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Robust classification approaches are required for accurate classification of complex land-
use/land-cover categories of desert landscapes using remotely sensed data. Machine-
learning ensemble classifiers have proved to be powerful for the classification of remotely
sensed data. However, they have not been evaluated for classifying land-cover categories
in desert regions. In this study, the performance of two machine-learning ensemble
classifiers – random forests (RF) and boosted artificial neural networks – is explored in
the context of classification of land use/land cover of desert landscapes. The evaluation is
based on the accuracy of classification of remotely sensed data, with and without integra-
tion of ancillary data. Landsat-5 Thematic Mapper data captured for a desert landscape in
the north-western coastal desert of Egypt are used with ancillary variables derived from a
digital terrain model to classify 13 different land-use/land-cover categories. Results show
that the two ensemble methods produce accurate land-cover classifications, with and
without integrating spectral data with ancillary data. In general, the overall accuracy
exceeded 85% and the kappa coefficient (κ) attained values over 0.83. The integration
of ancillary data improved the performance of the boosted artificial neural networks by
approximately 5% and the random forests by 9%. The latter showed overall higher
accuracy; however, boosted artificial neural networks showed better generalization ability
and lower overfitting tendencies. The results reveal the merit of applying ensemble
methods to integrated spectral and ancillary data of similar desert landscapes for achieving
high classification accuracies.

1. Introduction

Machine learning refers to algorithms that are used in data analysis and pattern recogni-
tion by iteratively learning from training observations (DeFries and Chan 2000). In remote
sensing, machine-learning methodologies, especially ensemble approaches, have gained
popularity over the last decade (Miao et al. 2012). Camps-Valls (2009) provided a review
of machine-learning techniques used in remote sensing and highlighted the potential of
new promising learning approaches that have not been considered in remote-sensing
application. The application of machine-learning approaches for image classification
problems is seen as a ‘competitive alternative’ to conventional classification approaches
(Zhang 2000).

Combining classifiers in an ensemble approach involves the iterative use of a base
classifier followed by combining the results according to a weighted or unweighted voting
process (Breiman 1996; Briem, Benediktsson, and Sveinsson 2002; Dietterich 2000;
McInerney and Nieuwenhuis 2009). Combining the results of all the iterations provides

*Corresponding author. Email: marwa.w.halmy@alexu.edu.eg

International Journal of Remote Sensing, 2015
Vol. 36, No. 22, 5613–5636, http://dx.doi.org/10.1080/01431161.2015.1103915

© 2015 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

L
ib

ra
ry

 S
er

vi
ce

s 
C

ity
 U

ni
ve

rs
ity

 L
on

do
n]

 a
t 0

1:
29

 1
9 

D
ec

em
be

r 
20

15
 



a more stable final classification output (Cunningham, Carney, and Jacob 2000).
Ensemble methods could be applied to any learning algorithm, and they can include
one or more type of learning algorithm (Chan and Paelinckx 2008); however, they are
typically composed of one type of learning algorithm (Miao et al. 2012). Ensemble
methods are used in remote-sensing applications for improving the classification accuracy
(Rokach 2005) and for overcoming the instability of some machine-learning classifiers
(Cunningham, Carney, and Jacob 2000; Dietterich 2000) such as artificial neural networks
(ANNs) (Canty 2009) and decision trees (DTs) (Breiman 2001). Ensembles of certain base
classifiers have been found to provide more accurate results compared to the use of a
single base classifier (e.g. boosted DTs vs. single DT) of the same type (Gislason,
Benediktsson, and Sveinsson 2006; Rodriguez-Galiano et al. 2012). The performance of
each ensemble approach depends on the base classifier used.

Bagging (Breiman 1996) and boosting (Freund and Schapire 1996) are the most
commonly used ensemble methods (Chan and Paelinckx 2008; Dietterich 2000; Miao
et al. 2012). In bagging (a.k.a. ‘bootstrap aggregation’) (Polikar 2006), bootstrap replicas
are drawn from the original training data set with replacement. Each training data replica
is then used in a classification iteration using a machine-learning algorithm (e.g. DT or
ANNs). The results from all the classification iterations are then combined where classes
are finally assigned based on the most common vote in all the iterations (Franklin 2009;
Polikar 2006). Random forests (RF) technique (Breiman 2001) is another popular ensem-
ble method that is considered a form of bagging (Benediktsson, Chanussot, and Fauvel
2007; Franklin 2009). As in bagging, RF trains DTs on bootstrapped samples drawn of the
original training data (Breiman 2001), but unlike bagging, a random subset of the input
variables is used to split nodes in each DT (Polikar 2006). The number of DTs used in a
RF model and the number of variables used to split nodes of each DT in the ensemble are
user-defined parameters that are selected based on the case under study. Each DT is
trained on a bootstrapped sample of the original training data (Gislason, Benediktsson,
and Sveinsson 2006; Rodriguez-Galiano et al. 2012).

Boosting uses iterative re-training, where the incorrectly classified observations are
given more weight in the successive iteration. This way, the variance and the bias of the
classification are reduced, resulting in a more accurate classification (Dietterich 2000).
Boosting is considered more accurate compared to other ensemble methods; however, on
the other hand, it is considerably slower and sensitive to noise (Briem, Benediktsson, and
Sveinsson 2002). There are many boosting algorithms (Briem, Benediktsson, and Sveinsson
2002), the most commonly known of which is the adaptive boosting (AdaBoost) introduced
by Freund and Schapire (1996). It has been mostly applied to DT (Ridgeway 1999);
however, it could be applied to other learning algorithms such as ANNs (e.g. Schwenk
and Bengio 2000; Canty 2009). Boosting ANNs is not common in remote-sensing applica-
tions, although it has shown significant improvement over conventional (e.g. maximum
likelihood) algorithms and other machine-learning classifiers such as support vector
machine when used for the classification of remotely sensed data (Canty 2009).

The ‘multilayer perceptron’ neural networks (MLPs) were developed by Rumelhart,
Hinton, and Williams (1986) for pattern-recognition applications and have since been
extensively used in many other applications. ANNs are, by far, the most widely used type
of neural network in remote-sensing applications (Bischof, Schneider, and Pinz 1992;
Kavzoglu and Mather 2003; Kotsiantis 2007; Mas 2004; Paola and Schowengerdt 1995;
Pijanowski et al. 2002; Serpico, Bruzzone, and Roli 1996). ANNs were found to outperform
conventional classifiers in land-cover classification (Bischof, Schneider, and Pinz 1992;
Serpico, Bruzzone, and Roli 1996; Tong, Zhang, and Liu 2010; Yool 1998). A review of the
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applications of ANNs for classification of remotely sensed data, their limitations, and
perspectives can be found in Mas and Flores (2008). The application of ensembles of
ANNs to remotely sensed data have resulted in significant increases in land-use/land-cover
(LULC) classification accuracies over the use of single neural networks (He, Kong, and
Shen 2006); popular conventional methods such as maximum likelihood; and other
machine-learning algorithms like support vector machine approaches (He, Kong, and
Shen 2006; Canty 2009).

Integrating environmental data with spectral data often enhances the accuracy of
LULC classification (Benediktsson, Chanussot, and Fauvel 2007), but this is not always
possible with conventional classification methods (Briem, Benediktsson, and Sveinsson
2002; Gislason, Benediktsson, and Sveinsson 2006). As machine-learning approaches,
ensemble classifiers have the advantage of being applicable to multiple data types,
allowing the integration of spectral and ancillary data of different types (Horning 2010).
Integration of ancillary data (e.g. land-surface parameters, soil data, etc.) with spectral
data could be useful when the study area is located in a highly reflective desert ecosystem.
The high reflective background and the low spectral variability of surface features in
deserts make the classification of land cover based on spectral data alone challenging
(Halmy 2012; Halmy et al. 2015). The application of ensemble-based classification
approaches such as bagging, boosting, and RF is a valuable alternative in such instances.
However, ensemble methods that have been applied and tested in different types of
landscapes and ecosystems have been in mostly non-desert areas including temperate
and humid ecosystems (Halmy 2012). This may be due to challenges with field work and,
perhaps, lack of funding for studies in desert or arid areas.

For example most of the studies that employed RF for LULC classification are in
temperate (Castaings et al. 2010; Ismail and Mutanga 2011; McInerney and Nieuwenhuis
2009; Pal 2005; Rodriguez-Galiano et al. 2012; Sluiter and Pebesma 2010; Waske et al.
2009) or tropical areas (Sesnie et al. 2010). In the context of these studies, RF was compared
to conventional classifiers (McInerney and Nieuwenhuis 2009; Sluiter and Pebesma 2010)
and to machine-learning algorithms (Ismail and Mutanga 2011; Miao et al. 2012; Pal 2005,
2006; Rodriguez-Galiano et al. 2012; Sesnie et al. 2010), and was found to outperform both
conventional and other machine-learning approaches. Few studies have compared the
boosted ANNs to other classifiers. Canty (2009) compared the boosted ANNs to maximum
likelihood, support vector machine (SVMs), and boosted trees. However, we are unaware of
studies that have compared boosted ANNs to RF, particularly in the context of classifying
land cover of desert and semi-desert landscapes. The current study assesses and compares the
accuracy of these two ensemble classifiers for the classification of LULC of a desert
landscape in Egypt, with and without integration of ancillary data.

2. Materials and methods

2.1. Study area

The study area lies within the jurisdiction of the Matrouh governorate that occupies the
northern part of the Western Desert of Egypt (Figure 1). This study focuses on approxi-
mately 2800 km2 of the north-western coastal desert that is located between 30° 10ʹ–
30° 55ʹ N and 28° 55ʹ to 29° 25ʹ E. The Egyptian north-western coastal desert area is
generally a topographically featureless plain that is cut in some places by depressions and
oases. The geological formations of this part of the Western Desert are mainly Quaternary
and Tertiary in age. Two Miocene rock units can be distinguished in the area – the
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Marmarica limestone formation and the Moghra clastic formation. The Marmarica for-
mation that forms the surface of the coastal area is composed of chalky white limestone as
an upper member and grey calcarenites as a lower member. The Moghra formation forms
the surface of the southern area that encompasses the Moghra oasis. This formation is a
clastic unit that has varying sand:shale ratio typically of approximately 3.5:1, and it
outcrops the surface at the southern edge of the inland plateau.

Figure 1. Location of study area: (a) the administrative boundaries of the Egyptian governorates;
(b) part of the north-western coastal desert showing location of the study area; and (c) subset of
Landsat TM imagery form 2011 representing the study area and showing locations for the studied
LULC classes and the different zone of Omayed biosphere reserve (OBR).
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The Moghra Oasis is bounded to the north by an escarpment that leads to gravelly
slopes formed as a result of water erosion and to the west by sand dunes and sand
formations (De Cosson 1935; Said 1962). Studies of the area (e.g. Ayyad and Le Floc’H
1983; Said 1962; Salem 1989, 2003a, 2003b, 2005; ROSELT/OSS 2005) have distin-
guished a number of geomorphological units in an order from north to south; northern
coastal dunes that are aligned parallel to the coast and composed of oolitic limestone (Ball
1939), followed by a wide northern coastal plain, then an intermediate tableland (the
inland plateau), gravelly slopes, and sandy-gravelly plain that surrounds Moghra Oasis. A
series of elongated calcareous ridges that are aligned in a northeast–southwest direction
occur in the northern coastal plain alternating with sandy depressions. The inland plateau
is characterized by hard calcareous limestone that is covered in some places by a thin
layer of sandy or loamy deposits. The plateau slopes southward to an undulated gravelly
plain formed by deposits of mixed aeolian and colluvial origin (Ayyad and Ghabbour
1993; Ayyad and Le Floc’H 1983; ROSELT/OSS 2005). The area has an arid climate with
mean annual precipitation of 100–150 mm year−1. The temperature and precipitation
decrease in a north–south trend (Abdel Razik 2008).

2.2. LULC categories

The use of a standard LULC classification scheme helps facilitate future comparative
studies. The LULC classification system used here is an adaptation of Anderson et al.’s
(1976) system. Anderson’s scheme was developed by the United States Geological Survey
(USGS) to serve as a framework for the classification of remotely sensed data for the
entire globe. Level II of Anderson’s scheme suits the spatial resolution of Landsat TM
(Ridd 1995). Based on level II of Anderson, 13 LULC categories were distinguished in
the study area (Table 1 and Figure 1).

Table 1. Land use/Land cover classes recognized in the study area in 2011 defined according to
Anderson et al. (1976) level II with adaptation to suit the study area.

Anderson et al. (1976)
LULC classes

Anderson et al.
(1976) Code

Current study LULC
classes

Current study
code

Colour
code

Residential 11 Urban & built-up land BU
Other urban & built-up
land

17 Resorts RE

Croplands 21 Croplands CR
Orchards & other
agricultural lands

22 Orchards & other
agricultural lands

OA

Rangeland 3 Rangeland RL
Water 5 Water WT
Non-forested Wetlands 61 Reed swamp RS

Salt marshes SM
Beaches 72 Coastal dunes CD
Sandy area other than
beaches

73 Sand formation SF

Bare exposed area 74 Bare exposed area BA
Quarries 75 Quarries QR
Gravel Desert 75 Gravel desert GD
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2.3. Spectral and ancillary data

Because of the similarity in the spectral response among many desert land features, it is
hard to separate land-cover classes using spectral data alone (He, Kong, and Shen 2006).
Although the study area has various LULC categories, their classification based on
spectral data alone is often challenging due to spectral similarities. As a part of the coastal
desert of Egypt, most of the land-cover categories in the area are spectrally heterogeneous
and have overlapping spectral properties. The exposed bare rock areas and the quarries are
spectrally similar as both are composed of limestone rock. These challenges make it
difficult to achieve accurate classifications using spectral data alone; therefore, additional
ancillary data will be used to supplement the Landsat spectral data to aid in separating
these land-cover categories (Weng 2002).

A Landsat TM 5 scene (path/row 178/39) was acquired on 5 March 2011 and provided
the spectral data for the classification of the LULC categories in the area. The equations
and the rescaling factors provided by Chander, Markham, and Helder (2009) were applied
to convert the Landsat-calibrated DNs to absolute units of at-sensor spectral radiance and,
then, to top-of-atmosphere reflectance.

Many studies indicate that the inclusion of texture data improves classification accuracy
(Franklin et al. 2000). Therefore, texture variables were included in the classification process
to aid detection of built-up and topographic features (Gong, Marceau, and Howarth 1992;
Kiema 2002; Lu, Hetrick, and Moran 2010). A kernel of size 3 × 3 pixels was used to derive
texture measures from the near-infrared (NIR) band based on the grey level co-occurrence
matrix method (GLCM) of Haralick, Shanmugam, and Dinstein (1973). The NIR band was
used because it exhibits better contrast between the different LULC classes in the study area
than the other bands. The textural measures derived included six second-order textural
features (homogeneity, contrast, dissimilarity, entropy, second moment, and correlation) and
two first-order textural features (mean and variance). The textural features were computed for
four directions, 0°, 45°, 90°, and 135°, and the average was used in the analysis. Furthermore,
the tasseled cap spectral indices of greenness, brightness, and wetness (Kauth and Thomas
1976) were derived from the Landsat data and included in the analysis.

Approaches for integrating ancillary data with spectral data have been found to improve
LULC classification accuracy (He, Kong, and Shen 2006; Sesnie et al. 2008; Stuckens,
Coppin, and Bauer 2000). The ancillary variables used in the study to help in differentiating
between LULC included topographic variables derived from a 90 m grid-spacing digital
elevation model (DEM) and distance to the sea. The proximity to the sea was included here
because field work revealed a north–south trending pattern of LULC classes in the area. The
land-surface parameters included in the study (Table 2) were calculated from the Shuttle
Radar TopographicMission (SRTM) DEMdata V4.1 (Jarvis et al. 2008). The DEM data were
used to derive other land-surface parameters, such as slope, a terrain roughness index (TRI)
that provides an indication about the level of undulation and the complexity of the surface
(Olaya 2009), topographic wetness index (TWI) that indicates the water accumulation
possibility of a pixel (Moore et al. 1993; Gessler et al. 1995, 2000), and a slope length and
steepness (LS) factor. All the land-surface parameters were derived using the Automated
System Geoscientific Analyses version 2.0.7 (SAGA 2011).

2.4. Classification

Two ensemble classifiers – RF and boosted ANNs – are compared here in the context of
mapping LULC in desert areas. The comparison involves assessing the difference in their
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performance with and without ancillary data (Table 2). Classifying LULC in the area was
implemented using three sets of data, referred to here as data domains. The first set
included spectral data of six Landsat satellite image bands (bands 1–5 and 7) alone; the
thermal band was excluded because it has coarser resolution compared to the rest of the
bands. The second included spectral data integrated with ancillary data derived from the
DEM, and the third included 10 principal component (PCs) bands resulting from applying
principal component analysis (PCA) to the whole set of variables representing spectral
and ancillary data (Table 2). The greater the number of variables used in the classification,
the greater the time required for processing the data by the classifiers. PCA was used for
reduction of the dimensionality of the set of data employed in the classification. These
first 10 PCs were chosen because they accounted for more than 95% of the variation in the
whole set of the integrated data. The boosted ANNs algorithm of Canty (2009) was used
to perform classification using boosted ANNs and was implemented within the framework
of ENVI 4.8 (Exelis Visual Information Solutions 2010). Classification using random
forests was conducted using the ‘randomForest’ package (Liaw and Wiener 2002) within
the statistical software R 2.13.1 (R Core Development Team 2011).

For each data domain, trials were made to reach the optimum structure of the two
ensemble classifiers.

2.4.1. RF models Optimization

RF is a ‘tree-based’ classifier that requires setting only two user-defined parameters when
performing classification: 1) number of trees to be grown in the RF model and 2) the
number of variables to be used at split nodes (Pal 2005; Rodriguez-Galiano et al. 2012).
There is no predefined rule for deciding on the optimal number of trees to be used. A
small number of trees may result in low classification accuracies. On other hand,
increasing the number of trees beyond a certain limit (depending on the case at hand)
might not reduce the classification error, but will increase the time spent in the classifica-
tion process (Rodriguez-Galiano et al. 2012). In the current study, different numbers of
trees were tried (50, 250, 500, 750, 1000, and 1250) to arrive at the optimum model size.

The variables used for splitting nodes at each tree are selected at random with the
intent of minimizing the correlation between the trees in the RF model (Gislason,

Table 2. Spectral and ancillary data included in the classification.

Variable type Variable Abbreviation

Spectral Spectral bands 1–5 & 7 B1–B6
Texture Tx1–Tx8
NDVI NDVI
Simple ratio (IR:R) IR.R
Tasselled cap brightness Brightness
Tasselled cap greenness Greenness
Tasselled cap wetness Wetness

Ancillary Proximity to the sea ProxtoSea
Elevation Elv
LS factor LS
Slope Slope
Topographic roughness index (TRI) TRI
Topographic wetness index (TWI) TWI
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Benediktsson, and Sveinsson 2006; Horning 2010; Rodriguez-Galiano et al. 2012). The
fewer the variables used to split nodes, the fewer computations the algorithm performs
and the lower the correlation between trees in the RF model. But using few variables to
split nodes could result in weak models with lower predictive power (Gislason,
Benediktsson, and Sveinsson 2006; Horning 2010). Therefore, the choice of the number
of variables to be used at split nodes should be chosen carefully. Some studies decide on
the number of variables m according to the rule m =

ffiffiffi

k
p

, where k is the total number of
variables used in the classification (Gislason, Benediktsson, and Sveinsson 2006; Chan
and Paelinckx 2008; Waske et al. 2009). For the current study, different numbers of split
variables m were tried for each data domain using different RF models of different size.
For the spectral and PCs data domains, m = 1 up to 6 were experimented, whereas, for the
multisource data domain, m = 2 up to 10 were experimented. Based on the optimization
trials, RF models with 500 trees and 2 variables at split nodes were applied to the spectral
and PCs data domains; for the multisource data, domain RF models of size 500 trees and
four split variables were applied.

2.4.2. Boosted ANNs models Optimization

The generalization power of ANNs and, thus, the resulting classification accuracy are
contingent on factors that include training data size, network training time, and network
design (Pal and Mather 2003). The network design or architecture is determined by the
number of hidden layers and the number of nodes in each hidden layer (Kavzoglu and
Mather 1999). Reaching the optimal design of ANNs could be an elusive task (Moody
1991). Because ANNs architecture influences the classification accuracy, it should be set
up carefully (Maier and Dandy 2000; Pal and Mather 2003). Most applications that
involve classification of remotely sensed data have used a three-layered fully intercon-
nected feed-forward MLP network with a single hidden neuron layer (Paola and
Schowengerdt 1995). The ANNs used here is a four-layer feed-forward neural network
based on the multilayer perceptron (MLP) structure. Using two hidden layers, the number
of hidden nodes per layer can be reduced compared to that required when using a single
layer (Kavzoglu and Mather 2003; Aitkenhead and Aalders 2008). The network consists
of an input layer, an output layer and two hidden layers and is trained by a Kalman filter
algorithm, as outlined by Canty (2009). The input layer is composed of the number of
variables introduced at the classification (i.e. six neurons for the six Landsat spectral
bands used here). The output layer is composed of 13 neurons, corresponding to the
number of the LULC classes being classified.

The number of hidden neurons to be included in each layer is a user-defined
parameter, and careful selection is important (Bischof, Schneider, and Pinz 1992).
Underestimating this number may lead to poor classification, while overestimating may
lead to overfitting (Kotsiantis 2007; Canty 2010). There are few heuristic rules for the
selection of the optimal number of nodes, most of the studies relied on trial-and-error for
determining the number of neurons to be used (e.g. Paola and Schowengerdt 1995; He,
Kong, and Shen 2006; Aitkenhead and Aalders 2008; Canty 2010). The decision on the
optimal structure of the network and the values of the parameters involved are dependent
on the nature of data being classified. The use of two hidden layers entails the use of a
lower number of neurons per layer compared to the use of one hidden layer alone
(Aitkenhead and Aalders 2008). The rules defined in some studies with regard to the
number of hidden neurons were developed for networks that contain only one hidden

5620 M.W.A. Halmy and P.E. Gessler

D
ow

nl
oa

de
d 

by
 [

L
ib

ra
ry

 S
er

vi
ce

s 
C

ity
 U

ni
ve

rs
ity

 L
on

do
n]

 a
t 0

1:
29

 1
9 

D
ec

em
be

r 
20

15
 



layer; this might imply that applying these rules for networks with more than one hidden
layer might not be appropriate.

To optimize the network architecture by selecting the optimum number of neurons in
each hidden layer and the number of training epochs, many trials were undertaken to
evaluate the impact of changing each parameter on the classification accuracy. Different
numbers of hidden neurons were tested, taking into account some of the rules mentioned
by Kavzoglu and Mather (2003) as a guideline. The two hidden layers of the boosted
ANNs models were initiated with five hidden neurons in each layer, and then the number
was increased with an increment of five hidden neurons up to 30 hidden neurons, while
fixing the number of training cycle (epochs) at 10.

Boosting is implemented, in the current study, using the AdaBoost.M1 algorithm
(Freund and Schapire 1996). For a set of training instances of size m with label yi ϵY =
{1, 2 . . . . k}, where k, in this case, is the number of land-cover classes, an initial
distribution D1(i) = 1/m is used for the ith instance. The learning classifier – in this
case the ANN – commences the training process using the training instances with the
initial distribution D1. The misclassification error et of each classification iteration t = 1, 2
. . . T, will be calculated and used for updating the training instances distribution Dt(i) by
factor βt ¼ et=ð1� eÞ. The new distribution Dt+1(i) will account for the error of classifi-
cation in the preceding training iteration t, where the misclassified pixels will be empha-
sized in the new training iteration. Thus, Adaboost directs the used classifiers in the
ensemble to focus more on the difficult-to-classify instances.

The final vote for each instance resulting from the ensemble that is composed of T
iterations will be weighted by a factor βt. This factor is a function of the classification
error et attained at each iteration t. The error-based weight, ln 1=βt, will be calculated for
each iteration t and used to adjust class assignment for each instance in the ensemble.
More details on how the Adaboost.M1 algorithm works can be found in (Freund and
Schapire 1996). Training will stop if the misclassification error et from the training cycle t
is bigger than 0.5 or by reaching a predefined number of training cycles T (Canty 2009).
Different numbers of epochs (training cycles) were tested (5, 10, 20, 40, 50, and 60),
while fixing the number of the neurons at 15 in each hidden layer to detect how the
number of training cycles (epochs) would affect the accuracy of the classification by using
boosted ANNs of a fixed number of hidden neurons.

Based on optimization trials, the boosted ANNs ensembles applied were composed of
networks with two hidden layers. The number of hidden neurons used in each hidden
layer varied. For the spectral data domain, networks of 15 hidden neurons per hidden
layer were applied. Networks composed of 25 neurons per hidden layer were used in the
ensemble applied to all the integrated spectral and ancillary data, whereas networks with
20 neurons were used for the PCs data domain.

Using the optimum structure reached, the two ensemble methods were applied to three
training data sets of the same size drawn at random from the original data set. The mean
of results from the three training sets were then used to compare the performance of the
two ensemble methods using the different data domains.

2.5. Accuracy assessment and classifier evaluation

The ground reference data collected during field visits to the area were selected to
represent the different LULC categories in the study area based on random sampling.
Figure 1 shows photographs for the 13 land-cover classes used for classification. Field
observations were collected in March 2011 and used to generate a reference data set.
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Approximately 39 regions of interest (ROIs) representing the 13 LULC classes were
identified in the Landsat scene. The ROIs included 9750 pixels, which were divided into
two subsets. The first subset included approximately 60% of the data and was used for
classifier training, while the second subset included the rest of the data and was used for
testing and accuracy assessment. This might be expected to increase classification accu-
racy. However, the use of related samples is common in studies that attempt to evaluate
the relative accuracy of different classification approaches (Foody 2004). Cross-validation
procedures randomly split reference data to ensure that the training data are independent
of the test data (Friedl et al. 2002). Cross-validation methods were used to avoid biased
results and ensure spatial separation of training and testing data. The same training and
testing data sets were employed for training and testing each of the two classifiers. In this
study, confusion matrices were used to derive measures of classification accuracy that
included overall accuracy, producer’s accuracy, user’s accuracy and Cohen’s kappa
coefficient (κ). The Kappa coefficient (a.k.a. index of agreement) accounts for the
difference between the real observed agreement and that potentially due to chance
(Congalton 1991; Congalton and Green 2009). To separate the classification error to
quantification error and location error, the quantity and allocation disagreement (Pontius
and Millones 2011) were calculated.

To statistically test the significance of differences between the maps produced by the
two different ensemble methods over the different data domains, the McNemar test
(Dietterich 1998) with a 95% confidence interval was conducted.

3. Results and discussion

Studies that have compared machine-learning classification algorithms, specifically RF
and boosted ANNs, in the context of mapping LULC classes in desert areas are rare.
Applying the two ensemble methods to the three different data domains resulted in
different classification results, as can be noticed from the LULC maps produced for the
study area (Figure 2). The use of spectral data alone by both classifiers resulted in
overestimation of areas classified as built-up area (BU), sand formation (SF), quarries
(QR) and other agriculture (OA), compared to the use of integrated spectral and ancillary
data. This was more prominent in the map produced by applying RF to spectral data
alone. The integration of ancillary data helped reduce the overlap between the BU and
bare area (BA), SF and BA, QR and BA, and the OA class and salt marsh (SM) class.

The overall performance of the two classifiers using the spectral data alone was almost
the same, based on the results of accuracy measurements (Figures 3 and 4). However, the
difference in accuracy between the two classifiers, as assessed by McNemar test (Tables 3),
indicates that the null hypothesis of equivalently accurate classifiers using the spectral data
can be rejected at the 5% significance level (p-value of 0.05). The results indicate that the
hypothesis that the RF classifier is equivalent to boosted ANNs can be rejected in favour of
RF at the 5% significance level.

Furthermore, the per-class performance of the two ensemble classifiers showed slight
differences using the spectral data alone compared to that after integration of ancillary
data (Figures 5 and 6). The overall mean producer’s and user’s accuracy for all classes
was almost the same for both classifiers (87.4% mean class producer’s accuracy and
86.7% and 86.6% mean class user’s accuracy for boosted ANNs and RF, respectively).

Using the integrated spectral and ancillary data, the performance of the two ensemble
methods differed as revealed from the results of the measures of classification accuracy
(Figures 3 and 4). Inclusion of the ancillary data either before or after reduction by PCA
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resulted in statistically significant accuracy between the two ensemble methods (Table 3).
The addition of ancillary data improved the performance of the two classifiers, resulting in
higher κ and mean class accuracy values and lower classification error (Figure 3). It also
reduced the quantity and allocation disagreement (Figure 4). The use of multisource data
that include different forms of spatial data in addition to remotely sensed data is recom-
mended for more accurate LULC classification applications (e.g. Briem, Benediktsson,
and Sveinsson 2002; Gislason, Benediktsson, and Sveinsson 2006).

The improvement in classification accuracy as a result of inclusion of ancillary data
was higher when using the RF compared to that using boosted ANNs. The integration of

Figure 2. Land cover maps for the study area produced by the two ensemble methods, RF (top)
and boosted ANNs (bottom) using spectral data (a) and (d); first 10 PCs of PCA applied to the
multisource data (b) and (e); and multisource data (c) and (f). See Table 1 for LULC abbreviations.
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ancillary data improved the performance of the boosted ANNs by approximately 5%
while it improved the performance of RF by 9% (Figure 3). This could also be observed
from the larger range in accuracy measures attained by RF over all the data domains,
compared to that attained by the boosted ANNs (Figure 7). Breiman (2001) found that the
error rates obtained using the RF classifier are comparable to that of boosting algorithms
when it is applied to the same base classifier (DTs), with an advantage of being more
robust to noise. In the current study, RF outperforms boosting using different base
classifiers (ANNs in this case). The RF approach has been found to give better results
than other ensemble methods such as bagging and boosting classifiers when used with
multisource data. For example, the study by Benediktsson, Chanussot, and Fauvel (2007)
compared the application of bagging, boosting, support vector machine, and RF in LULC
classification, where RF was found to outperform the other methods. In addition, RF is

Figure 3. Box plots providing insight about the distribution of the accuracy measures of boosted
ANNs and RF models using three data domains as measured by: (a) overall classification error; (b)
Cohen’s kappa coefficient (κ); and (c) mean class accuracy. Each box shows the interquartile range
that contains values between 25th and 75th percentile. The middle line inside each box represents
the median. The two whiskers above and below represent the maximum and the minimum values
respectively.
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Figure 4. Classification overall agreement and disagreement quantity and disagreement alloca-
tion of the two ensemble methods over three data domains: (a) spectral; (b) first 10 PCs of PCA
applied to multisource data; and (c) multisource data. Disagreement allocation is expressed as
exchange and shift.
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Figure 5. Comparison of the average producer’s accuracy of the different LULC classes resulting
by application of the two ensemble methods to three data domains: (a) spectral; (b) first 10 PCs of
PCA applied to multisource data; and (c) multisource data. The error bars on the top of the
histogram bars represent standard error. See Table 1 for LULC abbreviations.

Table 3. McNemar’s test statistic for pairwise comparison of difference in
accuracy between random forests and boosted ANNs classifiers conducted
over three test sets for the three data domains.

Data domain

Test set

Set 1 Set 2 Set 3

Spectral 46.6*** 54.0*** 56.0***
PCA 20.9*** 24.7*** 4.0*
All 54.6*** 65.1*** 67.3***

Note: * = p-value 0.05–0.01, ** = p-value 0.01–0.001, *** = p-value < 0.001.
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said to have better ability for deriving information from high-dimension collinear data
compared to other techniques (Sluiter and Pebesma 2010).

One of the major issues facing classification of LULC using moderate resolution
remotely sensed data such as Landsat data is the spectral confusion between land-cover
classes that have a similar spectral response (Mas 2004). The current study area is part of
a desert ecosystem where some of the land-cover classes are heterogeneous and have
similar spectral properties. For example, the OA class (including orchards and other
agricultural lands) has fig and olive orchards that are fenced with limestone bricks. In
most cases, these orchards include houses that are built from limestone bricks. This might
explain the overlap between this land-cover class and each of the BU areas and the
cropland areas (CR). The rangelands (RL) in the area are sparsely covered by shrubs and
dwarf shrubs that are typically overgrazed. This may lead to overlap between this class
and the BA, which also contain sparse vegetation.

Figure 6. Comparison of the average user’s accuracy of the different LULC classes resulting by
application of the two ensemble methods to three data domains: (a) spectral; (b) first 10 PCs of PCA
applied to multisource data; and (c) multisource data. The error bars on the top of the histogram bars
represent standard error. See Table 1 for LULC abbreviations.
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Integration of ancillary data with spectral data resulted in better classification of land-
cover classes on a class-by-class case. Employing spectral data alone, all the classes
attained producer’s accuracy values higher than 80% when using the two classifiers
except for BU, OA, SM, and BA (Figures 5 and 6). Homogeneous classes (e.g. WT,
RS, SM, and GD) attained higher producer’s classification accuracy by using boosted
ANNs compared to RF. The bare area land-cover class (BA) attained the lowest produ-
cer’s and user’s accuracy of all the classes when using the two classifiers with high rates
of both commission and omission errors.

Using all the multisource data, the producer’s accuracy was improved for all the
classes using the two classifiers except for BA, which attained a low producer’s accuracy
of 66.5% using boosted ANNs. Including ancillary data generally increased the user’s
accuracy for all the classes. Only the QR class attained user’s accuracy lower than 80%
using the two classifiers (70.6% and 79.3% for boosted ANNs and RF, respectively).

Applying the PCA to the multisource data resulted in improvement of the producer’s
accuracy of all the classes using the two classifiers, but led to lower producer’s accuracy
for the CD class using boosted ANNs. Moreover, the user’s accuracy of all classes was
improved, except for WT and QR, by using boosted ANNs and only QR by using RF
(Figure 6).

Figure 7. Accuracy of boosted ANNs and RF models over all the data domains as measured by:
(a) overall accuracy; (b) Cohen’s kappa coefficient (κ); and (c) mean class accuracy.
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Inclusion of ancillary data with spectral data might require the use a feature selection
measure to allow choice of the best set of variables to be included in the classification
process. As increasing the number of predictors may increase the time used in processing
the data, it is recommended that reduction of data dimensionality be implemented. RF has
the advantage over the boosted ANNs because it can be used as a feature selection tool
(e.g. Sesnie et al. 2008; Chan and Paelinckx 2008) as it can provide an estimate of the
variable importance using Gini Index and the oob mean decrease in accuracy as attribute
selection measures. These variable importance measures (Figure 8) showed that the
spectral data of the Tasseled cap bands of greenness and wetness, Landsat band 1, in
addition to texture layers representing the mean and the variance of the NIR band have the
strongest influence on LULC class separability. This suggests the importance of inclusion
of texture data for the classification of LULC in similar areas. Moreover, the ancillary data
repressing the proximity to the sea, elevation, and topographic wetness index have
demonstrated high importance in the classification of the LULC classes in the study area.

Difference between test accuracies and training accuracies measures the classifier’s ability
to generalize. Closer values of training and test accuracies provide a good indication of
classifier generality. When test accuracies deviate largely from training accuracies this
indicating a high degree of overfitting of the classifier (Rogan et al. 2008). Overfitting occurs
when a classifier fits the known data (training data) too closely (i.e. training data) producing
high accuracy, while being less accurate in predicting new data (i.e. test data). Since the test
sets and the training sets were drawn from the general pool of reference data, the differences in
the test and the training accuracies indicate overfitting tendencies by both classifiers. The
difference between the training and the test error attained by RF models was higher than that
of the boosted ANNs over the three data domains (Figure 9). This indicates that boosted
ANNs exhibit better model generalization and lower overfitting compared to RF.

Application of the two classifiers using ancillary data reduced the difference between
the training and the test error, which means that addition of ancillary data improved their
generalization. Although ANNs are said to suffer from overfitting, the results from this
study revealed that boosting ANNs showed lower tendency for overfitting compared to
RF, even though other studies (e.g. Rodriguez-Galiano et al. 2012) have indicated that RF
does not suffer from overfitting.

It is worth noting that RF was faster to train compared to the boosted ANNs that carried
the complexity of both the ensemble technique (boosting) and the base classifier (ANNs). RF
is known to be faster in training than other machine learning algorithms (Benediktsson,
Chanussot, and Fauvel 2007). ANNs are known to have a time-consuming training stage
and boosting is a time consuming and computationally demanding algorithm (Benediktsson,
Chanussot, and Fauvel 2007; DeFries and Chan 2000). The long training time is considered
one of the disadvantages of the use of neural networks in classification of remotely sensed
data (Pal and Mather 2003; Paola and Schowengerdt 1995), although studies have shown that
ANNs outperform DTs in classification of remotely sensed data (Rogan et al. 2008). Our
study showed that the use of ensembles of boosted ANNs does not outperform RF, while
requiring more time for the classification process using the same training data. RF does not
require the same computational effort needed by the boosting techniques (Benediktsson,
Chanussot, and Fauvel 2007; Gislason, Benediktsson, and Sveinsson 2004, 2006; Horning
2010) and produced better results. However, the results showed that boosted ANNs have
lower tendency for overfitting compared to RF. Boosting was also found to be robust to
overfitting using other base classifiers (Polikar 2006; Ridgeway 1999; Schwenk and Bengio
2000). The impact of boosting algorithms was found to be more effective in cases of higher
dimensional space of the input predictors (Canty 2010).

International Journal of Remote Sensing 5629

D
ow

nl
oa

de
d 

by
 [

L
ib

ra
ry

 S
er

vi
ce

s 
C

ity
 U

ni
ve

rs
ity

 L
on

do
n]

 a
t 0

1:
29

 1
9 

D
ec

em
be

r 
20

15
 



4. Conclusions

Using spectral and integrated multisource data, the two ensemble techniques performed well
with respect to mapping heterogeneous desert landscapes located in the north-western coastal
desert of Egypt. The two ensemble methods attained high accuracy metrics over three
different data domains: spectral data; multisource data integrating spectral data with ancillary

Figure 8. Variable importance contributions of different variables as measured by oob mean
decrease in accuracy and the Gini Index (see Table 2 for variable abbreviation).
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data; and transformed integrated data by PCA. In general, the overall accuracy exceeded 85%
and overall κ attained values were over 0.83. The results indicate the merit of applying RF
and boosted ANNs for classifying LULC in similar desert landscapes either to spectral data
alone or using integrated spectral and ancillary data.

Inclusion of the ancillary data improved the classification performance of the two
ensemble methods; however, the improvement in performance of RF exceeded that of the
boosted ANNs. Integration of the ancillary data with spectral data resulted in improving
the producer’s accuracy of all the LULC classes in the study area using the two classifiers.
This indicates that applying ensemble methods using integrated spectral and ancillary data
achieves higher LULC classification accuracies for similar landscapes. Furthermore, this
highlights the benefit of including ancillary data to help differentiate heterogeneous
classes.

Random forests showed higher accuracy compared to boosted ANNs, but boosted
ANNs showed better model generalization ability and lower overfitting tendencies when
applied to the three different data domains. This study found random forests faster to train
compared to the boosted ANNs that included the complexity of both the ensemble
technique (boosting) and the base classifier (ANNs). This indicates that a compromise

Figure 9. Difference between training accuracy and test accuracy of boosted ANNs and RF models
using each of the data domains as measured by: (a) overall classification error and (b) Cohen’s
kappa coefficient (κ).

International Journal of Remote Sensing 5631

D
ow

nl
oa

de
d 

by
 [

L
ib

ra
ry

 S
er

vi
ce

s 
C

ity
 U

ni
ve

rs
ity

 L
on

do
n]

 a
t 0

1:
29

 1
9 

D
ec

em
be

r 
20

15
 



must be made when using these methods, taking into account the advantages and the
limitations of each method. It should be noted that the performance of the two methods
was different over the different data domains. This highlights the need for more testing of
the two methods over different data domains bearing in mind that the results from each of
these machine learning data-driven techniques is significantly influenced by the nature of
the data being classified.
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