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Abstract
Streamflow is often intermittent in arid and semi-arid regions. Stochastically simulated data play a key role in managing water resources with
intermittent streamflows. The stochastic modeling of intermittent streamflow that incorporates the seasonality of key statistics is a difficult task.
In the current study, the product model was tested to simulate the intermittent monthly streamflow by employing the periodic Markov chain
(PMC) model for occurrence and the periodic gamma autoregressive (PGAR) and copula models for amount. The copula models were tested in a
previous study for the simulation of yearly streamflow, resulting in successful replication of the key and operational statistics of historical data;
however, the copula models have never been tested on a monthly time scale. The intermittent models were applied to the Colorado River system
in the present study. A few drawbacks of the PGAR model were identified, such as significant underestimation of minimum values on an
aggregated yearly time scale and restrictions of the parameter boundaries. Conversely, the copula models do not present such drawbacks but
show feasible reproduction of key and operational statistics. We concluded that the copula models combined with the PMC model is a feasible
method for the simulation of intermittent monthly streamflow time series.
© 2014 Published by Elsevier B.V. on behalf of International Association for Hydro-environment Engineering and Research, Asia Pacific
Division.
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1. Introduction

Synthetic data obtained from stochastic models play a key
role in analyzing extreme events, such as droughts, and in
evaluating alternative designs and operating rules of hydraulic
structures, especially in arid or semi-arid regions (Lee and
Salas, 2006; Salas, 1993; Salas and Abdelmohsen, 1993;
Salas et al., 2006; Stedinger et al., 1983; Stedinger and
Tasker, 1985). Many alternatives have been developed,
which originated from a simple autoregressive model
(Koutsoyiannis, 1994; Kwon et al., 2007; Lall, 1995; Lall
et al., 1996; Lee and Ouarda, 2010; Lee and Salas, 2011;
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Lee et al., 2010; Ouarda et al., 1997; Salas and
Abdelmohsen, 1993; Salas and Boes, 1980; Salas and Lee,
2010; Srinivas and Srinivasan, 2001, 2006; Stedinger and
Vogel, 1984; Sveinsson et al., 2003).

A few characteristics remain difficult to reproduce, such as
long-term persistency and intermittency. Long-term persis-
tency (Lee and Ouarda, 2010; Sharma et al., 1998; Young and
Holt, 2007) implies the auto-dependency structure of more
than a monthly time scale (e.g., yearly). Intermittency
(Koutsoyiannis, 2006) is identified by one or more zero values
between non-zero values in a time series when values repre-
sent events or amounts of streamflows or rainfall. For example,
in the Colorado River system, the monthly datasets of some
tributary stations display intermittency.

Few effective models have been developed for generating
monthly streamflow data with intermittency because of
d stochastic simulation of seasonal intermittent streamflows for arid regions,
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structural difficulties inherent in modeling seasonality and
intermittency. Chebaane et al. (1995) applied the product
model, which comprises both amount and occurrence. The
occurrence process has been described using the periodic
discrete autoregressive (PDAR) model; the amount process
has been described using the periodic autoregressive moving
average (PARMA) model. The occurrence process must be
modeled to preserve the statistical behavior of historical re-
cords. For example, the occurrence probability of a certain
month in historical records should be reproduced by the
simulated data.

We hypothesized that the physical process presented by the
PARMA model is periodically stationary and that the marginal
noise processes are normally distributed. Because monthly
streamflow data are not normally distributed, the data needs to
be transformed. The process of fitting the model to the
transformed data and then back-transforming the data results
creates bias toward the statistics simulated to describe the
original space. Instead of this transformation, a model with a
skewed distribution (i.e., gamma) was developed with pre-
serving lag-1 serial correlation on a seasonal time series
(Fernandez and Salas, 1986), namely the periodic gamma
autoregressive (PGAR) model. However, the PGAR model
requires a very complicated procedure to simulate the se-
quences, and its parameter space is limited. Meanwhile, Lee
and Salas (2011) developed the copula-based stochastic
model and applied it to a yearly time series. The results
showed that the copula-based stochastic simulation model
easily captures the key statistics of historical data and does not
require any transformation. Furthermore, a number of appli-
cations for copula have been popularly reported in literature,
including drought analysis (Shiau et al., 2007; Song and
Singh, 2010; Wong et al., 2010) and flood frequency (Favre
et al., 2004; Kao and Govindaraju, 2008; Zhang and Singh,
2006).

Therefore, we applied the copula-based model to monthly
time scale data. In the current study, two models for the
amount process (the PGAR and copula models) and one model
for the occurrence process (the PDAR model) were tested to
simulate intermittent monthly streamflow. The pros and cons
of the models were inspected, and the model was applied to
the Colorado River system.

2. Proposed modeling approach

To model an intermittent streamflow time series, the
product of occurrence and amount is denoted as follows:

Yn;t ¼ Xn;tZn;t ð1Þ

where n ¼ 1,2,…,N and t ¼ 1,2,…,u, representing years and
seasons, respectively; N and u are the numbers of years and
seasons, respectively. Note that when the data time scale is
monthly, u ¼ 12. Xn,t denotes the binary (0 or 1) occurrence
process; Zn,t denotes the amount process; and Yn,t is the
product of the two processes. The traditional PDAR(1) model
was applied to simulate the occurrence process, Xn,t. The
Please cite this article in press as: Jeong, C., Lee, T., Copula-based modeling an
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PGAR model was applied to simulate the amount process. The
Bivariate Normal Copula with Gamma marginal distribution
(BNCG) was also used to simulate the amount process.
2.1. Occurrence process

2.1.1. Order-1 periodic discrete autoregressive (PDAR(1))
model

The PDAR(1) is defined as follows:

Xn;t ¼ Vn;tXn;t�1 þ ð1�Vn;tÞWn;t ð2Þ

where Xn,t is a periodic dependent Bernoulli process; and Wn,t

and Vn,t are independent Bernoulli processes with probabilities
P[Vn,t ¼ 1] ¼ gt and P[Wn,t ¼ 1] ¼ dt, respectively. Chebaane
et al. (1995) showed that the PDAR(1) model is equivalent to a
periodic Markov chain (PMC) model, in which the elements of
the transition probability matrix vary by season as

ptði; jÞ ¼ P½Xn;t ¼ jjXn;t�1 ¼ i� ð3Þ

where i, j ¼ 0 or 1.
The transition probability matrix is expressed as a function

of the parameters of PDAR(1) such that�
ptð0;0Þ ptð0;1Þ
ptð1;0Þ ptð1;1Þ

�
¼
�
gtþð1�gtÞð1�dtÞ ð1�gtÞdt
ð1�gtÞð1�dtÞ gtþð1�gtÞdt

�
ð4Þ

The limiting distribution P[Xn,t ¼ 1] ¼ mt is given by

mt ¼ gtmt�1 þ ð1� gtÞdt ð5Þ
The parameters of PMC are estimated by

bptði; jÞ ¼
ntði; jÞ
ntðiÞ ð6Þ

where nt(i,j ) is the number of times that the variable Xn,t in
state i at time t � 1 passes to state j during the period t; and
nt(i) ¼ nt(i,0) þ nt(i,1) is the number of times that Xn,t is in
state i at period t. gt and dt are easily estimated from the
relationship outlined in Eqs. (4) and (6).
2.2. Amount process
Two models were applied to simulate the amount process of
the product model in the current study: (1) PGAR and (2)
bivariate normal copula. These models are not based on
Gaussian marginal distributions. Instead, PGAR assumes that
the marginal distribution is gamma, while the bivariate normal
copula model can have any feasible distribution for a marginal
distribution. In practical applications, a gamma marginal dis-
tribution is applied for the bivariate normal copula even if
there is no prior limitation for selecting marginal distribution
because (1) the gamma distribution is one of the most
frequently selected distribution types for hydrological fre-
quency analysis; (2) it is comparable to the PGAR model for
the marginal distribution; and (3) it is representative of the
d stochastic simulation of seasonal intermittent streamflows for arid regions,
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positively skewed distributions that are typical in historical
streamflow data.

For periodic models, Fourier series analysis may be used to
model the periodic patterns of certain statistics. Fourier series
analysis has been a popular method for use in stochastic models
in which the time scale is relatively small, such as weeks and
days. Katz and Parlange (1995) used this procedure to capture
the diurnal cycle in hourly rainfall data. In the present study, the
Fourier series was applied to smooth out periodic patterns,
especially the skewness and lag-1 correlation, which have high
degrees of uncertainty in parameter estimations.

2.2.1. Periodic gamma autoregressive (PGAR)
The gamma distribution is denoted as

fz ¼ 1

aGðbÞ
�
z� l

a

�b�1

exp

�
�z� l

a

�
ð7Þ

where a > 0, b > 0 and z > l. If l ¼ 0, then Eq. (7) presents a
two-parameter gamma distribution represented as
Z ~ gamma(a, b and l) or gamma(a, b). The relationships
between the distribution parameters and the key statistics are

b¼
�m
s

�2
and a¼ m

b
for 2-gamma distribution ð8Þ

b¼
�
2

g

�2

; a¼ sg

2
; and

l¼ m� ab for 3-gamma distribution

ð9Þ

where m, s and g represent the mean, standard deviation and
skewness, respectively. PGAR was developed by Fernandez
and Salas (1986) and is defined as

Zn;t ¼ ftZn;t�1 þ Zdt
n;t�1En;t ð10Þ

where Zn,t is a continuous positive variable whose marginal
distribution is gamma; ft and dt are seasonal autoregressive
coefficients; and En,t is the noise process. Note that for a three
parameter case, Zn,t should be subtracted first by lt and then
applied to model Eq. (10).

The model parameters ft and dt, and the noise variable En,t

are given by264ft ¼ 0 bt<bt�1

ft ¼ r1;t
at

at�1

�
bt

bt�1

�1=2

bt � bt�1

ð11Þ

264dt ¼ r1;t

�
bt�1

bt

�1=2

bt<bt�1

dt ¼ 0 bt � bt�1

ð12Þ

and�
Et ¼Wn;t bt<bt�1

Et ¼ 3n;t bt � bt�1
ð13Þ
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where r1,t(z) is the lag-1 autocorrelation coefficient at period
t. Additionally, Wn,t and 3n,t are defined in terms of at, bt and
r1,t so that zn,t has a lag-1 autoregressive dependence structure
with periodic gamma marginal distribution. Wn,t and 3n,t are
simulated as follows:

(a) Generation of 3n,t

3t ¼ 3tð0Þ þ 3tð1Þ ð14Þ
3tð0Þegammaðat;bt � bt�1Þ ð15Þ264

3tð1Þ ¼ 0 M ¼ 0

3tð1Þ ¼
XM
m¼1

Ym

�
ft

at

at�1

�Um

M>0
ð16Þ

where M is a Poisson random variable with the expected
value EðMÞ ¼ �bt�1 lnðftðat=at�1ÞÞ, [Um]m2
{1,…,M} ~ Unif(0,1) and [Ym]m2{1,…,M} ~ Exp(at). Here
Exp(a) represents the random variate of exponential dis-
tribution with shape parameter (a).

(b) Generation of Wn,t

Wt ¼ at

adt
t�1

ste
dt
t ð17Þ

steBetaðbt;bt�1 � btÞ ð18Þ

eteExp
 
V 0
t þ lim

K/∞

XK
k¼1

Vt;k

!
ð19Þ

V 0
t ¼

��wð1� dtÞ w:p: dt
�wð1� dtÞ �ExpðbtÞ w:p: 1� dt

ð20Þ

where w is Euler's constant (¼0.577216…)

Vt;k ¼
� ð1� dtÞ=k� 0 w:p: dt
ð1� dtÞ=k�Expðbt þ kÞ w:p: 1� dt

ð21Þ
2.2.2. Copula-based time series modeling
A copula is the joint cumulative distribution function of a

random vector with marginals that are uniform (Joe, 1997).
The copula contains all of the information related to the
dependence structure of its components. The copula concept
makes it easier to formulate multivariate models compared to
other complex and limited multivariate models. Therefore, in
the current study, the ability of copulas to conveniently
describe the dependence structure was employed to model the
time dependence structure.

A yearly simulation model using the copula was described
by Lee and Salas (2011). In the present study, the periodic
copula model combined with the occurrence model was tested.
Among a number of copula models, the bivariate normal
(BVN) copula was employed to model periodic streamflow
data at first. In the following section, the other copula func-
tions were applied to each month. One copula model from the
copula candidates as shown in Table 1 that shows the highest
likelihood value was selected.

The mathematical description of the time series model with
BVN copula is as follows.
d stochastic simulation of seasonal intermittent streamflows for arid regions,
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Table 1

Commonly used copula models.

Type C(u,v) Cvju Range

Frank �1
q
ln

�
1þ ðe�qu�1Þðe�qv�1Þ

e�q�1

�
�1

q
log

�
1þ ðe�qu�1Þðe�qv�1Þ

ðe�q�1Þ

�
q s 0

Clayton ðu�q þ v�q � 1Þ�1
q ðu�q þ v�q � 1Þu�q�1 q � 0

Gumbel exp½�fð�log uÞq þ ð�log vÞqg1=q� expð�A1=qÞA�1þ1=qð�log uÞq�1
u�1, A ¼ ð�log uÞq þ ð�log vÞq q � 1

Bivariate normal FqðF�1ðuÞ;F�1ðvÞÞ Fvju �1 � q � 1

Note: FðxÞ ¼
Z x

�∞
ð1=

ffiffiffiffiffiffi
2p

p
Þexpð�z2Þdz, Fq is bivariate normal distribution with the correlation parameter q, and Fvju is the conditional normal distribution.

4 C. Jeong, T. Lee / Journal of Hydro-environment Research xx (2014) 1e10

+ MODEL
Assume that a continuous random variable Yn,t has a pe-
riodic Markov process such that,

FðYn;tjYn;t�1;…;Y1;1Þ ¼ FðYn;tjYn;t�1Þ
¼ P

	
Yn;t � yn;t



Yn;t�1 ¼ yn;t�1

� ð22Þ

This implies that its past behavior does not influence the prob-
ability of any particular current behavior of the process except for
the most recent previous condition. This Markov model of order
1 can be described using the copula. Let
F12( yn,t,yn,t�1)¼C(F( yn,t),F( yn,t�1)) be a bivariate distribution
with any univariate marginal distribution for each season, FYt .

The conditional distribution of the copula is denoted as

CðvjuÞ ¼ vCðu;vÞ
vu

ð23Þ

Then, the transition distribution of Yt, which is the periodic
Markov model of order 1, is

FðYn;tjYn;t�1Þ ¼ C
	
FYt

	
yn;t
�

FYt�1

	
yn;t�1

�� ð24Þ
The representative copula models and the conditional dis-

tributions are presented in Table 1.
Once the BVN copula is selected for each season, the order

1 periodic Markov process (Eq. (23)) is presented (Chen and
Fan, 2006) as follows:

(1) Fit a distribution model appropriate to the observed data
for each season FYt , where t ¼ 1,…,u and u is the number
of seasons. Denote the cumulative density function of the
historical data as bFYn;t

(2) Inverse the cumulative distribution function (cdf) of his-
torical data into normal variate and denote it as Nn,t, i.e.,

Nn;t ¼ F�1ð bFYn;tÞ, where FðNÞ ¼
Z N

�∞
ð1=

ffiffiffiffiffiffi
2p

p
Þ

expð�t2Þdt
(3) Generate Nn,t as

Nn;t ¼ ftNn;t�1 þ 3n;t ð25Þ
where 3n,t is an uncorrelated normal variable with mean
zero and variance s2tð 3Þ ¼ 1� f2

t, and ft is the seasonal
autoregressive coefficient of Nn,t variable.

(4) Reinstate Nn,t into the real domain by
Yn;t ¼ F�1

Yt
ðFðNn;tÞÞ.

The following two sets of parameters are required: the
parameters of the marginal distribution FYt and the parameters
Please cite this article in press as: Jeong, C., Lee, T., Copula-based modeling an
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related to the Nn,t process. The parameters for the marginal
distribution can be estimated using any of the following esti-
mation procedures: method of moments, maximum likelihood,
L-moments and probability weighted moments from fre-
quency analysis (Kottegoda and Rosso, 2008; Salas et al.,
2008). The parameter of the copula model for the time se-
ries Nn,t process can also be estimated using the method of
moments or least square methods. An alternative method of
estimating the inference function for margins (IFM) has been
suggested in the copula literature (Joe, 1997; Nelsen, 1999).

For the other copula, the application is straightforward with
the fitted marginal distribution ð bFYn;tÞ from step (1) above as
follows:

(a) Simulate the initial value from the marginal distribution
FY1;1 , gamma distribution.

(b) Simulate the subsequent values FYn;t with the conditional
distribution of Eqs. (23) and (24). The detailed equations
are shown in Table 1.

(c) Inverse-transform the simulated values F�1
Yn;t

to obtain Yn,t.
2.3. Parameter estimation and Fourier transformation
Model parameters must be estimated for the PGAR and
BVN copula with gamma marginal parametric models. The
method of moments was used for the parameter estimation in
the current study for the marginal distributions. The method of
moments estimates the model parameters according to the
relationships between the statistical moments of observed data
and the moments of the statistical models. The copula pa-
rameters in Table 1 were estimated from the inference func-
tions for the margins (IFM) method (Joe, 1997).

The model applied in the current study is the product model
shown in Eq. (1). The parameters of the amount process (i.e., Z
variable in Eq. (1)) are estimated only using non-zero data.
Therefore, the zero values in calculating the statistics must be
excluded as:

bmt ¼
1

N*
t

XN
n¼1

zn;tIzn;ts0 ð26Þ

bs2
t ¼

1

N*
t

XN
n¼1

ðzn;t � bmtÞ2Izn;ts0 ð27Þ

bgt ¼
1

N*

t

PN
n¼1 ðzn;t � bmtÞ3Izn;ts0bs3

t

ð28Þ
d stochastic simulation of seasonal intermittent streamflows for arid regions,
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where Izn;ts0 is the indicator function such that Izn;ts0 ¼ 1 if
zn,ts 0, otherwise Izn;ts0 ¼ 0,N*

t ¼PN
n¼1Izn;ts0 and bmt, bs2

t, bgt
are the sample mean, variance and skewness, respectively, for
the period t. The autocorrelation function rk,t is estimated as

brk;t ¼
1

N**
t

PN
n¼1ðzn;t � bmtÞðzn;t�k � bmt�kÞIzn;tzn;t�ks0bstbst�k

ð29Þ

where k is the time-lag; and N**
t ¼PN

n¼1Izn;tzn;t�ks0.
The high degree of uncertainty, especially in the high-order

moments (e.g., skewness and autocorrelation), may be
assumed to eradicate the smooth seasonality. Therefore,
Fourier transformation is applied to statistics with high de-
grees of uncertainty. In other words, it is assumed that pa-
rameters vary smoothly over the course of a month, a pattern
that is referred to as seasonality. Furthermore, the parameter
space of the PGAR model is highly limited. It is unable to
apply the PGAR model when the estimated sample moments
of the dataset fall outside of this parameter space. Fourier
transformation can be applied to avoid this. Fourier trans-
formation modifies these parameters to allow them to be
located inside the parameter space (Fernandez and Salas,
1986). The Fourier transformation procedure is defined as

u*t ¼ uþ
Xh
m¼1

Am cosð2pmt=uÞ þBm sinð2pmt=uÞ ð30Þ

where u*t is the Fourier transformed statistic from ut; u is the
mean value of ut; and

Am ¼ 2

u

Xu
t¼1

ut cosð2pmt=uÞ and Bm

¼ 2

u

Xu
t¼1

ut sinð2pmt=uÞ; m¼ 1;…;h ð31Þ

When u is even, the last coefficients are given by

Ah ¼ 1

u

Xu
t¼1

ut cosð2pht=uÞ; Bh ¼ 0 ð32Þ

where h is the degree of smoothing. Note that if h gets smaller,
the Fourier transformed statistics are smoothed more and vice
versa.

3. Data description

The proposed models were applied to the Colorado River
system. The Colorado River is a major river system in the
western United States (US), and the Bureau of Reclamation
uses 29 gauging sites within the system for long-term planning
studies. The first 20 stations are categorized as Upper Colo-
rado River stations, while the rest are Lower Colorado River
stations. The Colorado River flows through arid and semi-arid
regions of western states, such as Nevada and Arizona. The
highly arid climate induces intermittent streamflow in certain
months.
Please cite this article in press as: Jeong, C., Lee, T., Copula-based modeling an
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Among the stations, the monthly streamflow data of two
stations, the Little Colorado River near Cameron, Arizona
(USGS station number: AF09402000) and the Bill Williams
River below Davis Dam located between Arizona and Nevada
(USGS station number: AF09426000), show intermittency.
The monthly data of the Little Colorado River station is
intermittent every month, while the Bill Williams River site
shows intermittency during only some months. Therefore, in
the current study, the Little Colorado River site was used to
validate model performance.

4. Application methodology

Two hundred samples were simulated using each model for
a time period of the same length as the historical data (101
years). Two different models for the amount process were
tested, PGAR and BNCG (Bivariate Normal Copula with
Gamma marginal distribution), while the occurrence process
was modeled with PMC. The gamma distribution was selected
as the marginal distribution of the streamflow and is compa-
rable to PGAR, which has a marginal that conforms to the
gamma distribution.

Basic statistics such as the mean, standard deviation,
skewness, maximum, minimum and lag-1 correlations in the
seasonal and yearly time scales were estimated using the
historical and simulated data to verify model performance.
Using the water demand level as the mean, operational sta-
tistics such as maximum deficit (surplus) lengths and
maximum deficit (surplus) amounts were also compared.
Along with the water demand level, the storage capacity was
also estimated using the sequent-peak algorithm (Loucks
et al., 1981).

Furthermore, the nonparametric densities were estimated
using the historical and simulated data. Because streamflow
data cannot have values less than zero, the estimated densities
are expected to be left-bounded. Subsequently, a boundary
biweight kernel (Simonoff, 1996) was employed to estimate
the density for the bounded-type distribution. If the density of
the continuous variable Y 2 {0,∞} needs to be estimated and
the selected basic kernel, K($), is a biweight kernel with a
range of [�1, 1], then the boundary kernel is adjusted over the
range 0 � y < h with the equation

BðyÞ ¼ ½a2ðpÞ � a1ðpÞ�KðyÞ
a2ðpÞa0ðpÞ � a1ðpÞ ð33Þ

where alðpÞ ¼
Z p

�1

ulKðuÞdu, p ¼ y/h and h is the smoothing

parameter (bandwidth). The oversmoothing approach
(Simonoff, 1996) was employed to select the bandwidth
because the densities were used to compare the overall pres-
ervation of the historical density rather than to reproduce the
small bumps.

Boxplots were employed to display the variability of the
simulated statistics compared to that of the historical statistics.
The end lines of the box (inter-quartile range) indicate the 25th
d stochastic simulation of seasonal intermittent streamflows for arid regions,
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and 75th percentiles, while the cross lines above and below the
box on the whisker denote the 90th and 10th percentile and the
maximum and minimum, respectively. The dotted line con-
necting the ‘x’ marks represents monthly historical statistics,
and the circles represent historical statistics in yearly time
scale results.

5. Results of simulation model comparisons

In Figs. 1 and 2, the key statistics of the historical data and
the simulated data from the PGAR and BNCG, respectively,
are presented. Both models accurately reproduced the means
and standard deviations of the historical data. The magnitude
of skewness was negatively related to the mean; the skewness
was lower during high flow months (March and April) than
during low flow months (July and June) and vice versa. Both
models slightly underestimated skewness during low flow
months and overestimated skewness during high flow months.
The lag-1 correlation of the historical data was reproduced
accurately by all of the models as shown in Figs. 1 and 2,
excluding a slight bias in some months. Extreme historical
statistics were also reproduced accurately by both models. The
minimum flow of every month was zero because of
intermittency.

Fig. 3 illustrates the mean of the skewness (top panel) and
lag-1 correlation (bottom panel) of the data simulated by the
PGAR model for the amount process only (i.e., excluding zero
values). As mentioned in the Methodology section, Fourier
transformed skewness and lag-1 correlation must be employed
to estimate the parameters of the PGAR model so that they
Fig. 1. Box plots of basic statistics for Colorado River monthly flows (million cubic

historical data (dotted line).
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will fall inside the parameter space of the PGAR model.
Therefore, the PGAR model reproduces the Fourier trans-
formed statistics instead of the real historical statistics.

The month-to-month relationships of the PGAR and BNCG
models are shown in Figs 4 and 5, respectively. The gray
circles represent the simulated data, while the inverted tri-
angles show the historical values. The scatter plot of the
PGAR model in Fig. 4 shows peculiar behavior, as the simu-
lated values were not placed in the lower region of the straight
line except for the zero values, which were simulated from the
occurrence process (X). The slope of the straight line corre-
sponds to the lag-1 serial correlation of month 6 (2/3 z 0.67).
This phenomenon occurs because of the characteristics of the
PGAR model shown in Eq. (10). Because the second term on
the right side of Eq. (10) is always greater than zero, the
simulated value is always greater than the lag-1 month-to-
month correlation times of the previous month's value
ðftZv;t�1Þ. Conversely, the BNCG model reproduces the his-
torical relationships reasonably well, as shown by the simu-
lated data in Fig. 5. Note that the simulated zero values for
month 6 are located at the x-axis of Fig. 5, while no historical
zero values were found. This discrepancy between the simu-
lated and historical data is caused by the assumption of in-
dependence between the occurrence and amount process
shown in Eq. (1). The same characteristic can be observed in
Fig. 4 for the PGAR model.

Yearly key statistics are shown in Figs. 6 and 7 using the
summed monthly simulated data to yearly data from the PGAR
and BNCG models, respectively. Both models accurately
reproduced the historical yearly statistics (circles), excluding
meters, 106 m3) obtained from data simulated using the PGAR model and from
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Fig. 2. Box plots of basic statistics for Colorado River monthly flows (million cubic meters, 106 m3) obtained from data simulated using the BNCG model and from

historical data (dotted line).

7C. Jeong, T. Lee / Journal of Hydro-environment Research xx (2014) 1e10

+ MODEL
the minimum flow. Significant overestimations of the historical
minima were observed among the data simulated using the
PGARmodel. The BNCGmodel better reproduced this extreme
statistic. The densities estimated using Eq. (32) are shown in
Fig. 8. The negative values of the estimated densities were
induced during the smoothing procedure of Eq. (32). Note that
Fig. 3. Means of the skewness and lag-1 correlation obtained from the nonzero

data simulated using the PGAR model (solid line with circles), from the

historical data (dotted line with crosses), and the Fourier transformed statistics

(thick dotted line).

Fig. 4. Scatter plot of streamflows (unit: 106 m3) of the Colorado River for

month 5 (horizontal) and month 6 (vertical) derived from data simulated using

the PGAR model (gray circles) and historical data (inverted triangles). The

straight line splits the region where simulated values are not located in the

lower region of the line except for the zero values, which are simulated from

the occurrence process (X). The slope of the line corresponds to the lag-1

month-to-month correlation for month 6 (2/3 z 0.67).
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Fig. 5. Scatter plot of streamflows (unit: 106 m3) of the Colorado River for

month 5 (horizontal) and month 6 (vertical) derived from data simulated using

the BNCG model (gray circles) and historical data (inverted triangles).

Fig. 7. Yearly key statistics obtained from flows simulated using the BNCG

model and historical flow data (circles).

8 C. Jeong, T. Lee / Journal of Hydro-environment Research xx (2014) 1e10

+ MODEL
the PGAR model significantly underestimated the frequency of
the lowest value. This underestimation is related to the under-
estimation of the minimum by the PGAR model noted above
and implies that the data simulated using the PGAR model
underestimated short-term (one or two-year) drought events.

Operational statistics, such as maximum consecutive length
and amount for deficit and surplus, as well as storage capacity,
were estimated using the PGAR and BNCG models (data not
shown). All the operational statistics were accurately repro-
duced using the PGAR and BNCG models, excluding the
maximum consecutive volume of deficit, which was under-
estimated by both models.
Fig. 6. Yearly key statistics obtained from flows simulated using the PGAR

model and historical flow data (circles).
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6. Results of alternative copula model

The main advantage of copula modeling is the flexibility of
the relationship. Therefore, we further applied copula models
to the monthly streamflow data of the Colorado River instead
of BNC while the marginal distribution was fixed as a gamma
distribution. The four copula models shown in Table 1 were
considered. Different copula models were applied at each
month by selecting from the highest maximum likelihood
(equivalently lowest negative log-likelihood), denoted as the
alternating copula model (ACM).

In Table 2, the estimated negative log-likelihoods are
shown for each considered copula model. Note that the bolded
values indicate the smallest value among the four copula
Fig. 8. Density estimates of yearly data obtained from simulated yearly flows

(boxplots) based on the PGAR (top panel) and BNCG (bottom panel) models,

as well as the historical data (dotted line with x marker).
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Table 2

Negative log-likelihood from different copula models.

Month Clayton Frank Gumbel Gaussian

1 0.00a �0.25 0.00a ¡0.28

2 �0.13 �0.30 0.00a ¡0.40

3 ¡2.91 �2.16 �2.53 �2.36

4 ¡24.38 �16.50 �7.07 �10.45

5 ¡22.54 �17.29 �11.08 �16.44

6 �11.77 ¡20.38 �16.72 �19.40

7 �16.27 �16.62 �15.55 ¡17.79

8 �11.61 �10.97 �12.13 ¡14.32

9 ¡2.60 �1.17 0.00a �0.78

10 �1.50 �1.90 �0.88 ¡2.30

11 �6.81 �4.92 �5.39 ¡6.92

12 �0.18 �0.85 ¡1.43 �0.66

a Note that (1) bold type indicates the selected copula model with the

smallest negative log-likelihood with the estimated parameters from IFM and

(2) the values of 1.0 and 0.0 represent the estimated parameters that were not

converged.

Fig. 9. Scatter plot and histograms of gamma CDF transformed data (U) for

month 7 and month 8.
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models. The copula parameters shown in Table 1 are presented
in Table 3. The parameters were estimated with inference
functions of margins (IFM). Lee and Salas (2011) can be
referred to for further information related to IFM.

As an example, scatter plot and histogram of the CDF
transformed historical data for Months 5 and 6 are illustrated
in Fig. 9. Furthermore, the scatter plot of simulated stream-
flow between Month 5 and Month 6 is presented in Fig. 10.
Note that Frank copula was selected for this month as shown
in Table 2. Fig. 10 is comparable to Fig. 5 (i.e., the BNC
model). The shape of the scatter with Frank copula (Fig. 10)
is similar to BNC (Fig. 5). The behavior of the simulated key
statistics is almost identical to BNCG because the marginal
distribution is fixed as gamma (results not shown). The
yearly operational statistics of the ACM are tested (data not
shown). Compared to BNCG, the performance of ACM is
similar.
Table 3

Estimated parameters from inference functions for margins (IFM).

Month Clayton Frank Gumbel Gaussian

1 0.00a �0.56 1.00a �0.08

2 0.16 0.61 1.00a 0.11

3 0.64 1.59 1.15 0.27

4 2.23 5.34 1.47 0.50

5 1.69 4.57 1.46 0.56

6 0.78 4.79 1.59 0.60

7 0.95 4.10 1.58 0.58

8 1.11 3.94 1.57 0.66

9 1.02 2.09 1.00y 0.26

10 0.46 2.03 1.15 0.32

11 0.63 2.08 1.26 0.39

12 0.06 0.83 1.12 0.12

a Note that the values of 1.0 and 0.0 represent the estimated parameters that

were not converged.
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7. Summary and conclusions

Parametric stochastic models were tested to simulate
intermittent monthly streamflows for a semi-arid or arid re-
gion. To reproduce intermittency in the simulated data, a
product model of the amount and occurrence processes was
applied. The PMC model was employed for the occurrence
process, and two alternative models were tested for the amount
process, the PGAR and BNCG models. Key statistics were
estimated to validate the performance of the models over
monthly and yearly time scales. Furthermore, ACM was tested
to reveal the possible usage of alternating copulas.
Fig. 10. Scatter plot of streamflows (unit: 106 m3) of the Colorado River for

month 5 (horizontal) and month 6 (vertical) derived from data simulated using

the alternative copula model (gray circles) and historical data (inverted

triangles).
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A few drawbacks of the PGAR model were observed dur-
ing the current study: (1) The parameter space was very
restrictive, and therefore Fourier transformed statistics must be
used in parameter estimation; (2) The simulated values were
always greater than the previous monthly values due to
multiplying the lag-1 correlation; and (3) Extreme events (i.e.,
minimum streamflows) were significantly underestimated on
the yearly time scale, which resulted in underestimates of the
numbers of short-term drought events. These drawbacks are
general characteristics of the PGAR model.

In contrast, the copula model does not suffer from such
drawbacks, as shown in the presented results. The marginal
key statistics and operational statistics are well reproduced
from the copula models. Additionally, the time-lagged rela-
tionship can be flexibly modeled following the relational shape
of the historical data, as shown from ACM.

We conclude that the combination of the copula model of
the amount process with the PMC model of the occurrence
process is a reasonable approach for simulating intermittent
monthly time series in semi-arid and arid regions.
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