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SUMMARY

Longer, drier summers projected for arid and semi-arid regions of western North America under climate
change are likely to have enormous consequences for water resources and river-dependent ecosystems.
Many climate change scenarios for this region involve decreases in mean annual streamflow, late-
summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are
already common in this region, and it is likely that minimum flows will decrease and some perennial
streams will shift to intermittent flow under climate-driven changes in timing and magnitude of pre-
cipitation and runoff, combined with increases in temperature. To understand current intermittency
among streams and analyze the potential for streams to shift from perennial to intermittent under a war-
mer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB).
Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial
and the rest have some degree of intermittency. Dry years with combinations of high temperatures and
low precipitation were associated with more zero-flow days. Mean annual flow was positively related to
minimum flows, suggesting that potential future declines in mean annual flows will correspond with
declines in minimum flows. The most important landscape variables for predicting low flow metrics were
precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in
the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible
to increasing streamflow intermittency in the future.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The effects of climate change on river discharge in the western
US are of strong interest to scientists, resource managers and pol-
icy makers. Some studies have revealed that peak streamflow tim-
ing has shifted to earlier in the spring over the last century and that
runoff is likely to continue to occur earlier under most future cli-
mate scenarios (Hodgkins et al., 2003; Stewart et al., 2005; Rood
et al., 2008; Clow, 2010). In addition, streamflow magnitude during
late spring and summer has also shown a marked decline over the
last century (Zhang et al., 2001; Burn and Hag Elnur, 2002; Rood
et al., 2008; Leppi et al., 2011). According to several studies, mean
annual streamflow is projected to decrease significantly over the
next 100years in the southwestern US (Christensen and
Lettenmaier, 2007; Barnett and Pierce, 2009; Jerla et al., 2012;
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Seager et al., 2013). However, some have suggested strong seasonal
signatures will be associated with this change in average
conditions, with winter precipitation and streamflow increasing
(especially in northern latitudes) and late summer and fall pre-
cipitation and streamflow declining (especially in southern lati-
tudes) under climate change in western North America (Milly
et al., 2005; Cayan et al., 2008; CWCB, 2010; Seager et al., 2013).
In arid and semiarid regions of the western US where intermittent
streams are common, some studies show potential increases in
minimum flow (Do6ll and Schmied, 2012) but most studies predict
that minimum flows will decrease and the number of zero-flow
days will increase in the future (Das et al., 2011; Leppi et al,
2011; Jaeger et al., 2014). Decreased minimum flows could lead
some perennial streams to shift to intermittent streamflow
regimes under climate-driven changes in timing and magnitude
of precipitation and runoff, and increases in temperature.
Decreasing flows and the potential for streams to shift stream-
flow regime from perennial to intermittent could have significant
implications for human water use as well as riverine ecosystems
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(Arthington et al., 2013). Changes to key hydrologic factors, such as
minimum flow duration and riparian water tables, are likely to
affect important ecological functions. In the southwestern US, it
has been shown that both riparian plant and aquatic macroinverte-
brate community structure depend on the dominant hydrologic
regime (intermittent vs. perennial streams) and ecoregion (desert
vs. mountain streams) (Stromberg et al., 2005, 2010; Shaw and
Cooper, 2008; Brasher et al., 2010; Miller and Brasher, 2011). A cri-
tical first step to proactive management of these river basins is to
better understand hydrologic thresholds associated with shifts
from perennial to intermittent streamflow, so that we can model
where such thresholds are likely to be crossed under potential
future climate regimes.

In this study, we establish basic hydrologic relationships for
small streams in the Upper Colorado River Basin (UCRB) and then
build upon those relationships to understand how hydrology
may shift under future projected climate change. Our first objec-
tive was to understand historic relationships between inter-annual
variability in climatic factors (annual precipitation and tem-
perature) and streamflow intermittency along gaged streams that
already experience some intermittency. We focused our research
on streams in the UCRB, a region that is projected to experience
large future climate shifts (Christensen and Lettenmaier, 2007;
Clow, 2010; Seager et al., 2013).

Our second objective was to model minimum flow metrics from
existing daily discharge time series. Hydrologic modeling efforts
that aim to simulate future streamflow conditions generally pre-
dict synthetic metrics (such as mean annual flow), which do not
lend insight into possible future minimum flows (Christensen
and Lettenmaier, 2007; Barnett and Pierce, 2009). Where modeling
of minimum flows is attempted, estimates are generally associated
with a large degree of error (Wenger et al., 2010) although recent
efforts have shown considerable improvement (Leppi et al., 2011;
Jaeger et al., 2014). Our approach was to examine existing stream-
flow gage data to relate historic low flow measures to commonly
modeled flow metrics (mean daily flow, peak flow, and peak flow
timing). We reasoned that annual timing of peak runoff, mean dai-
ly flow, and annual maximum flow would explain some variation
in the observed annual minimum flows across these sites and thus
provide a basis for estimating the likelihood of future low flows
and the vulnerability of perennial streams becoming intermittent
under future changes in mean flows, peak flows, and peak flow
timing (Poff and Ward, 1989).

Our third objective was to understand the distribution of low
flow hydrology across the landscape by spatial modeling of several
selected streamflow metrics using environmental variables such as
climate, geology, soils and land cover. With an understanding of
the environmental conditions that are likely to drive variation in
low flow across the landscape, we can suggest where thresholds
of stream intermittency currently exist and where future vul-
nerabilities may occur in a drying climate (Snelder et al., 2013).

2. Methods
2.1. Study area

The Colorado River is one of the most intensively managed river
systems in the world and a vital water resource in the western US,
supplying water for cities, agriculture, energy production, and nat-
ural ecosystems across seven states and two countries (Sabo et al.,
2010). The Upper Colorado River Basin (UCRB) extends from south-
western Wyoming to northern Arizona and New Mexico, and
includes the western half of Colorado and the eastern half of Utah
(Fig. 1). The headwater streams of the basin form at high elevations
in the Wind River, Uinta, Wasatch and Rocky Mountains. Annual

precipitation varies widely across the region with the higher eleva-
tions receiving as much as 67 cm and lower elevations receiving
13-25 cm (Hereford et al., 2002). Precipitation in the headwaters
is dominated by snow accumulation from November to March/
April, which subsequently melts during the late spring and early
summer months and average peak snow thickness varies widely
with elevation and land cover (Clow et al., 2012). Correspondingly,
higher elevation and northern streams in the basin are character-
ized by snowmelt peak runoff in the late spring that decreases to
base flow in the late summer and early fall (Poff and Ward,
1989). Streams in the southern portion of the basin may experi-
ence a second streamflow peak in mid-to-late summer associated
with rainfall from the North American Monsoon, and this monsoon
rainfall is often the primary driver of annual flow in smaller, south-
ern UCRB streams (Hereford and Webb, 1992; Ely, 1997; Hereford
et al., 2002; Gochis et al., 2006).

2.2. Gage selection

We identified streamflow gages within the UCRB from the
National Hydrography Plus Data Set (NHD+, http://www.horizon-
systems.com/nhdplus/index.php) and acquired information on all
USGS gages that operated between 1895 and 2009 for a total of
1146 gages. We eliminated gages that failed to meet several speci-
fic criteria. First, gages not on streams or rivers (e.g., canals and
diversions) were eliminated, as were gages on large rivers. We
defined large river reaches with a subjectively-chosen threshold
of mean daily flow greater than 28 m>/s and eliminated them
because they are unlikely to shift hydrologic regime from perennial
to intermittent. Next, we narrowed our sample to gages with at
least 8 years of data, based on a detailed period-of-record analysis
in our study region that determined 8 years to be a minimum
record length necessary for certain low, mean and peak flow statis-
tics to be reliable (Moline, 2007). We used some of the same low
flow and high flow timing metrics that passed Moline’s period-
of-record ANOVA tests as well as mean flow metrics that are more
stable year-to-year. Most of our gage records covered the second
half of the twentieth century, at least overlapping the years
1975-1990, and included both dry and wet years (Cayan et al.,
1998; Hereford et al., 2002; Appendix 1). Length of record for our
study gages ranged from 8-83 years (median = 36 years). Sixteen
perennial and fourteen intermittent stream gages had lengths of
record 8-20 years, 26 perennial and 11 intermittent stream gages
had lengths of record 21-40 years, and 44 perennial and four inter-
mittent stream gages had lengths of record 41-83 years (Fig. 1,
Appendix 1).

To identify gages with flows largely unaltered by human activ-
ities we gathered information from a variety of sources. We began
by including those classified as unimpaired in the Hydro-Climate
Data Network (HCDN, http://water.usgs.gov/GIS/metadata/us-
gswrd/XML/hcdn.xml). We compiled information about impacts
for each gage location from USGS Annual Stream Gage Data
Reports, The Nature Conservancy’s database on stream diversions,
the National Hydrography GIS layer, and the GAGES II dataset
(Horizons System, 2006; TNC, 2010; USGS, 2010; Falcone, 2011).
We eliminated stream gages with upstream dams and reservoirs,
and with diversions greater than 20% of mean daily flow during
the growing season (May-September). We chose 20% diverted flow
as a threshold because “reference” streams are commonly defined
on a sliding scale of impairment and there is not a widely-accepted
standard for “minimally impacted streams” (Stoddard et al., 2006).
We included 30 gages (25 perennial and 5 intermittent) that
Falcone (2011) categorized as “non-reference” because they either
had (a) more than 8 years of data between 1975 and 1990, which
met our criteria, but less than 20 years of data, which failed
Falcone’s criteria, or (b) small diversions that we accounted for
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Fig. 1. Left panel: a map of the Upper Colorado River Basin (UCRB) study area showing major rivers and study gage locations by their length of record signified by size and
color. Right panel: a map of the UCRB study area showing shaded elevation, major rivers, and study gage locations: strongly intermittent, weakly intermittent and perennial
streams by color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

but did not meet Falcone’s criteria, or (c) mining-related impacts
that likely affected water quality but not discharge, thus meeting
our criteria but failing Falcone’s criteria for reference.

Our final gage set comprised 115 stream gages distributed
broadly across the UCRB (Fig. 1). We calculated the annual mini-
mum and maximum of daily mean flow, number of zero flow days,
day of year of minimum flow and day of year of maximum flow for
each year in each gage record. We also calculated 171 flow metrics
for our study stream gages using Hydrologic Index Tool (HIT) soft-
ware (Olden and Poff, 2003; Heasley, 2006). We selected nine of
the 171 flow metrics most relevant to mean and low flows for spa-
tial modeling, see Objective 3.

2.3. Streamflow categorization

Degree of intermittency is usually characterized along a con-
tinuum using the number and frequency of zero flow events and
the percent of a flow record with zero flow (Poff and Ward,
1989; Knighton and Nanson, 2001; Larned et al, 2010;
Stromberg et al., 2010). We used the flow indices “number of zero
flow days” (mean number of zero flow days/year) and “zero flow
months” (the percent of months in the flow record that had no flow
for the entire month) to choose subjective thresholds for intermit-
tency categories, similar to how others have categorized intermit-
tent streams (Larned et al.,, 2010; Stromberg et al., 2010). We
categorized stream reaches as strongly intermittent (SI) when
>5% of months over the period of record were zero flow months
and the number of zero flow days averaged across years was
greater than 20 per year; weakly intermittent (WI) when 0-5% of
months were zero flow months and the number of zero flow days
averaged across years was 1-19 days per year; and perennial (P)
when both the percent of zero flow months and the number of zero
flow days averaged across years were zero. For example, if a stream

had a twenty-year period of record (240 months), at least
12 months of the record would have to have zero flow for the
entire month, and an average across years of at least 20 days per
year of zero flow, for the stream to qualify as SI. The SI stream
category may also include ephemeral streams; however, we did
not distinguish between SI and ephemeral streams. Although we
combine the SI and WI into one “intermittent” category for several
of our analyses below, we have kept the distinction between SI and
WI streams for visualization purposes, to understand their distri-
bution on the landscape, and under Objective 3 to understand
which flow metrics best predict intermittency.

To describe our population of study stream gages on the land-
scape, we compared elevation and drainage area among the three
stream type categories by conducting a Welch’s two-sample t-test
for unequal samples between each category for both elevation and
drainage area (t test function of the stats package in R; R Develop-
ment Core Team; http://www.r-project.org/).

2.4. Objective 1 - climate drivers of flow intermittency

To assess relationships between climate and flow intermittency
on an annual basis, we analyzed how annual variability in tem-
perature and precipitation influences the number of zero flow days
for intermittent streams. We modeled the number of zero flow days
per year for intermittent (SI and WI combined) study streams with 5
temperature and precipitation variables that represent annual and
seasonal trends in climate from the WorldClim Global Climate Data-
base: annual precipitation, precipitation of the warmest quarter,
precipitation of the coldest quarter, mean temperature of the warm-
est quarter, and mean temperature of the coldest quarter (http://
www.worldclim.org/bioclim, Hijmans et al., 2005). Bioclimatic vari-
ables were preferable to monthly values of precipitation and tem-
perature because they better represent the seasonality and
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extremes of the regional climate (http://www.worldclim.org/bio-
clim). Annual values for each bioclimatic variable were extracted
from GIS layers for a headwater point upstream of each stream gage
location in each year. We also obtained annual values of the Palmer
Drought Severity Index (PDSI) from the National Climate Data Cen-
ter for the Upper Colorado River Basin climate divisions. PDSI is a
composite index of dryness calculated from measured temperature
and rainfall data (http://www.ncdc.noaa.gov/paleo/drought/drght_
pdsi.html). For an explanation of the PDSI equation please see
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/
palmer_drought/wpdanote.shtml and Palmer (1965). We used a
mixed-effects multiple regression with Poisson errors to model
the relationship between climate variables and the number of zero
flow days in each year of stream gage record. Our mixed-effects
model treated “site” as a random effect which considers each site
as drawn randomly from a larger population, but data within each
site as non-independent, thus correcting for potential within-site
autocorrelation. We implemented the model using penalized
quasi-likelihood and a Poisson error structure which accounts for
over-dispersed, zero-inflated count data such as ours. This statistical
approach allows for inference to the landscape scale from which
sites were selected (glmmPQL function of the MASS package in R;
Bolker et al., 2009).

2.5. Objective 2 - flow intermittency, low flows, and common flow
metrics

To model the relationship between minimum daily flow and the
predictor variables of mean daily magnitude, maximum daily mag-
nitude, and maximum flow timing, we analyzed intermittent
streams (SI and WI combined) separately from perennial stream
gages, because intermittent streamflow data are zero-inflated.
For both perennial and intermittent stream gages, data were tested
for normality and natural log transformed In(X + 0.001) as needed.
For both perennial and intermittent analyses, we used mixed-ef-
fects models with “site” as a random effect, for reasons explained
above, allowing for inference to landscape variables associated
with the observed flow metrics and correction of potential with-
in-site autocorrelation.

For perennial streams, we analyzed the relationship between
annual mean daily flow and annual minimum daily flow with a
mixed-effects linear regression on In-transformed data. We also
analyzed the relationships between timing (day of year) of maxi-
mum flow and annual minimum daily flow, and timing of maxi-
mum flow and annual mean daily flow with mixed-effects linear
regressions on In-transformed data (Ime function of the nlme pack-
age in R).

For intermittent streams, we first analyzed the relationship
between mean daily and minimum daily flows using only years
with reported minimum flows greater than zero to avoid zero-infla-
tion, and conducted a mixed-effects linear regression on In-trans-
formed data. We then analyzed the relationship between mean
daily flow and the number of zero flow days, and annual maximum
daily flow magnitude and the number of zero flow days using
mixed-effects quasi-Poisson regressions on years with one or more
zero flow days. We assumed a Poisson error structure because the
number of zero flow days are counts and employing a quasi-Poisson
regression accounts for over-dispersion in the count data (Crawley,
2007). We also analyzed the relationship between timing (day of
year) of maximum daily flow and number of zero flow days using
a mixed-effect quasi-Poisson regression. Last, we analyzed the rela-
tionship between timing of maximum flow and annual mean daily
flow with mixed-effects linear regressions on In-transformed data
(glmmPQL function of the MASS package and Ime function of the
nlme package in R). Statistical modeling approaches for Objectives
1 and 2 are summarized in Table 1.

2.6. Objective 3 - landscape drivers of flow intermittency and low
flows

To understand how low flow hydrology is conditioned by envi-
ronmental variables we modeled the relationship between nine
flow metrics related to minimum flow, mean flow and flow vari-
ability (Table 2) and environmental variables using conditional
inference (CI) trees and random forests (Breiman, 2001; Hothorn
et al.,, 2006; Strobl et al., 2009; Booker and Snelder, 2012). To
derive environmental variables, we rectified our sample of stream
gages to geographic data layers measuring climate (17), soils (2),
geology (13), and land cover (7) based on Falcone (2011). We then
calculated environmental variable values associated with the gage
site location or the upstream watershed as appropriate for each
environmental variable (Table 3). We used CI trees to understand
environmental thresholds that relate to levels of stream flow met-
rics (Breiman, 2001; Cutler et al., 2007). We used random forests to
reveal variables that are important for a flow metric but may have
been masked in the CI tree by the highest ranking variables for a
given split and also to rank flow metric models by predictive ability
(Cutler et al., 2007). To improve explanatory power and fit of each
random forest model, we conducted a model selection process
where we optimized model fit with the fewest number of vari-
ables. We calculated a model improvement ratio for each variable:
|In/Imax] Where I, is the importance value of a given variable and
Ihax iS the maximum importance value for the given model
(Murphy et al., 2010). We then iterated through model improve-
ment ratio thresholds from 0 to 1 in 0.1 increments and kept all
variables that fell above each given threshold. We selected the
model that kept the minimum number of variables, minimized
Mean Square Error (MSE) and maximized percentage of variation
explained for each flow metric (Murphy et al., 2010). We assessed
model fit with percentage of variation explained (psuedo-R?), MSE,
and a calculated P-value for the best model for each flow metric
(Murphy et al., 2010).

Further, to understand which flow metrics best predict inter-
mittency, we used a CI tree to model intermittency by minimum
and mean flow values leaving out zero flow days and months to
avoid circularity since we used those originally to define intermit-
tency. To model CI trees we used the ctree function of the party
package in R and to model random forests we used the ran-
dompForest function of the randomForest package of R.

Finally, we used the results from the intermittency CI tree and
the best performing RF models to choose flow metrics to illustrate
potential thresholds of stream intermittency under a drier future
climate.

3. Results
3.1. Streamflow categorization

Approximately 75% of gaged stream reaches included in our
analysis were perennial and the rest had some degree of intermit-
tency (Table 4, Fig. 1). Perennial stream reaches were higher in
elevation than strongly intermittent (SI) streams (t=—2.30,
P=0.04) and weakly intermittent (WI) streams (t=-3.03,
P =0.007). Perennial stream reaches also had larger drainage areas
than SI streams (t = —1.96, P = 0.064); however, WI stream reaches
varied greatly in drainage area (Fig. 2).

3.2. Objective 1 - climate drivers of flow intermittency

Mixed-effects multiple regression indicated that none of the
individual precipitation or temperature variables had significant
explanatory power; however, the Palmer Drought Severity Index
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Table 1

Descriptions of statistical models used to address Objectives 1 and 2 for perennial and intermittent streams. Models are listed with corresponding response variables, predictor

variables, and random effects.

Model Response variable

Predictor variables Random effect

Objective 1
All streams
Welch’s two-sample t-test

Intermittent streams
Mixed-effects Poisson multiple regression

Objective 2
Perennial streams
Mixed-effects linear regression Annual minimum daily flow

Annual mean daily flow

Intermittent streams

Mixed-effects linear regression Annual mean daily flow

Mixed-effects quasi-Poisson regression

Streamflow intermittency category

Number of zero flow days/year

Number of zero flow days (when > 0)

- Drainage area
- Elevation

- Precipitation Site
Annual
Winter
Summer

- Temperature

Winter

Summer

- Palmer Drought Severity Index

- Annual mean daily flow Site
- Timing of maximum flow
- Timing of maximum flow Site
- Annual minimum daily flow (when > 0) Site
- Timing of maximum flow
- Annual mean daily flow Site

- Maximum daily mean flow
- Timing of maximum flow

Table 2

Stream flow metrics modeled by environmental variables in the Upper Colorado River Basin under Objective 3 (units in parentheses).

Stream flow metric Definition (units)

Intermittency

Minimum flow CV

Baseflow

Zero flow days

Zero flow months on record
7 day minimum

Frequency of low flow pulses
Specific minimum flow
Specific mean daily flow

Strongly intermittent, weakly intermittent or perennial streams. See full definition of intermittency under Objective 1 methods
Standard deviation of annual minimum flows times 100 divided by the mean of annual minimum flows (%)

The mean of the ratios of the minimum annual flow to mean annual flow for each year times 100 (dimensionless)

Mean annual number of zero flow days (days)

The number of months during which there was no flow, over the entire record (months)

Mean of the annual minimums of a 7-day moving average for each year (cubic feet per second)

Mean of the annual average number of events below 5% of the mean flow for the entire record (number of events/year)

Mean of the annual minimum flows divided by drainage area (cubic feet per second/square mile)

Mean for the entire flow record divided by drainage area (cubic feet per second/square mile)

(PDSI) was a significant predictor of the number of zero-flow days
per year for SI and WI streams. PDSI was negatively related to zero-
flow days; as PDSI decreased (dry years), number of zero flow days
increased (Table 5).

3.3. Objective 2 - flow intermittency, low flows and common flow
metrics

For perennial streams, there was a positive, significant relation-
ship between annual mean daily flow and annual minimum daily
flow. There was also a positive relationship between annual timing
of maximum flow and annual mean daily flow: later maximum
flow dates corresponded with higher annual mean daily flows.
There was no relationship between annual timing of maximum
flow and minimum daily flow (Table 6, Fig. 3).

For intermittent streams (SI and WI combined), there was also a
positive relationship between annual mean daily flow and annual
minimum daily flows. There was a negative relationship between
the number of zero flow days per year and annual mean daily flow,
but not maximum daily flow or its timing. There was, however, evi-
dence of a negative relationship between timing of maximum flow
and annual mean daily flow (Table 6, Fig. 4). The statistical sig-
nificance of these relationships is not always obvious in a scatter-
plot (Fig. 4) because the mixed model accounts for the random
effect “site”, which is challenging to depict graphically.

In a posthoc t-test comparison, perennial and intermittent
streams did not differ in mean day of peak flow (t=1.45,
P=0.157); however, intermittent streams showed significantly
greater variance in day of peak flow (F = 15.86, P < 0.0001). Annual
mean daily flow was also significantly higher in perennial versus
intermittent streams (t = —6.74, P < 0.0001).

3.4. Objective 3 - landscape drivers of flow intermittency and low
flows

Of our nine random forest models, one explained 82% of varia-
tion and six explained 45-50% of the variation in flow metrics
(Table 7). Precipitation, forest land cover, and PET were the most
important variables for predicting mean flow. For low flow metrics,
precipitation, percent snow, PET, R factor, and drainage area were
important.

The CI tree model for the best random forest model (specific
mean daily flow: mean flow adjusted by drainage area) corre-
sponded to the important variables in the random forest model
(Fig. 5, Table 7). Streams with higher flows corresponded to higher
April precipitation, and lower flows to lower April precipitation
(Fig. 5). December precipitation, percent forest cover, R factor,
and annual basin precipitation also provided important variable
thresholds for specific mean daily flow. For the other flow metric
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Table 3

Environmental variables used to predict flow metrics on gaged streams in the Upper Colorado River Basin under Objective 3. Adapted from Falcone (2011). For full explanation of

variables, see Falcone (2011).

Variable Units Data source

Watershed drainage area km? USGS stream gage information

Mean annual precipitation cm 800 m PRISM data, 1971-2000

Relative humidity % 2 km PRISM data, 1961-1990

Average days of measurable precipitation days Derived from 2 km PRISM, 1961-1990

Mean-annual potential mm/year Estimated using the Hamon (1961) equation on PRISM data 1961-1990

evapotranspiration (PET)
Snow percent of total precipitation %
(percent snow)

Mean for period 1901-2000; (McCabe and Wolock, 2009)

Rainfall and Runoff factor (“R factor” of Universal Soil Loss Equation); average annual value for period

Average soil permeability in/h (Wolock, 1997)
Soil Rainfall and Runoff factor (“R factor”) 100 s ft-tonf in/h/
ac/yr 1971-2000, PRISM

Mean January precip cm 800 m PRISM data, 1971-2000
Mean February precip cm 800 m PRISM data, 1971-2000
Mean March precip cm 800 m PRISM data, 1971-2000
Mean April precip cm 800 m PRISM data, 1971-2000
Mean May precip cm 800 m PRISM data, 1971-2000
Mean June precip cm 800 m PRISM data, 1971-2000
Mean July precip cm 800 m PRISM data, 1971-2000
Mean August precip cm 800 m PRISM data, 1971-2000
Mean September precip cm 800 m PRISM data, 1971-2000
Mean October precip cm 800 m PRISM data, 1971-2000
Mean November precip cm 800 m PRISM data, 1971-2000

Mean December precip

Dominant surficial geology (11)
Dominant bedrock permeability (2)
Watershed percent Developed
Watershed percent Forest

Watershed percent Planted/cultivated
Watershed percent Natural Barren
Watershed percent Shrubland
Watershed percent Herbaceous
Watershed percent Wetlands

2006 NLCD data
2006 NLCD data
2006 NLCD data

3¢ 22 3¢ 3¢ 3 R @ 3 3 0
o5 3

800 m PRISM data, 1971-2000

Highest percent of area, surficial geology, Hunt (1979)
Highest percent of area, bedrock geology (Wolock et al., 2004)
2006 NLCD data, Sum of classes 21-24

2006 NLCD data, Sum of classes 41-43

2006 NLCD data, Sum of classes 81 and 82

2006 NLCD data, Sum of classes 90 and 95

Table 4

Stream gages analyzed in this study, divided into “degree of flow intermittency” categories. See Objective 1 methods for category definitions. For each streamflow category four
metrics are shown: number of gages, mean annual minimum flow (m>/s), mean minimum flow coefficient of variation (CV, the standard deviation divided by the mean of the
annual minimum flows times 100 (%)), mean baseflow index (mean of the ratios of the minimum annual flow to mean annual flow for each year).

Degree of flow intermittency Number of gages

Mean annual minimum flow (m3/s)

Mean minimum flow CV (%) Mean baseflow index (ratio)

Perennial 86 0.38 £0.06
Weakly intermittent 17 0.021 + 0.005
Strongly intermittent 12 0.001 £ 0.0007
Total study gages 115

36.06 +2.19 0.172 £0.011
133.94+16.01 0.071 £0.016
299.67 £41.83 0.002 +0.001

CI tree models, PET, drainage area, precipitation variables, and per-
cent snow were again the most important variables (Appendix 2).

Stream flow intermittency in a CI tree model was best predicted
by minimum flow CV and specific mean daily flow (Fig. 6). Greater
minimum flow CV was associated with greater intermittency.
Based on these results from the intermittency CI tree and the best
performing RF models, we used the metrics “specific mean daily
flow” and “minimum flow CV” to illustrate potential thresholds
of stream intermittency under a drier climate. The intermittency
CI tree model specified 61.84% minimum flow CV and 0.096 speci-
fic mean daily flow as threshold values separating sets of streams
(Fig. 6). Streams that had greater than 61.84% minimum flow CV
and greater than 0.096 specific mean daily flow included some of
the driest streams: all WI and SI streams (Fig. 7). Streams that
had greater than 61.84% minimum flow CV but less than 0.096
specific mean daily flow were moderately dry streams: they did
not include any SI streams but included a mix of WI and perennial
streams. We plotted specific mean daily flow and minimum flow
CV values by stream type and included the thresholds 61.84% mini-
mum flow CV and 0.096 specific mean daily flow to illustrate
which perennial streams are the driest and may be the most
threatened by climate drying (Fig. 7).

4. Discussion

Our results indicate that individual climate variables are poor
predictors of inter-annual variation of zero-flow days on intermit-
tent streams (SI and WI streams combined, Table 2). However, the
composite precipitation and temperature index, Palmer Drought
Severity Index (PDSI), was highly correlated with degree of stream
intermittency. Dry years with combinations of high temperatures
and low precipitation led to more zero-flow days. These findings
suggest that potential increases in drought conditions under cli-
mate change will increase zero flow days. Studies of PDSI and other
drought indices show that droughts will increase in frequency and
intensity in southwestern North America due to increased tem-
perature and evaporation (Cayan et al., 2010; Seager and Vecchi,
2010; Strzepek et al., 2010; Gutzler and Robbins, 2011; Wehner
et al., 2011). Even if precipitation stays the same or increases in
the future, increased evaporation due to warming is likely to out-
weigh changes in precipitation and increase overall aridity (Smith
and Wagner, 2006).

Annual minimum flow for both intermittent and perennial
stream reaches was most closely related to average flow. Although
this relationship was significant for both intermittent and perennial



774 L.V. Reynolds et al./Journal of Hydrology 523 (2015) 768-780

2600

2500 4
2400 4 %
2300 4

2200 4

Elevation (m)

2100 +

2000 +

1900 -

500
400 -

300 -

200 - §

i

ot\@“l -

Drainage area (sq km)

-

o

o
L

\" 12\
e

S\

Fig. 2. Mean elevation + SE (m, upper panel) and mean drainage area size * SE (sq
km, lower panel), for strongly intermittent, weakly intermittent and perennial
study stream reaches.

streams, the relationship was somewhat noisier for intermittent
streams (Table 6, Figs. 3 and 4). This is likely because the range of
both mean and minimum flow values is larger, period of records
are longer, and the sample size is larger for perennial streams. In
addition, the physical conditions governing flow generation (soil
moisture conditions, potential evapotranspiration, groundwater
recharge, baseflow, etc.) are often different and sometimes more
variable on intermittent streams than on perennial streams
(Smakhtin, 2001). We also found that the number of zero flow days
(for intermittent stream reaches: SI and WI combined) each year
was best predicted by average flow. These findings suggest that
under a drier future climate (Seager et al., 2007), decreased mean
flow will be associated with reduced minimum flow and increased
number of zero flow days. Our results provide empirical support
from the historical record for prior studies that show mean and
minimum flows decreasing under a projected warmer, drier future
climate in the UCRB (Seager et al., 2007; Cayan et al., 2008; Koirala
et al., 2014).

Table 5

Surprisingly, we found only weak evidence that changes in the
timing of maximum streamflow related to minimum flow. Our
results suggest that a shift in maximum flow to earlier in the year
(e.g., Clow, 2010), may not significantly modify minimum flow or
zero flow days. Alternatively, the effect may be more complex than
our analysis could detect. For example, the timing of maximum
flow might interact with the magnitude of maximum flow and
hydrologic conditions later in the summer to determine inter-an-
nual variation in zero flow days. Further analyses are needed to
determine if timing of maximum flow influences minimum flow
magnitude and if other hydrologic variables condition the
relationship.

We also found the negative relationship between average flow
and maximum flow timing for intermittent streams to be coun-
ter-intuitive. However, in a posthoc analysis to explore timing of
maximum flow in perennial versus intermittent streams, we found
that although the average day of maximum flow for perennial and
intermittent streams was not different, intermittent streams had
greater variability in the day of maximum flow. This suggests that
the intermittent stream group includes streams that have late-
summer monsoon-associated peak flows as well as spring snow-
melt peak flows. Intermittent streams also, on average, had lower
average daily flows. Monsoon peak flow streams, whose peak flow
occurs later in the year, are usually lower in elevation and have
smaller mean annual flows than snowmelt streams (Moline,
2007). In comparison, snowmelt peak flow streams have relatively
early peak flow and are associated with larger mean annual flows.
Because our grouping of intermittent streams included both snow-
melt peak streams with larger annual flows and monsoon peak
streams with smaller annual flows, this leads to a negative rela-
tionship between maximum flow timing and average flow.

As expected, many of the landscape variables associated with
climate and aridity were important for predicting mean and mini-
mum flow metrics in our spatial analysis. Monthly and annual pre-
cipitation, potential evapotranspiration (PET), and percent snow
were highly ranked variables for almost all of the mean and mini-
mum flow metrics modeled. Higher precipitation, lower PET and
higher percent snow were associated with higher mean and mini-
mum flows and lower flow variability. Forest land cover also
ranked highly for predicting mean flow, and the rainfall and runoff
soil factor (R factor) was important for some of the lesser-ranked
models. Unexpectedly, none of our geology variables proved
important for predicting any of the flow metrics. Others such as
Kroll et al. (2004) have also found that geologic variables are poor
predictors of low flow. However, they used soil characteristics as a
proxy for geology and then suggested that subsurface geologic
variables, such as those we employed, should actually improve
models of stream low flows (Kroll et al., 2004). Although the lack
of importance of our geology variables is surprising, this result
indicates that climate variables outweigh our chosen geologic

Results of a mixed-effect multiple regression with Poisson errors modeling the number of zero flow days per year for intermittent streams with climate predictor variables
(Objective 1). Climate predictor variables include annual precipitation, and precipitation and mean temperature in the warmest and coldest quarters (www.worldclim.org,

Hijmans et al., 2005). Significant (P < 0.05) variables are shown in bold type.

Fixed effects Estimate SE t-Statistic P-value
Intercept 2.9290 0.9024 3.2458 0.0012
Annual precipitation —0.0004 0.0003 -1.2024 0.2296
Precipitation of the warmest quarter —0.0006 0.0008 —0.6569 0.5115
Precipitation of the coldest quarter 0.0007 0.0004 1.6640 0.0966
Mean temp of the warmest quarter 0.0520 0.0492 1.0577 0.2906
Mean temp of the coldest quarter 0.0082 0.0236 0.3490 0.7272
Palmer Drought Severity Index —0.0656 0.0172 -3.8237 0.0001
Random effect Variance SD

Site 1.5678 7.9672
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Table 6

Results from mixed-effect models used to model minimum flows and zero flow days by mean and maximum flows for perennial (top half) and intermittent (lower half) streams
(Objective 2). For each model, the relationship modeled, resulting t-statistic, and P-value are given. Models where the predictor variable is significant are in bold type.

Mixed model fixed-effect relationships t-Statistic P value Random effect “site”
Perennial streams SD estimate
Ln(minimum flow) = 0.55 * Ln(mean daily flow) — 1.96 31.67 <0.001 0.83
Ln(minimum flow) = 0.04 « Ln(max flow day) — 2.16 0.85 0.39 1.42
Ln(mean daily flow) = 0.12 % Ln(max flow day) — 0.56 2.70 0.007 1.26
Intermittent streams

Ln(minimum flow) = 0.64 » Ln(mean daily flow) — 3.54 10.88 <0.001 0.69

Zero flow days per year = exp(—1.50 x mean daily flow +4.63) -4.34 <0.001 0.78

Zero flow days per year = exp(—0.04 * maximum daily flow +4.50) -1.61 0.11 0.84

Zero flow days per year = exp(—0.0004 « max flow day + 4.48) -0.82 0.41 0.88
Ln(Mean daily flow) = —0.30 % Ln(max flow day) — 1.21 -3.00 0.003 1.87

Annual minimum daily flow (cms)

20

15

10

Annual mean daily flow (cms)

50 150 250 350
Day of maximum flow

Ln (Annual minimum daily flow (cms))
-2
1

4 -2 0 2
Ln (Annual mean daily flow (cms))

Fig. 3. For perennial study stream gages in the Upper Colorado River Basin: annual minimum daily flow (m?/s) as a function of the day of the year of annual maximum daily
mean flow (upper left panel), the natural log (Ln) of annual minimum flows plotted as a function of Ln of annual mean daily flows (upper right panel), and annual mean daily
flow (m>/s) as a function of the day of the year of annual maximum flow (lower left panel). Each point in each graph represents a year for a particular study stream reach.

variables for predicting these flow metrics in this region and at this
scale. Results from our random forest and conditional inference
tree modeling further support the idea that increased aridity in this
region will decrease minimum flows, mean flows, increase mini-
mum flow variability, and potentially increase zero flow days.

We used zero flow days and months to define intermittency in
our study, however, we also tested which of the other flow metrics
best predicted intermittency. Interestingly, intermittency was
most strongly related to minimum flow variability (Fig. 6). Streams
with zero flow days had much higher minimum flow variability, a
relationship which has also been shown in other studies (Poff,
1992; Moliere et al,, 2009; Kennard et al., 2010). If mean flows
decrease and flow variation increases under drying summer condi-
tions, then perennial streams with relatively high minimum flow
CV and lower mean flow will be more likely to incur zero flow days
and thus be at risk of crossing into intermittency (Fig. 7).

We acknowledge the likelihood that current hydro-climatic
relationships (e.g., between drought and streamflow) will change

under novel conditions in the future (Milly et al., 2008). Non-sta-
tionarity is an on-going challenge for climate change scientists;
our understanding of past relationships is an important tool for
trying to understand future relationships, but it is almost certain
that the parameter values will change (Milly et al., 2008). Our
study represents one starting point for understanding how low
flows may change in the future and our predictions may be adjust-
ed as our understanding of future hydroclimatic trends improves.

In general, individual streams will vary in their susceptibility to
reduced minimum flows under drier conditions depending on
other components of the physical environment that we were not
able to measure, such as groundwater hydrology and floodplain
soil characteristics (Murphey et al., 1977; Smakhtin, 2001; Tague
et al., 2008). For example, streams that receive perennial ground-
water inflows may not incur zero flow days, at least in the short
term, despite increases in drought. In the long term, groundwater
levels and inflows may also decrease in response to shifts in pre-
cipitation and increased drought; however, the lag time between
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Fig. 4. For intermittent study stream gages in the Upper Colorado River Basin: zero flow days (count) plotted as a function of the natural log (Ln) of annual mean daily flow
(m?/s, upper left panel) and zero flow days (count) as a function of Ln annual maximum daily mean flow (m>/s, middle left panel). Although in our statistical analysis we
modeled un-transformed zero flow days with annual mean daily flow and with annual maximum daily mean flow, for visualization LN transformation was necessary for the
predictor variables. Other plots include Ln of annual minimum daily flows (m?/s) as a function of Ln of annual mean daily flows (m?/s, upper right panel), annual mean daily
flow (m3[s) as a function of the day of the year of annual maximum flow (middle right panel), and zero flow days (count) as a function of the day of the year of annual
maximum flow (lower left panel). Each point in each graph represents a year for a particular study stream reach.

Table 7

Results of random forest models using landscape variables to predict streamflow metrics (Objective 3). Models with better than 50% of variance explained are in bold type.

Stream flow metric Top five predictor variables (in decreasing importance) Variance P-
explained (%) value
Specific mean daily flow (adjusted by April precip, Percent forest land cover, Average days of measurable precipitation, Average  82.55 <0.001
drainage area) annual basin precip, PET
Frequency of low flow pulses February precip, June precip, PET, May precip, Dec precip 50.3 <0.001
Minimum flow CV Percent Snow, November precip, PET, February precip, R factor 49.8 <0.001
7 day minimum Drainage area, August precip, October precip, September precip, January precip 49.4 <0.001
Zero flow months on record R factor, Percent snow, December precip, Average days of measurable precipitation, Percent  48.1 <0.001
barren land cover
Specific minimum flow (adjusted by December precip, Average annual basin precip, November precip, February precip, April 47.6 <0.001
drainage area) precip
Zero flow days per year Percent snow, December precip, February precip, R factor, November precip 45.3 <0.001
Intermittency Percent barren land cover, Drainage area, PET, June precip, November precip OOB* error rate:
20
Baseflow Drainage area, February precip, Average annual basin precip, May precip, March precip 26.9 <0.001

2 0OO0B = out-of-bag error rate which is a cross-validation measure calculated by classification random forests. Better models have lower OOB error rates. See Cutler et al.

(2007) for details.

changes in climate and groundwater response will depend on the
system and could vary from decades to centuries (Guay et al.,
2004; Liu et al., 2004).

Stream flow patterns in ephemeral streams may be less modi-
fied by decreases in annual or minimum flows because these sys-
tems already flow only in direct response to individual
precipitation events. An analysis by Botter et al. (2013) found that

rain-driven streams with erratic hydrology will be more resilient
and more likely to maintain their flow regimes under future cli-
mate changes than streams with more predictable flow regimes.
Extreme events, such as large storms, are predicted to increase in
frequency under climate change, and this could lead to over-all
increased flows in ephemeral streams (Diffenbaugh et al., 2005;
Stromberg et al., 2010).
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Fig. 5. Conditional inference tree model of specific mean daily flow using landscape predictor variables. See Table 3 for a definition of the predictor variables used. Ovals
indicate the most significant variable for each split in the tree and the lines below each oval indicate the threshold value of that variable for the split. Box plots indicate the
mean and variance of specific mean daily flow for the gage sites within each terminal node. N = the number of gage sites within a terminal node. At each terminal node, no
predictor variable had a significant (P < 0.05) relationship to specific mean daily flow and thus no further subdivision was warranted.
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Fig. 6. Conditional inference tree model intermittency using stream flow predictor variables, except zero flow days and months. See Table 2 for a definition of the stream flow
predictor variables used. Ovals indicate the most significant variable for each split in the tree and the lines below each oval indicate the threshold value of that variable for the
split. Vertical bars show the proportion of strongly intermittent (S, light gray), weakly intermittent (WI, medium gray), and perennial streams (P, dark gray) stream gages at a
terminal node. N = the number of gage sites within a terminal node. At each terminal node, no stream flow predictors had a significant (P < 0.05) relationship to specific mean

daily flow and thus no further subdivision was warranted.
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Hydrologic analyses on intermittent streams are challenging for
a number of reasons, largely because there is a dearth of records
and information on intermittent streams compared to perennial
streams (Snelder et al., 2013; Datry et al., 2014). Stream gages
are more often installed and have longer periods of record on
perennial streams than intermittent streams (Moline, 2007,
Carlisle et al., 2010; Snelder et al., 2013) Because of this, our ana-
lysis was biased towards perennial streams that are mostly in
the northern portion and higher elevations of the basin whereas
many ungaged, low-order intermittent streams are located in the
southern part of the basin (Hereford, 1984; Poff, 1996; Moline,
2007). Thus, our analysis probably underrepresents intermittent
streams and streams that are likely to shift toward greater inter-
mittency under drier summer conditions. Further, the gage records
that do exist on intermittent streams in the region are, on average,
shorter than those on perennial streams (Fig. 1, Appendix 1). We
used 8 years as a minimum period of record, based on Moline
(2007) who analyzed 172 hydrologic metrics on 10 streams in
our study region and calculated flow metrics at intervals between
5 and 48 years of record, starting in the same year. Moline (2007)
concluded that at least 8 years of record was necessary for metrics
to stabilize and be reliable. This is a shorter period than Kennard
et al. (2010) determined was necessary for flow metrics to stabilize
on intermittent streams in Australia (15 years). More period of
record analyses on intermittent streams in different regions
around the world are needed, given the potential for differences
in multi-decadal wet and dry cycles to influence results (Mauget,
2003; Kennard et al., 2010). Lastly, another limitation of stream
gage records is that they may not capture longitudinal variation
in streamflow that is common, such as where perennial and inter-

mittent reaches occur on the same stream (Larned et al., 2010;
Jaeger et al., 2014). The limitations of our analysis and the lack of
existing literature highlight the need for a better understanding
of intermittent stream hydrology, supported by more empirical
data (Smakhtin, 2001; Snelder et al., 2013).

5. Conclusions

Our results indicate that perennial streams in the UCRB with
low minimum flows and high minimum flow variability may be
vulnerable to increasing streamflow intermittency in the future.
Large-scale hydrologic modeling efforts to project future stream-
flow in the UCRB indicate there will be declines in mean annual
flow (Christensen and Lettenmaier, 2007; McCabe and Wolock,
2007; Barnett and Pierce, 2009). We have demonstrated a relation-
ship between mean annual flow and minimum flows, indicating
that declines in mean annual flows are likely to correspond with
declines in minimum flows. Moreover, our spatial analysis showed
that mean flow and minimum flow are closely tied to climate vari-
ables, also supporting the idea that increased aridity will lead to
increased flow intermittency.

Projected increases in aridity and drought in the UCRB under
climate change are expected to have substantial consequences
for water resources and river-dependent ecosystems in the region
(Diffenbaugh et al., 2005; Cayan et al., 2010). Streams that incur
more zero flow days per year may see declines in riparian water
table levels and shifts in associated riparian and aquatic ecosys-
tems (Lite et al., 2005; Stromberg et al., 2010). Our study attempt-
ed to deal with un-impacted rivers and did not account for human
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water use interactions with future hydrologic conditions. However,
both human and natural ecosystems will be affected by a warmer
and drier future climate and associated water resource limitations
(Palmer et al., 2008).
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