows the class difference between SPI and RDI 

but provides no knowledge as to whether one of the indexes mostly shows more wet classes 
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or often indicates more dry or there is no any specific pattern. This is addressed in Figure 8. 

To determine the effects of nonstationary climate on the relationships between droughts 

identified by SPI and RDI during 1951–2100, the average drought class difference for the 

three periods (1951–2000, 2001–2050, and 2051–2100) is presented in Figure 8. The class 

difference is presented for two situations: (1) SPI class is greater (i.e. more wet) than RDI; 

and (2) RDI class is greater (i.e. more dry) than SPI. Since SPI and RDI classes can be same 

for some grids, for better illustration,  grids having no drought class difference during each of 

the three periods are excluded from the figure. The drought class difference calculation is 

done for each grid for each year separately and the values are then averaged  over 50 years of 

each of the three periods. The results indicate not only that most parts of the world 

experienced different SPI and RDI drought classes, but also that SPI indicates more humid 

(or dry) class in some years while RDI does in some other years. Therefore, any assumption 

or concern that one of the indexes may show more dry (or more humid) than the other in most 

years may not be valid. 

 

Insert Figure 8 here 

 

4. Discussion 

Analysis of trends in drought for the period 1960–2009 indicates that SPI and RDI are in 

good agreement in the hyper-arid and arid zones (Figure 2). However, in the semi-arid and 

sub-humid zones, SPI indicates no clear trend, while RDI shows more downward trends. In 

the humid zone, SPI shows that the zone is becoming significantly more humid, while there 

are approximately same area percentages of RDI increasing and decreasing tendencies. On 

the other hand, in all the zones, RDI shows greater area percentage of decreasing and less of 

increasing trend than SPI. These results lead to two important points: (1) the agreement 
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between SPI and RDI reduces from the hyper-arid zone towards the humid zone; and (2) 

when the drought tendencies are different between the indexes, RDI shows more trends 

towards dryness than SPI does. 

About the first point, the significant fluctuation in the spatio-temporal distribution of 

precipitation in the dry regions may be the cause of the observed high similarity between SPI 

and RDI in the hyper-arid and arid zones. Asadi Zarch et al. (2014) report that the average 

coefficient of variation (CV) of precipitation for the period 1960–2009 is 0.66, 0.38, 0.25, 

0.21, and 0.17 for the hyper-arid, arid, semi-arid, sub-humid, and humid zones, respectively. 

Therefore, not only the arid zones (hyper-arid and arid) receive low precipitation rates but 

also precipitation presents a high range of variability in such zones. Therefore, in the arid 

zones, while PET is not supposed to vary remarkably, RDI changes with respect to 

precipitation variations and is mostly a derivative of precipitation rather than PET. It is 

obvious that this helps RDI to behave almost same as SPI, which considers just precipitation 

to assess droughts. For the remaining zones, it seems that as the CV of precipitation 

decreases, PET plays a more important role in characterizing the occurrence of drought based 

on RDI. Therefore, SPI and RDI indicate less agreement in these zones. 

To address the second point, the land area affected by drought during 1960–2009 is 

presented based on percentage of the global area (Table 2) and in the five climatic zones 

(Figure 4). Droughts have affected larger areas since the 1970s (IPCC, 2007). In studying 

drought characteristics, it is obvious that the extent of droughts varies from one region to 

another. From 1960 to 1987, SPI shows a higher area percentage of drought than RDI except 

in three years (1962, 1973, and 1981), while, conversely, from 1988 to 2000, RDI values 

mostly show higher percentage area of drought than SPI ones. Finally, all years over the 

period 2000–2009 show more RDI drought percentage than SPI. The results are almost the 

same for all the five climatic zones (Figure 4). As mentioned earlier, the only difference 
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between SPI and RDI is that RDI takes into consideration PET too in addition to 

precipitation. Remarkable rising trends of temperature in recent decades have caused positive 

trends of PET in considerable parts of the world and have resulted in higher drought prone 

areas indicated by RDI than SPI. 

Next, the period 1962–2009 is divided to 4 sub-periods (1962–1973, 1974–1985, 

1986–1997, and 1998–2009), and the mean global temperature is averaged for these sub-

periods. The results indicate the average of mean global temperature as 4.72, 4.92, 5.30, and 

5.73°C for the four sub-periods, respectively. , respectively, . As temperature has increased 

within the four sub-periods above, the degree of greatness of SPI when compared to RDI has 

decreased. Based on SPI, the average extent of area under drought is 19.80, 18.48, 16.91, and 

10.94% for the four sub-periods, respectively. The RDI, however, shows the areal extent as 

16.93, 16.41, 16.52, and 12.79% for the four sub-periods, respectively. While the difference 

between the indexes is relatively small in the third sub-period, RDI is greater than SPI in the 

last one. Therefore, on one hand, the average temperature, and as a result PET, in the fourth 

sub-period is remarkably higher than the previous ones. On the other hand, not only SPI, 

which takes only precipitation into account, but also RDI, which takes also PET into 

consideration, indicate 1998–2009 as the wettest sub-period. To address this, the average of 

mean global precipitation for all the sub-periods is estimated and found to be 683.57, 685.95, 

683.92, and 699.29 mm for the four sub-periods, respectively. Therefore, since the average 

precipitation in the fourth sub-period (1998–2009) is considerably higher than the other ones, 

areal extent of drought has decreased in this sub-period, despite the higher PET rates resulted 

by high temperatures.   

Based on the present results, although general similarities can be found between SPI 

and RDI in the five aridity zones for the past, there exist also some differences that cannot be 

ignored. Since drought occurs when there exists a deficit in available moisture relative to its 
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normal, a decrease in precipitation or increase in ET or both may result in drought. The rise 

in global CO2 concentration during the last few decades has caused higher temperatures and 

resulted in an increase in the global atmospheric demand for moisture. The PET may be one 

of the best representatives of atmospheric water demand and, therefore, its inclusion in a 

drought index should improve not only the accuracy of the index in detecting droughts but 

also in representing the sensitivity of the index to climate changes to capture the related 

impacts. Since the assumption of stationarity in traditional hydrologic considerations may no 

longer be valid under climate change conditions (Milly et al., 2008), especially in the context 

of clear positive trends of temperature in the recent past, selecting a drought index that is able 

to capture the resultant changes in drought occurrence can help to monitor drought trends 

properly. 

For the future, both precipitation and ET are expected to change with global warming 

at different scales across the globe. Future climate changes, even under conservative 

scenarios, are likely to cause further increases in mean temperature (about 2–4°C globally) 

(Seager et al., 2007). Therefore, the necessary characteristics of drought indexes, mentioned 

above, also apply for projection of future droughts. Consequently, it is vital to use a drought 

index that is sensitive to global warming. Drought events in the future should be predicted to 

investigate how drought might change in future and to plan for their impacts and associated 

damages. Climate models, which are developing rapidly, are the most useful tools to 

anticipate future climate changes. Therefore, we have used the twentieth and twenty-first 

century simulations of CSIRO Mk3.6 model (with RCP8.5) to calculate SPI and RDI. The 

simulations have been used to assess the indexes in two periods, 1850–2005 and 2006–2100, 

as historic and future droughts, respectively (Figures 5 to 8). Comparing drought maps of the 

first year of the historic period (year 1850) exhibits significant similarities between SPI and 

RDI (Figure 5), while substantial differences can be found in the last year of the future period 



  

25 

 

of comparison (year 2100) (Figure 6). The results for these two years lead to the 

interpretation that agreement between SPI and RDI is affected and decreases remarkably 

between 1850 and 2100. While this may just be considered as a coincidence as well, more 

robust findings, through a weighted drought class comparison between the two indexes for 

three study periods, 1951–2000, 2001–2050, and 2051–2100 (Figures 7 and 8), also indicate 

an increase in difference between SPI and RDI. Therefore, it can be concluded that, in the 

face of global warming in the future, PET, which is an important component in the 

hydrologic cycle and shows the atmospheric demand for moisture, should no longer be 

ignored in drought forecasting. 

 

5. Conclusions 

In recent decades, the impacts of frequent drought occurrence are aggregated by the rise in 

water demand due to population growth and climate change effects, e.g. an increase in 

evapotranspiration in regions with rising temperatures. Therefore, understanding and 

qualifying drought occurrence and its consequences on agricultural production, hydrologic 

cycle, and ecosystems is of particular importance. It is obvious that determining the drought 

hazards is quite difficult and complicated, but drought monitoring using drought indexes 

often serves as an important base. In regards to drought occurrence in all the climatic zones, 

the objective of this study was to assess the annual spatio–temporal variation trends of 

drought events in different aridity zones for the past and also to obtain useful information for 

future drought assessment. Two drought indices, namely SPI and RDI, were used in the 

analysis. 

The results generally indicate that the percentage of drought prone areas estimated by 

SPI is mostly higher than RDI for the period prior to 1998, while it is the converse for the 

period after 1998. Based on SPI and RDI, the hyper-arid and arid zones are estimated to 
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become slightly more humid, while the results provided by the two indexes for the other 

zones are not same. While the areal extent of RDI decreasing trend is higher than that of SPI 

in all the zones, the extent of RDI increasing trend is, conversely, lower than that of SPI. The 

results also suggest that the agreement between SPI and RDI in the arid zones is higher when 

compared to that in the humid zones. In the semi-arid, sub-humid, and humid zones, where 

the drought trends are identified to be different between the two indexes, RDI shows more 

trends towards dryness than SPI. 

Differences between SPI and RDI are expected to continue in the future, as reflected 

by the results from the comparison of class difference between the indexes using the current 

and future simulations of a CMIP5 model. The results indicate that SPI, which considers no 

atmospheric demand parameters, may not be capable of identifying future droughts under an 

increasing temperature trend. Therefore, although SPI is one of the most popular drought 

indexes, it is, to some extent, constrained in the projection of droughts under a changing 

climate. Although more studies are needed to find out the most appropriate drought index for 

conditions under climate change, a particular advantage of RDI is that it considers, in 

addition to precipitation, potential evapotranspiration (PET), which is an essential parameter 

for detection of droughts and their characteristics under increased greenhouse gas 

concentrations. To this end, study of seasonal characteristics of droughts in aridity zones may 

also shed additional light on the performance of SPI and RDI. Investigations in these 

directions are underway, details of which will be reported elsewhere.   
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Figure 5: Global drought map for 1850 for SPI and RDI based on CSIRO Mk3.6 simulations 

 

Figure 6: Global drought map for 2100 for SPI and RDI based on CSIRO Mk3.6 simulations 

 

Figure 7: Average drought class difference between SPI and RDI for periods (a) 1951–2000, 

(b) 2001–2050 and (c) 2051–2100 

 

Figure 8: Average drought class difference between SPI and RDI when SPI > RDI (left) and 

RDI > SPI (right) for periods 1951–2000, 2001–2050 and 2051–2100 
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Table 1. Drought Classification According to SPI and RDI Values 

SPI and RDI range Drought Classes 

2 or more Extremely wet 

1.5 to 1.99 Very wet 

1 to 1.49 Moderately wet 

0.99 to 0.0 Normal 

0.0 to –0.99 Near normal 

–1 to –1.49 Moderately dry 

–1.5 to –1.99 Severely dry 

–2 and less Extremely dry 
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Table 2. Area percentage of observed SPI and RDI trends in different climatic zones based on Z values of 

Mann-Kendall test (α < 0.05). Z > 1.96 represents a significant increasing trend and Z < −1.96 represents 

a significant decreasing trend. 

  Area percentage 

Climatic zone Area percentage Non-significant trend Decreasing trend Increasing trend 

SPI RDI SPI RDI SPI RDI 

Hyper-arid 

Arid 

Semi-arid 

Sub-humid 

Humid 

4.4 77.2 80.1 0.6 1.5 13.1 9.6 

13.0 86.7 89.1 0.8 1.9 12.1 9.0 

14.9 87 85.9 5.6 9.7 6.3 4.3 

13.5 86.2 85.6 6.2 10.4 7.1 4.0 

54.2 80.7 83.8 2.8 8.0 14.5 8.2 
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Table 3. Global drought areal extent (SPI and RDI <= –1) based on percentage during 1960–2009 

Year Drought 

area 

Year Drought 

area 

Year Drought 

area 

Year Drought 

area 

Year Drought 

area 

SPI RDI SPI RDI SPI RDI SPI RDI SPI RDI 

1960 16.7 16.3 1970 19.8 16.2 1980 18.4 16.8 1990 20.2 22.8 2000 13.2 11.9 

1961 18.7 16.1 1971 19.0 17.4 1981 15.3 15.9 1991 16.7 17.4 2001 12.4 14.2 

1962 21.8 22.1 1972 27.5 20.9 1982 19.2 16.1 1992 18.7 15.8 2002 14.7 17.1 

1963 17.7 14.9 1973 15.4 16.8 1983 22.6 20.3 1993 17.8 15.8 2003 13.0 15.1 

1964 19.1 14.1 1974 17.7 16.2 1984 21.7 20.0 1994 14.9 15.4 2004 8.5 10.1 

1965 25.6 20.8 1975 16.2 15.9 1985 21.4 18.2 1995 15.7 16.5 2005 11.2 14.5 

1966 15.6 11.9 1976 22.1 18.3 1986 20.0 17.2 1996 12.0 10.6 2006 8.2 11.9 

1967 16.6 16.0 1977 15.6 13.5 1987 21.5 19.7 1997 11.3 10.7 2007 9.1 11.7 

1968 18.0 14.6 1978 16.3 12.9 1988 16.5 18.2 1998 9.7 12.5 2008 9.0 9.7 

1969 21.5 17.4 1979 15.3 12.8 1989 17.6 18.1 1999 10.4 10.7 2009 11.9 14.1 

SPI average = 16.6% RDI average = 15.7% 
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Highlights 

 

• Spatio-temporal changes of droughts in different climatic zones are assessed. 

• Performance of two indices (SPI and RDI) in assessing droughts is compared. 

• Past observations and current and future climate simulations are analyzed. 

• RDI, considering also PET, is better, especially for warmer climatic conditions.   

• PET, an important component, should not be ignored in future drought studies. 
 

 




