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Abstract. Rapid determination of soil water content is urgently needed for monitoring and
modeling ecosystem processes and improving agricultural practices, especially in arid
landscapes. Far-infrared band application in soil water measurement is still limited. Various
samples were arranged to simulate complex field condition and emissivity was obtained
from a Fourier transform infrared spectrometer. Four spectral forms (including raw spectra,
logarithm of reciprocal spectra, first-order derivate, and second-order derivate) were employed
to develop a partial least squares regression model. The results indicate that the model with
first-order derivate spectral form was identified with the highest performance (R2 ¼ 0.87

and root mean square error ¼ 1.88%) at the range of 8.309 to 10.771 μm. Judging from the
contribution of the bands to each principal component, the band region from 8.27 to
9.112 μm holds a great promise for soil water content estimation. Several channels of
ASTER and MODIS correspond to the involved band domain, which show the potential of
predicting and mapping soil water content on large scales. However, there are still constraints
due to the differences in spectral resolution between instrument and sensors and the influence of
complex factors under field conditions, which are still challenges for forthcoming studies. © 2015
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.9.095983]
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1 Introduction

Soil water content is an important factor in the exchange of energy and mass between the atmos-
phere and the earth surface.1,2 It also plays a critical role in crop productivity, especially in arid
regions.3,4 Although traditional techniques have been applied for measuring soil water content,
they are time-consuming, laborious, and only provides point data.5 Therefore, timely and accu-
rate estimation of soil water content is urgently required for irrigation schedule management and
environmental studies.

Remote sensing affords a direct approach to map the spatial distribution of soil characteristics
for continuous temporal coverage at regional and global scales.6 Numerous studies have shown
huge progress in soil water evaluation based on remote sensing methods,7–11 where spectral
bands from optical to microwave regions have been investigated for soil water content deter-
mination. Bowers and Hanks8 measured a range of soils and found a decrease in reflectance with
increasing moisture content. Neema et al.12 pointed out that soil reflectance decreased with soil
water content increasing up to a certain level and then increased with higher moisture content.
They also proposed a new concept of cut-off thickness, defined as the thickness of soil that
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transmits 5% of incident light only. Moran et al.13 and Gillies et al.14 presented a method of using
vegetation indices and surface temperatures to estimate crop water deficit, which could translate
to soil water. Liu et al.15 and Whiting et al.16 found that shortwave-infrared region was suitable
for predicting soil water as well.

Meanwhile, efforts are being made in microwave radiation because of its superior ability to
penetrate into the soil and, in some wavelengths, to penetrate through the vegetation cover.3,17

Passive microwave remote sensing has a great potential in modeling soil water retrieval for its all-
time and all-weather capability and frequent coverage,18 while active sensors offer possibilities
of high spatial resolution (10 m for synthetic aperture radar).1 Wang and Schmugge19 developed
a dielectric constant model to calculate soil water content. Jackson and Schmugge20 applied
L-band (∼1.4 GHz) to assess topsoil water over a wide range of vegetated conditions.
Bindlish and Barros21 combined active and passive microwave remote sensing data to assess
soil water and considered the spatial heterogeneity effect. Mao et al.22 employed AMSR-E
data and vertical polarized microwave index for assessing soil water on the Tibetan Plateau.

Most of these studies focused on the visible, near-infrared, short-wave infrared, and micro-
wave wavelength region, while studies on the far-infrared wavelength domain are limited.23

Carlson et al.24,25 explored relationships among soil water content, surface temperature (ST),
and normalized difference vegetation index (NDVI), and then lead many studies of soil
water content estimation with ST and NDVI, where ST was extracted from far-infrared wave-
length region.26,27

Salt-affected soil is common in arid areas. Soil salt and soil water jointly affect spectra and
cause huge anomalies in predicting soil salinity or moisture content.28 Farifteh29 found it difficult
to accurately evaluate soil salinity or soil water content under field conditions where soil was
influenced by both salt and moisture. Further progress in hyperspectra was made by Wang
et al.,30 who developed salt-resistant hyperspectral indices for estimating soil water content
in arid landscapes. However, limited research is available in far-infrared region.

With the development of remote sensing, multisource data and their application have
emerged.31,32 The progress of statistical methods has advanced a step further as well through
partial least squares regression (PLSR), multivariate adaptive regression splines, artificial neural
networks, and so on.31–33 The PLSR algorithm can model several response variables simulta-
neously and also effectively deal with collinear and noisy independent variables.34 Additionally,
numerous studies have demonstrated successful outcomes and potential applications of PLSR in
various domains.35,36 Owing to the spectra covering thousands of generally collated wave-
lengths, cross-validation has been used often to eliminate the overfitting problem associated
with other regression methods.37 Furthermore, numerous studies have suggested that variation
in forms of original data is very helpful for data-mining, such as first-order derivative, second-
order derivative, and continuum removal.38–40 These techniques are more robust and hence pre-
ferred in the current study.

The current study determined far-infrared spectral data with a Fourier transform infrared
(FTIR) spectrometer from various levels of artificial soil water content from the same salt-
affected soil. Based on four spectral forms and actual measurement of soil water content,
the PLSR model will be built up to estimate soil water content of saline soil and, ultimately,
a new model will be developed to trace soil water content. The specific aims are (1) to verify
statistical relationship between soil water content and various forms of far-infrared spectra
and (2) to select feature bands and establish a PLSR model for soil water estimation of saline
soils.

2 Materials and Methods

2.1 Experiment Arrangement

The soil sampling site is located at a typical inland river basin in the west of China. Annual
precipitation, evaporation, temperature, and relative humidity in the region are 187 mm,
1841.9 mm, 6.6°C, and 58%, respectively.41 Topsoil (0 to 20 cm) samples were collected
for laboratory analysis. The soil samples were air-dried for several weeks and sieved through
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two sieves of 0.2 and 2 mm to make three groups of soil sample with different particle sizes to
simulate different soil surface roughness. To produce a great diversity and randomness of soil
water content, 30 top-opened cylinder containers in 15 cm diameter and 10 levels of height from
1 to 10 cm were prepared for these soil samples. Thus, each group consisted of 10 samples with
10 soil column sample heights.

Chemical properties of the three types of resampled soil were analyzed via an extracted sol-
ution, which was made from a mixture of soil and distilled water with the ratio of 1:5. The
properties of the resampled soil are presented in Table 1.

Gravimetric method was applied to estimate soil water content. Distilled water was added
gently and evenly to all the 30 samples using a watering can to avoid destroying the soil surface.
Addition of water was stopped when soil water content reached 20%. After this, natural drying
process began. Due to various soil types of particle and soil column sample heights, each sample
had evaporation rate different from the others and would have different soil water content, which
could simulate more complex field conditions. During the process, soil radiance and soil water
content of each sample were synchronously measured five times in time sequence, and the meas-
urement dates and times are shown in Table 2.

2.2 Emissivity Measurement and Spectra Forms

Soil radiances were measured with Design and Prototypes Inc. Model 102 FTIR spectrometer.42

The core of the spectrometer is the Michelson interferometer, which contains infrared optics,
beam splitter, and a scanning mirror assembly. The light passes through the interferometer
onto an infrared detector that consists of indium antimonide and mercury cadmium telluride.
This detector set has a spectral range of ∼2 to 16 μm. The standard input optic is 2.54 cm
in diameter with a 4.8 deg expanding field of view, which gives a 7-cm-diameter spot at
∼70 cm height. The instrument was set up with a spectral resolution of 4 cm−1 and scanned
to COADD with number of eight. For each measurement of radiance, three raw data were
obtained, including warm blackbody (WBB), cold blackbody (CBB), and sample intensity.
The sample radiance could be calculated with sample intensity calibrated by WBB and
CBB, and also each sample temperature was obtained. To enlarge the temperature difference
between sample and environment, and to obtain gradient variations of soil water content at
the same time, soil samples were heated to ∼303 K using a quartz tungsten halogen lamp.
The measurement was basically carried out in a dark room. Due to the noise of environment

Table 1 Soil properties of different particles from Sangong River basin.

Sample pH

Electrical
conductivity
(mS∕cm)

Total salt
(mg∕g)

Cl−

(mg∕g)
SO2−

4
(mg/g)

Ca2þ
(mg∕g)

Kþ
(mg∕g)

Mg2þ
(mg∕g)

Naþ
(mg∕g)

CO2−
3

(mg∕g)
HCO−

3
(mg∕g)

>2 mm 8.64 4.86 22.70 0.05 13.08 1.64 0.20 0.05 5.11 0.00 0.18

0.2 to 2 mm 8.70 5.79 27.20 0.03 15.69 1.65 0.20 0.05 6.47 0.00 0.18

0 to 0.2 mm 8.40 6.27 29.40 0.04 16.40 2.09 0.20 0.05 6.96 0.00 0.14

Table 2 The measurement sequence and corresponding time.

Measurement
sequence

Soil water
content¼ 20% 1st 2nd 3rd 4th 5th

Measurement
date and time

August 5,
2013 3:00 a.m.

August 6, 2013
11:00 p.m.

August 7,
2013 9:30 p.m.

August 9, 2013
10:30 p.m.

August 13,
2013 5:30 p.m.

August 27, 2013
10:00 p.m.

Hours after (h) 0 44 67 115 206 547

Note: 1st, 2nd, 3rd, 4th, and 5th represent the times measured soil water content and radiance.
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and instrument, the method of five points moving average was used to eliminate the noise
signal.43

Radiance of a black body is governed by Planck’s law with the sample temperature.

EQ-TARGET;temp:intralink-;e001;116;699Bðλ; TÞ ¼ c1

λ5ðec2∕λT − 1Þ ; (1)

where the unit is mW∕ðm2 × ster × μmÞ, λ is wavelength in cm, T is the temperature of emitting
surface in K, c1 ¼ 1.191044 × 10−5 [mW∕ðm2 × ster × cm−4Þ], and c2 ¼ 1.438769 (cm K).

Due to some measuring deficiencies, we applied relative emissivity by correcting the abso-
lute values with the average value of 7 to 7.5 μm, which has emissivity close to 1. Such data
treatment may cause some deviations, but as long as spectra patterns rather than absolute values
are focused on, as in this study, it may not deviate very much from the real patterns. Hence,
relative emissivity (rE) was computed as

EQ-TARGET;temp:intralink-;e002;116;571rE ¼ Rsam

RB

; (2)

where rE is the relative emissivity, Rsam is the radiance of sample, and RB is the radiance of
a black body with the sample temperature.

Based on the relative emission spectra (rE), logarithm of reciprocal spectra (LRE), first-order
derivative spectra (DE), and second-order derivative spectra (DDE) were calculated as follows:

EQ-TARGET;temp:intralink-;e003;116;480LRE ¼ log10RE; RE ¼ 1

rE
; (3)

EQ-TARGET;temp:intralink-;e004;116;439DE ¼ rEðλþ 1Þ − rEðλÞ
Δλ

; (4)

EQ-TARGET;temp:intralink-;e005;116;402DDE ¼ DEðλþ 1Þ − DEðλÞ
Δλ

; (5)

where RE is the reciprocal form of rE, LRE is the logarithm form of RE, DE is the first-order
derivative of rE, and DDE is the second-order derivative of rE.

2.3 Modeling Approach

As the spectra have a large amount of redundant information of self-similarity, it is necessary to
select relevant bands for PLSR models based on a stepwise regression approach, which is a
systematic method for adding and removing terms from a polynomial regression in view of stat-
istical significance.15,44 Band selection is a necessary process for building up a PLSR model with
good predictive ability.

After the above process, several bands were chosen for modeling soil water content, and there
is still a substantial risk of overfitting in empirical model. Cross-validation is therefore employed
to determine the number of components by minimizing the predicted residual sums of squares
(PRESS).45 Leave-p-out cross-validation approach, which involves using p observations as the
validation set and the rest as the training set,46 is performed in this study. The method is to test the
predictive significance of each PLSR component and find the best number of components.34

PLSR is generally a multivariate regression method that specifies a linear relationship
between numerous dependent variables (Y) and predictor variables (X).47 The approach is
effective to reduce collinear spectral data to a few noncorrelated principal components (PCs),
which represents the relevant structural information. The performance of PLSR model is evalu-
ated with the determination coefficient (R2) and root mean square error (RMSE) between mea-
sured and estimated soil water content values. An effective model should have a high R2 and
small RMSE.

Xu et al.: Determining soil water content of salt-affected soil using far-infrared spectra: laboratory. . .
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3 Results

3.1 Descriptions of Soil Water Content and Spectra

A total of 150 results of soil water content were collected from five measurements, and soil water
content ranged approximately from 0 to 16% [Fig. 1(A)], which were sufficient to represent the
actual situation in the arid area. Meanwhile, the relative emissivity was also collected according
to each soil water measurement [Fig. 1(B)]. The soil water content varied differently in the for-
mer four times measurements, and also the relative emissivity changed greatly. This might be
caused by various soil water content, soil particle size, and soil salt motion state, whereas sam-
ples had similar soil water content for the last measurement, and the relative emissivity fluctuated
in a small range as well.

Due to various soil column sample heights under the same evaporation conditions, different
soil salinities finally emerged on sample surface, and soil water content was similar and <2.4% at
the last measurement [Fig. 1(A)]. Considering the last measurement as the example, Fig. 2(a)
showed the emissivity of all samples (gray) and the average value of each particle size (color).
Over 8 to 9.5 μm soil emissivity showed a decreasing trend with the increase in amount of salt.
Figures 2(b)–2(d) showed the emissivity of fine, medium, and coarse soil particle size. The
results clearly indicated that the emissivity showed small variances among various sample
heights and soil particles. This may have been caused by excessively dispersed salt on the

Fig. 1 (A) Soil water content of each sample in evaporation process. The number label of x axis
represents the height and the letter represents three particles of (a) 0 to 0.2 mm, (b) 0.2 to 2 mm,
and (c) >2 mm, respectively. (B) Soil relative emissivity corresponding to soil water content.

Fig. 2 (a) Sample emissivity (gray) and mean emissivity (color) of each particle size; (b), (c), and
(d) represent soil emissivity of fine, medium, and coarse particles at the last measurement.
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soil surface. However, at the domain of 8 to 9.5 μm, emissivity of Figs. 2(b) and 2(c) decreased
basically with the increasing salt content, while emissivity of Fig. 2(d) showed a similar trend
except sample with 1 cm, which was similar to the previous study.48 This may have been attrib-
utable to salinity of the coarse particle sample that could not provide enough salt to cover the soil
surface, and hence uncovering sand would increase its emissivity. The rest of the wavelengths
showed a controversial pattern. Overall, in view of Figs. 1(B) and 2, soil water content affected
emissivity greater than soil salt content, and various salt amounts on soil surface made slight
difference on soil emissivity.

3.2 Correlations Between Soil Water Content and Spectral Forms

Four spectral forms (rE, LRE, DE, and DDE) were examined here to reveal the relationship
between soil water content and transformed spectra (Fig. 3). The correlation regression with
four transformed spectra could uncover the subtle spectral features contributing to the soil
water content estimation. Absolute values of correlation coefficient of four spectral forms
were collected to find important spectral features.

Among the different processing algorithms, largest correlation coefficients found in rE, LRE,
DE, and DDE were 0.77, 0.77, 0.71, and 0.69 in turn and located at 8.835, 8.835, 8.747, and
8.813 μm, respectively. In addition, 12 largest coefficients were collected here to identify the
effective band domain. The band range of spectral form rE and LRE were both 8.79 to 9.09 μm,
while band range of spectral form DE and DDE were 8.08 to 11.15 μm and 8.43 to 11.01 μm,
respectively.

We thus conclude that the peak of correlation coefficient had minimal difference for four
spectral forms and located at adjacent bands. The sensitive band domains of spectral form
DE and DDE were a little wider than that of rE and LRE.

3.3 Modeling

Stepwise regression analysis was first carried out based on raw data and soil water content, and
finally seven bands were chosen for PLSR model (Table 3). The number of components for
PLSR model was determined with cross-validation [Fig. 4(a)]. The PRESS of the training

Fig. 3 Correlation coefficient between soil water content and each spectral form: (a) relative emis-
sivity (rE), (b) logarithm of reciprocal spectra (LRE), (c) first-order derivative spectra (DE), and
(d) second-order derivative spectra (DDE).
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set and validation set had similar trends, decreasing monotonically with the number of compo-
nents. Seven components were hence selected to establish the PLSR model for soil water content
prediction. Table 3 listed the coefficients of seven bands for the PLSR model. The model for soil
water estimation selected all the seven components and performed well for predicting soil water
content based on raw spectra. The determination coefficient (R2) was 0.85 and the RMSE was
2.06% [Fig. 4(b)].

Fig. 4 The result of cross-validation for principal component numbers determination based on
rE, LRE, DE, and DDE [(a1), (b1), (c1), and (d1)], and soil water content estimate based on
rE, LRE, DE, and DDE [(a2), (b2), (c2), and (d2)].
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Likewise, the same methods were applied based on the spectral form LRE, and the same
performance was obtained as shown in Figs. 4(c) and 4(d). The same bands were also chosen
by stepwise regression analysis and illustrated in Table 3. Cross-validation results show that
seven components were the best choice for PLSR analysis. The PLSR model predicted soil
water content with the same determination coefficient (R2 ¼ 0.85) and RMSE ¼ 2.06%

based on LRE spectra as rE spectra.
Different results were obtained from the same method based on spectral form DE. Nine

bands (Table 3) were chosen by stepwise regression analysis, and five components were
used from PRESS changes. Finally, an effective model was produced with R2 ¼ 0.87 and
RMSE ¼ 1.88% [Figs. 4(e) and 4(f)]. The spectral form DDE was dealt with in the same
way. Ten bands were chosen from stepwise regression analysis and seven components were
determined from the PRESS curve [Table 3 and Fig. 4(g)]. Ultimately, the model was determined
with R2 ¼ 0.83 and RMSE ¼ 2.16% [Fig. 4(h)].

From the above four types of spectral forms, we can see that rE and LRE have the same
performance for predicting soil water content with PLSR model. And the effective was almost
concentrated around 8.309 to 9.112 μm. The spectral form DE performed well with the same
means, and got the highest R2 and least RMSE. Moreover, it involved a wide band domain with
8.270 to 10.771 μm. Although spectral form DDE had minimal weakness for soil water content
prediction, a broader band range was involved from 8.533 to 13.577 μm.

4 Discussion

4.1 Sensitive Bands Determination

Numerous studies are available on soil water content estimation based on visible-near-infrared
and microwave characteristics,30,49–51 while few studies relate soil water content with far-infrared
band.52 Moreover, far-infrared spectra have been used in estimating soil sand content, organic
matter, and surface temperature retrieval.40,53,54 Numerous statistical regression approaches were
conducted for their pros and cons to predict soil spectral properties.33,55 The PLSR is commonly
applied for its robustness.34 High collinear full-band resulted in difficult selection of real relevant
bands for building up PLSR model. Stepwise regression analysis was hence performed to select
the bands for PLSR model, instead of using the total domain from 8 to 14 μm. In addition,
commonly used spectral pretreatments, such as the first-order derivative, have practical supe-
riority over raw spectra,30 which agreed with the results in this study.

To further determine the most contributing bands, we identified high numerical values of
loading weights for PLSR model. High values implied high importance of the band in
PLSR analysis.56 Loading weights of four spectral forms (rE, LRE, DE, and DDE) over
bands for latent variables are shown in Tables 4–7, respectively. For spectral forms rE and
LRE, all of the seven bands (range from 8.309 to 9.112 μm) had much higher contribution

Table 4 Loading weight matrix (LW, ×10−2) of each band for the partial least square regression
(PLSR) model based on the rE spectra to estimate soil water content.

Band (μm) PC1 PC2 PC3 PC4 PC5 PC6 PC7

8.813 4.08 0.21 0.17 −0.03 −0.03 0.05 0.01

8.533 3.28 −0.59 0.13 −0.33 0.13 −0.03 0.00

8.309 2.69 −0.61 0.05 0.31 −0.14 0.04 0.00

8.791 4.04 0.18 0.15 0.04 0.02 0.04 −0.12

8.835 4.04 0.19 0.13 −0.06 −0.09 −0.04 0.09

8.926 3.92 0.08 −0.18 0.15 0.18 −0.14 0.05

9.112 4.07 0.09 −0.41 −0.03 −0.09 0.08 −0.03
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Table 5 Loading weight matrix (LW, ×10−2) of each band for the PLSR model based on the LRE
spectra to estimate soil water content.

Band (μm) PC1 PC2 PC3 PC4 PC5 PC6 PC7

8.813 −1.78 −0.09 −0.07 0.01 0.01 −0.02 −0.01

8.533 −1.43 0.26 −0.06 0.14 −0.06 0.01 0.00

8.309 −1.18 0.27 −0.02 −0.14 0.06 −0.02 0.00

8.791 −1.77 −0.08 −0.06 −0.02 −0.01 −0.02 0.05

8.835 −1.77 −0.08 −0.06 0.03 0.04 0.02 −0.04

8.926 −1.71 −0.04 0.08 −0.07 −0.08 0.06 −0.02

9.112 −1.78 −0.04 0.18 0.01 0.04 −0.04 0.01

Table 6 Loading weight matrix (LW, ×10−2) of each band for the PLSR model based on the DE
spectra to estimate soil water content.

Band (μm) PC1 PC2 PC3 PC4 PC5

8.725 8.52 4.69 −3.92 −2.66 3.99

8.617 2.28 3.72 4.51 −1.65 −4.45

8.329 9.63 −2.95 −2.77 6.34 −5.77

10.640 −2.15 0.02 −1.76 −0.64 −0.35

9.588 −1.60 2.91 1.64 2.90 1.22

9.065 −2.61 −2.15 −0.02 −0.76 −0.56

10.512 −0.04 0.53 0.76 −0.55 −0.92

8.270 9.25 −6.86 5.23 −3.64 3.40

10.771 −0.30 −1.65 −0.73 −1.56 0.05

Table 7 Loading weight matrix of each band for the PLSR model based on the DDE spectra to
estimate soil water content.

Band (μm) PC1 PC2 PC3 PC4 PC5 PC6 PC7

8.791 −2.65 −0.48 −1.94 0.15 0.80 −0.08 0.01

8.747 −0.03 −1.89 2.34 −0.37 0.23 −0.01 −0.02

9.018 −1.58 −0.21 −0.23 1.07 −1.89 −0.08 0.06

10.673 0.43 −0.02 0.04 0.36 0.03 0.19 −0.04

13.218 −0.03 0.00 −0.01 −0.04 −0.05 0.03 −0.24

8.533 3.46 −0.96 −1.59 0.55 −0.28 −0.08 0.02

10.805 0.23 0.32 0.28 0.13 0.46 −0.78 0.18

11.186 0.00 0.25 −0.17 0.38 −0.06 0.44 −0.24

13.168 0.13 0.02 −0.06 0.08 0.04 0.07 −0.02

13.577 −0.06 −0.01 −0.05 0.05 −0.04 −0.01 −0.19
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for PC1 than other components (described by bold numbers, similarly hereinafter). For DE spec-
tra, although the involved band was wide from 8.27 to 10.771 μm, only four bands (range from
8.27 to 9.725 μm) contributed a lot to five PCs. As for DDE spectra, a broad band domain from
8.533 to 13.577 μm was involved, but only regions from 8.533 to 9.018 μm gave the major
contribution. We hence concluded that 8.27 to 9.112 μm was the dominant band range for
PLSR model to estimate soil water content.

4.2 Possibility of Soil Salt Content Estimation

Although many researchers reported the potential of far-infrared to distinguish and quantify soil
organic matter, temperature, water, composition, and other materials,53,57–59 few studies have
been conducted to estimate soil salt content using far-infrared wavelength. There are still a
few studies of elemental analysis of basic salinity, which find that bending vibration band of
nitrate and carbonate is located around 7.4 and 6.89 μm60,61 using an attenuated total reflection
spectroscopy. Xia et al.48 measured soil emissivity and soil salt content randomly at the same
time in a field. To estimate soil salt content, soil samples with different levels of soil salt content
should be arranged experimentally, where various soil salt contents and their corresponding
emissivity are measured when modeling salt content. Soil water content and other complex fac-
tors impact soil emissivity in the field experiment, but the robustness of models would be largely
improved for estimating a certain soil variable without regard to the others.30

4.3 Potential Applications at Large Scale

Currently, there are many satellite sensors containing far-infrared bands, for example, ASTER,
AVHRR, MODIS, Landsat ETM+, and so on, and especially ASTER and MODIS have more
channels in far-infrared band region (Table 8). The chosen bands from rE and LRE spectral forms
had the best accuracy for soil water content prediction and only covered three corresponding
bands of ASTER sensor and one band of MODIS sensor. DE spectra form also covered four
bands of ASTER sensor and two bands of MODIS sensor. Although the DDE spectral form did
not perform very well, it involves four bands of ASTER and MODIS sensor. This might be
advantageous to provide good estimates of soil characteristics for widespread use at large scales,
which should be considered in future studies.

However, spectral resolution of satellite sensor is much broader than the instrument used in
this study, which may influence the accuracy of the soil property estimation at large scale. Liang
has attempted successfully to convert narrowband to broadband albedo and established a series
of conversion formulae based on extensive radiative transfer simulations,62 and extensive field
measurements have been conducted to validate these formulae for a series of sensors.63 In view
of this, there is a chance of converting bands mentioned in the current result to broadband of the
sensors with the processing approach.

On the other hand, the field condition is very complex and contains many factors that may not
be fully captured in the lab experiment, such as soil mineralogy, texture, organic carbon, and
various species of vegetation.4 Despite all that, some progresses have been made on visible/near-
infrared and thermal infrared data, which will be helpful for large-scale application by combining
some other variables, like temperature, NDVI, and thermal inertia.11,14 The influence of soil
water content on far-infrared emissivity is a known fact but has been poorly studied in the
past,64 and the influence of other factors for estimating soil water content will also be studied

Table 8 Thermal infrared bands of available and frequently used satellites.

Sensor Satellite Band (μm)
Spatial

resolution (m)

ASTER EOS 8.125 to 8.475, 8.925 to 9.275, 10.25
to 10.95, 8.475 to 8.825, 10.95 to 11.65

90

MODIS EOS 8.4 to 8.7, 9.58 to 9.88, 10.78 to 11.28, 13.185 to 13.485,
13.785 to 14.085, 11.77 to 12.27, 13.485 to 13.785, 14.085 to 14.385

1000
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in future work. In addition, the most contribution band region concentrated on 8.27 to 9.112 μm,
which should be considered to design future thermal sensors to accommodate the request.

5 Conclusions

Spectral estimate of soil water content was presented in this study, and the possibilities of far-
infrared band domain were validated to quantitatively derive soil water content of salt-affected
soil in arid regions. PLSR analysis was applied to verify statistical relationships between soil
water content and four spectral forms (rE, LRE, DE, and DDE). Among the four types of spectral
form, DE was identified as the most potential spectral form, and the predictive result was
achieved with an R2 of 0.87 and an RMSE of 1.88%, while model with DDE covered the widest
range from 8.533 to 13.577 μm with a little less accuracy (R2 ¼ 0.83 and RMSE ¼ 2.16%).
Judging from the contribution of bands to each PC, we suggest that 8.27 to 9.112 μm region
is best for delineating soil water content with high prediction accuracy. Although there are still
many constraints for large-scale application, the result also demonstrated that far-infrared data
were helpful for predicting soil water content and also provided meaningful insights and a pre-
requisite for designing thermal sensors in future.
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