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Irrigated agriculture is an important strategic sector in arid and semi-arid regions.
Given the large spatial coverage of irrigated areas, operational tools based on satellite
remote sensing can contribute to their optimal management. The aim of this study was
to evaluate the potential of two spectral indices, calculated from SPOT-5 high-
resolution visible (HRV) data, to retrieve the surface water content values (from bare
soil to completely covered soil) over wheat fields and detect irrigation supplies in an
irrigated area. These indices are the normalized difference water index (NDWI) and the
moisture stress index (MSI), covering the main growth stages of wheat. These indices
were compared to corresponding in situ measurements of soil moisture and vegetation
water content in 30 wheat fields in an irrigated area of Morocco, during the 2012–2013
and 2013–2014 cropping seasons. NDWI and MSI were highly correlated with in situ
measurements at both the beginning of the growing season (sowing) and at full
vegetation cover (grain filling). From sowing to grain filling, the best correlation
(R2 = 0.86; p < 0.01) was found for the relationship between NDWI values and
observed soil moisture values. These results were validated using a k-fold cross-
validation methodology; they indicated that NDWI can be used to estimate and map
surface water content changes at the main crop growth stages (from sowing to grain
filling). NDWI is an operative index for monitoring irrigation, such as detecting
irrigation supplies and mitigating wheat water stress at field and regional levels in
semi-arid areas.

1. Introduction

Half of the world’s food supply comes from irrigated areas that use about 72% of the
available water resources (Geerts and Raes 2009; Seckler, Barker, and Amarasinghe
1999). In Morocco, water availability is the main limiting factor for crop production,
and it is becoming a national priority for the agricultural sector (Lionboui et al. 2014).
This situation has led to work on developing optimum strategies for planning and
managing available water resources. Cereal (wheat and barley) production is strongly
linked to the amount and distribution of rainfall in rainfed areas (Balaghi et al. 2013), and
to the amount of groundwater and water stored in dams for irrigated areas. A set of
irrigated areas in the country was equipped with the means to improve and secure crop
production. Despite the large amounts of irrigation water consumed, wheat yields in
irrigated areas remain low and fluctuate from one season to another due to fluctuating
water availability and non-optimal management practices (Balaghi et al. 2010). In the
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current context of climate change, water scarcity, and population growth, managing
irrigation water has become a critical issue.

In Morocco, the Tadla irrigated area is managed by the Regional Office for
Agricultural Development of Tadla (ORMVAT). The main cultivated crop in this area is
wheat, covering more than 40,000 hectares (ha), which represent more than 36% of the
total irrigated area (ORMVAT 2009). ORMVAT is seeking a spatio-temporal methodology
for monitoring surface water content for improving irrigation scheduling and preventing
agricultural water stress (Er-Raki, Chehbouni, and Duchemin 2010; Ozdogan et al. 2010).
In addition, this could also be profitable for detecting uncontrolled irrigation and illegal
water pumping.

Remotely sensed reflectance has been used to estimate soil and vegetation water
content for various crops and to monitor water irrigation per surface unit (Ben-Gal et al.
2010; Ceccato, Flasse, and Grégoire 2002; Cheng et al. 2012; Hadria et al. 2010;
Penuelas et al. 1997; Tian et al. 2001; Trombetti et al. 2008), drawing on the high
temporal and spatial resolution of satellite images. Several indices based on wavelengths
ranging between 400 and 2500 nm have been developed to describe land-surface
moisture conditions (Kogan 2000). Estimation of surface water content values from
remote-sensing data is usually based on reflectance in the red (R; 610–680 nm), near
infrared (NIR; 780–890 nm), and short-wave infrared (SWIR; 1580–1750 nm) regions
of the spectrum (Lobell et al. 2003; Muller and Décamps 2001; Skidmore, Dickerson,
and Shimmelpfennig 1975; Moreno et al. 2014).

During the wheat development cycle, crop water stress can be deduced from both
vegetation and soil water content (Feng et al. 2013; Ghulam et al. 2007; Ning et al. 2013).
Water stress indices used for crop management should therefore be based on the spectral
bands that are sensitive to both soil moisture and vegetation water content.

Many indices for the simultaneous estimation of vegetation water content and soil
moisture have been proposed for different land surfaces, from bare soils to vegetated
areas, among which are the visible and short-wave infrared drought index (VSDI; Ning
et al. 2013), the modified short-wave infrared perpendicular water stress index (MSPSI;
Feng et al. 2013), the modified perpendicular drought index (MPDI; Ghulam et al. 2007),
the normalized difference water index (NDWI; Rogers and Kearney 2004), and the
moisture stress index (MSI; Hunt and Rock 1989).

Indices specifically designed for vegetation water content monitoring have been
developed using NIR and SWIR bands, including the normalized difference infrared
index (NDII; Hardisky, Michael Smart, and Klemas 1983), the global vegetation moisture
index (GVMI; Ceccato et al. 2002; Ceccato, Flasse, and Grégoire 2002), and the NDWI
(Gao 1996). Although this last index has been given the same name as the NDWI
developed by Rogers and Kearney (2004), it is based on a different formula. Gao’s
NDWI is calculated as the normalized difference between NIR and SWIR bands, whereas
Rogers and Kearney (2004) use red and SWIR bands to compute the NDWI (Lei, Zhang,
and Bruce 2009). In our study, we used the NDWI definition given by Rogers and
Kearney (2004).

In the literature, many indices based on NIR spectral reflectance have been developed
to monitor soil moisture, such as the perpendicular drought index (PDI; Ghulam et al.
2007), the distance drought index (DDI; Yang et al. 2008), and the surface water content
index (SWCI; Zhang et al. 2008; Du et al. 2013). These indices have proved to be
efficient over bare soil surfaces (Qin et al. 2008; Zhang et al. 2008; Ghulam et al. 2008).

An operational index for simultaneously measuring the surface water content of bare
soil, mixed bare, and covered soil has become crucial for irrigation management,
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especially in arid and semi-arid regions. This is required, especially for large irrigated
areas and throughout the cropping season, when the vegetation cover is continuously
changing. An operational tool adapted to this context and that combines simplicity and
robustness still deserves to be explored.

The main objective of this study was to explore the potential of NDWI and MSI for
comparing, quantifying, and mapping the surface water content of wheat plots, from bare soil
to completely covered soil. This index could lead to the development of an operational tool
for monitoring surface water content and managing irrigation, at least for the study area.

2. Materials and methods

2.1. Study area

The study area is located in central Morocco (32°23′ N; 6°31′ W; 445 m above sea level),
within the irrigation perimeter of the Tadla region. The area is characterized by a semi-arid
climate; the annual average temperature is about 19°C, with large inter-seasonal variation.
The average cropping season precipitation is about 300 mm (average over the 1970–2010
period), with significant inter-annual variation ranging from 130 to 600 mm. The area
covers 100,000 ha and is characterized by a flat topography. The groundwater depth varies
from 31 to 117 m (Bouchaou et al. 2009; Najine et al. 2006). Wheat is one of the main
cultivated crops, covering 36% of the total cultivated land. As in the rest of Morocco,
traditional flood irrigation is the dominant practice used in cereal plots. Generally, the
wheat-growing cycle in the region starts in November and ends in June of the following
calendar year, overlapping the rainy season. Wheat is irrigated two to five times, depend-
ing on water availability in autumn and winter and on amount of stored water in dams
during the rainy season.

The area is divided into several hundred irrigation plots. For this study, 30 wheat plots
were selected, with size varying from 1.7 to 24.5 ha (total area 117 ha). The diversity of
crop management and irrigation schedules in these plots was representative of the general
agricultural practices in the area.

Figure 1 shows the location of study area and illustrates the location of the selected
plots. The plots were labelled from P1 to P26 and divided into 348 sub-plots of about
0.5 ha each. Plots P8, P9, P11, and P16 were monitored for two successive cropping
seasons (2012–2013 and 2013–2014). The irrigation was managed by farmers. The
irrigation duration ranged from 1 to 2 days ha−1.

2.2. Soil data

In the study area, soil physics analyses were performed from 30 soil samples (Table 1)
(Benabdelouahab 2009). These samples were collected from several sites providing
coverage of the entire study area. Water content at permanent wilting point (PWP) and
field capacity (FC) were measured using a pressure plate extractor. Soil reached PWP
and FC when the water potential was at −1.5 and −0.033 MPa, respectively (Kirkham
2005).

On the basis of these analyses (Table 1), the soils are mainly homogeneous with fine
texture (silty clay) which is characterized by a high water-holding capacity. The propor-
tions of clay, silt, and sand, which together determine the soil textural class, present a high
homogeneity, with a standard deviation of 3.40%, 2.69%, and 1.27%, respectively. The
bulk density value is 1.21 (g cm−3), with a standard deviation of 0.14. The strong
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homogeneity of soil parameters in the study area justifies the use of the gravimetric soil
moisture.

2.3. Field data

The experiments were conducted during the 2012–2013 and 2013–2014 wheat cropping
seasons to assess changes in soil moisture and vegetation. Dates and levels of irrigation
water supply and physiological crop data were collected.

Figure 1. Location of the irrigated area (upper left inset shows a map of Morocco; the study area is
indicated by diagonal lines and the experimental plots are in grey).

Table 1. Soil physics properties in Tadla, Morocco.

Soil properties

Depth 0–30 cm Depth 30–60 cm Depth 60–100 cm

Value
Standard
deviation Value

Standard
deviation Value

Standard
deviation

Texture Silty clay Silty clay Silty clay
Sand (%) 25.35 2.69 24.53 1.90 23.96 0.29
Silt (%) 41.01 1.27 35.49 1.65 39.73 1.28
Clay (%) 33.64 3.40 39.99 1.26 36.31 1.51
Bulk density (g cm−3) 1.21 0.14 1.46 0.07 1.48 0.14
Field capacity (mm) 78.71 11.56 95.18 8.23 95.97 12.14
Saturation (mm) 106.02 4.23 118.13 4.84 124.8 5.55
Permanent wilting point
(mm)

50.04 3.84 62.31 9.13 64.27 13.12

Hydraulic conductivity
(cm h−1)

5.14 1.9 3.48 1.73 3.46 1.86

International Journal of Remote Sensing 4021
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Soil moisture was measured weekly for all 30 plots during the two cropping seasons,
starting from sowing until grain filling, at 0–10 cm depth, with three random replications
per plot. Soil moisture was measured using gravimetric methodology (dried in an oven at
105°C for 24 h). Vegetation water content was also measured weekly, starting from tillering
until wheat grain filling (January–May 2013). In each plot, the vegetation water content was
measured in four randomly selected quadrats (i.e. an area of 0.5 × 0.5 m). From each
quadrat, sub-samples were used to measure the weight of the fresh and dry above-ground
biomass in order to quantify vegetation water content (dried in an oven at 65°C for 48 h).
Soil and vegetation water content were quantified on a gravimetric basis (i.e. g water/g soil
or biomass), expressed as a percentage (%). These measurements were used to establish a
relationship between vegetation water content and covered soil moisture.

The collected field data (soil moisture and vegetation water content) were vectorized
as points and the experimental plots as polygons, in a geographical information system.
Polygons were drawn so as to remove pixels falling along plot boundaries. The experi-
mental plots were subdivided into sub-plot units of identical size (0.5 ha) and an identifier
code was assigned to each of these units. Polygons of these sub-plot units served as a way
of extracting pixel images that were close and directly linked to ground measurements.

Field data were collected in a regular and timely manner to ensure that ground
measurements were acquired synchronously with satellite passes so as to obtain a good
comparison between field measurements and remote-sensing data. Field measurements
collected within a maximum of 3 days before or after a satellite pass were used for the
analysis. We also ensured that during this period (between the field observation and the
image acquisition date) there was no precipitation event or irrigation water supply.

2.4. Satellite images and their processing

Ten SPOT-5 HRV satellite images were acquired between December (at wheat emergence)
and April (at grain filling) for the 2012–2013 and 2013–2014 cropping seasons (Table 2).
They covered temporal changes in surface water content during themain wheat growth stages,
except for the final senescent stage. The processing level of the acquired images was 1B,
which included radiometric and geometric corrections. Atmospheric corrections were per-
formed from radiance images, using the Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH)model available in the ENVI software. This model is considered to be
more accurate for SPOT-5 images than other models (Guo and Zeng 2012).

Table 2. List of acquired SPOT-5 HRV images and their characteristics.

Acquisition date Cropping season Sensor
Wavelength

(nm)
Spatial resolution

(m)

12 December 2012 2012/2013 SPOT-5
HRV

Green: 500–590
Red: 610–680
NIR: 780–890
SWIR:1580–1750

Green: 10
Red: 10
NIR: 10
SWIR: 20

2 February 2013
21 March 2013
26 March 2013
11 April 2013
2 December 2013 2013/2014
6 January 2014
1 February 2014
26 March 2014
15 April 2014

4022 T. Benabdelouahab et al.
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The NDVI threshold method (Momeni and Saradjian 2007; Ning et al. 2013) was used
to classify the land surface into three land-cover categories (Tables 4 and 5): bare soil
(beginning of cropping season) with NDVI < 0.2; partly vegetated soil (mixed cover) with
0.2 ≤ NDVI ≤ 0.5; and full vegetation cover with NDVI > 0.5.

The 12 December 2012 and 2 December 2013 images were acquired at the beginning
of the growing season, when the soil was bare, whereas the 21 March 2013, 26 March
2013, 11 April 2013, 26 March 2014, and 15 April 2014 images were acquired when the
soil was completely covered. The 2 February 2013, 6 January 2014, and 1 February 2014
images were acquired in the middle of the cropping season when the surface was partly
covered by vegetation.

The visible spectrum (400–740 nm) is sensitive to vegetation water stress (Jensen
2005), with a more significant reflectance change in the red band (580–680 nm). The NIR
band serves as a moisture-reference band, whereas the SWIR band is used as the moisture-
measuring band. Reflectance in the NIR spectrum (740–1300 nm) is most sensitive to leaf
internal structure changes (Jacquemoud and Baret 1990) and is insensitive to moisture
variation (Elvidge and Lyon 1985), except in conditions leading to leaf dehydration which
therefore affects leaf structure (Girard and Girard 2010; Jensen 2007). Recent studies
confirmed the high sensitivity of the SWIR band to moisture variation in vegetation and
soil (Ceccato et al. 2001; Cheng et al. 2013; Cheng, Rivard, and Sánchez-Azofeifa 2011;
Yilmaz et al. 2008; Yilmaz, Hunt, and Jackson 2008; Hunt et al. 2011; Liu et al. 2012;
Hunt and Rock 1989).

The first step in image post-processing involved computing two spectral indices, the
NDWI (Rogers and Kearney 2004; Lasaponara and Masini 2012) and the MSI (Ceccato
et al. 2001; Ceccato et al. 2002; Hunt and Rock 1989) (Table 3), using the spectral
reflectance in the red, NIR, and SWIR bands for each SPOT-5 HRV image.

The second step involved delineating the region of interest (ROI) used as a mask of
wheat sub-plots. The average values of the NDWI and MSI spectral indices were then
computed for each corresponding sub-plot (7 × 7 pixels) where field measurements were
conducted (Figure 2).

2.5. Model calibration and evaluation

The average MSI and NDWI values of the sub-plots and the corresponding ground measure-
ments were compared using linear regression analysis. The regression coefficients a and b,
reported in Tables 4 and 6, denote the slope and intercept of the regression line, respectively.

Table 3. Spectral indices derived from the SPOT-5 sensor (red, NIR, and SWIR refer to the
spectral reflectance bands of the SPOT-5 image).

Index Abbreviation Equation Sensitivity References

Normalized
difference
water index

NDWI (Red – SWIR)/
(Red +
SWIR)

Vegetation water
content and soil
moisture content

Rogers and Kearney (2004),
Lei, Zhang, and Bruce
(2009), Lasaponara and
Masini (2012)

Moisture stress
index

MSI (SWIR/NIR) Vegetation water
content

Ceccato et al. (2001),
Ceccato et al. (2002),
Hunt and Rock (1989)

International Journal of Remote Sensing 4023
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The statistics used for evaluating the regression models were: the coefficient of
determination (R2); the root mean square error (RMSE), which is one of the most
widely used error assessment indices; and the normalized RMSE (nRMSE), expressed
as a percentage of the RMSE divided by the mean of observed values (Richter et al.
2012):

RMSE ¼
Xn
i¼1

Si � Oið Þ2=n
" #0:5

; (1)

nRMSE ¼
Xn
i¼1

Si � Oið Þ2=n
" #0:5

� 100=M ; (2)

where Si and Oi refer to simulated and observed values of the studied variable, respec-
tively; i is an identifier varying from 1 to n; n is the number of observations; and M is the
mean of the observed variable.

The value of nRMSE indicates the accuracy of the model and the dispersion around
the mean of the observed values.

The accuracy of the regression models was evaluated using the k-fold cross-valida-
tion (k-fold CV) approach (Cassel 2007). Cross-validation is a resampling method that
offers a different approach to model evaluation. It uses k replicate samples of observa-
tion data, builds models with (k – 1)/k of data, and tests with the remaining 1/k. The
random k-fold CV takes k independent samples of size N × (k – 1)/k (Cassel 2007). In
our study, it involved 33.3% of the observations as the validation data, with the
remaining 66.6% of the observations being the training data, with 10 repeti-
tions (N = 10).

Figure 2. Schematic diagram illustrating field data and satellite image processing.

4024 T. Benabdelouahab et al.
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2.6. Mapping soil moisture

Soil moisture was mapped using relationships of the validated linear regression models
between satellite indices and ground measurements. The maps display surface soil
moisture at plot level for each acquired satellite image.

3. Results and discussion

3.1. Soil moisture assessment at the beginning of wheat cropping season

The relationship between observed soil moisture and the MSI and NDWI values was
assessed in 47 sub-plots at the beginning of the wheat cropping season (NDVI < 0.2),
using images acquired on 12 December 2012 and 2 December 2013.

The reduced number of data used for this analysis is explained by the infrequent
synchronization between field measurements and dates of satellite pass, particularly since
only those measurements collected with a lag time of maximum 3 days from the date of
satellite pass were considered.

As shown in Table 4, the R2 and RMSE values were 0.84 (p < 0.01) and 1.03% for the
NDWI and 0.79 (p < 0.01) and 1.18% for the MSI, respectively.

We compared the soil moisture values predicted using the k-fold CV method and those
measured in situ (Table 5). The statistical indicators obtained from this comparison were
R2 = 0.75 (p < 0.01) and RMSE = 1.09% for NDWI and R2 = 0.73 (p < 0.01) and
RMSE = 1.24% for MSI. This comparison showed that errors were acceptable for both the
MSI and NDWI, confirming the ability of these indices to accurately explain soil moisture
variability for bare soil. Ghulam et al. (2007) reported similar results using the PDI and
MPDI, with an R2 of 0.56 and 0.55, respectively, over bare surfaces.

3.2. Vegetation water content and soil moisture assessment at full vegetation cover

The relationship between observed vegetation water content and MSI and NDWI was
assessed in 62 sub-plots, when the soil was completely covered by vegetation
(NDVI > 0.5). The statistical indicators obtained are presented in Table 6. The two
spectral indices were strongly related to vegetation water content. The statistical indicators

Table 4. Linear regression analysis of the relationship between observed soil moisture and selected
spectral indices.

Number of
samples R2 a (%) b (%)

RMSE
(%)

nRMSE
(%)

NDWI Bare soil (NDVI < 0.2) 47 0.84 −22.74 1.18 1.03 10.69
Mixed cover (0.2 < NDVI < 0.5) 65 0.75 −13.85 8.3 1.38 7.22
Completely covered soil
(NDVI > 0.5)

100 0.83 −20.1 4.57 1.05 6.17

All types of cover 212 0.86 −20.51 3.42 1.62 10.1
MSI Bare soil (NDVI < 0.2) 47 0.79 2.04 1.26 1.18 12.23

Mixed cover (0.2 < NDVI < 0.5) 65 0.38 2.4 21.75 2.04 10.80
Completely covered soil
(NDVI > 0.5)

100 0.68 −20.4 31.9 1.44 8.48

All types of cover 212 0.49 −0.32 6.97 10.19 64.11

International Journal of Remote Sensing 4025
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R2 and RMSE were 0.77 (p < 0.01) and 2.49% for NDWI and 0.55 (p < 0.01) and 3.47%
for MSI, respectively.

In order to validate these results, we compared observed vegetation water content
values with those predicted using the k-fold CV method. As shown in Table 7, the errors
were low for both NDWI and MSI. The evaluation model indicators obtained for
predicted vegetation water content from NDWI were: RMSE of 2.62% and R2 of 0.72
(p < 0.01). For MSI, the RMSE and R2 values were 3.69% and 0.47 (p < 0.01),
respectively. These results confirmed the ability of NDWI to estimate the vegetation
water content for wheat, whereas the MSI values were less in agreement with the observed
values. Similar results were reported for MSI by QiuXiang et al. (2012) and Hunt and
Rock (1989).

Ning et al. (2013) reported the ability of the VSDI to simulate both soil moisture and
vegetation water content, obtaining an R2 of 0.51 and 0.42, respectively.

In areas with limited water availability, the critical period for wheat is during rapid
growth, from the end of tillering to full stem elongation. In our study area, this corre-
sponds to the period that usually begins in mid-March. Figure 3 compares measured soil
moisture and wheat vegetation water content during the critical tillering to grain filling
period. The figure shows a strong relationship between these two variables, with an R2 of
0.82 (p < 0.01). During the development stages of healthy wheat, from tillering to grain

Table 6. Linear regression analysis of the relationship between observed vegetation water content
and selected spectral indices.

Number of samples R2 a (%) b (%) RMSE (%) nRMSE (%)

NDWI Vegetation 62 0.77 −47.75 43.90 2.49 3.48
MSI 0.55 −34.98 97.57 3.47 4.85

Table 7. The k-fold CV of the linear regression analysis of the relationship between observed
vegetation water content and the spectral indices.

Number of samples R2 RMSE (%) nRMSE (%)

NDWI Vegetation 200 0.72 2.62 3.64
MSI 0.47 3.69 5.13

Table 5. The k-fold CV of the linear regression analysis of the relationship between observed soil
moisture and selected spectral indices.

Number of samples R2
RMSE
(%)

nRMSE
(%)

NDWI Bare soil (NDVI < 0.2) 150 0.75 1.09 10.82
Mixed cover (0.2 < NDVI < 0.5) 210 0.68 1.41 7.24
Completely covered soil (NDVI > 0.5) 330 0.78 1.08 6.34
All types of cover 700 0.85 1.61 10.01

MSI Bare soil (NDVI < 0.2) 150 0.73 1.24 12.3
Mixed cover (0.2 < NDVI < 0.5) 210 0.1 – –
Completely covered soil (NDVI > 0.5) 330 0.54 1.51 8.88
All types of cover 700 0.05 – –
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filling, and under the soil moisture conditions of the study area, the relationship was linear
between FC (soil moisture of 24.3% at field capacity) and PWP (soil moisture of 9.8% at
permanent wilting point), which accorded with the findings reported by Girard and Girard
(2010). This shows that surface soil moisture can be estimated using vegetation water
content and vice versa.

NDWI and MSI performed well in assessing top 10 cm soil moisture, when the soil
was completely covered by vegetation. As shown in Table 4, R2 and RMSE values were
0.83 (p < 0.01) and 1.05% for the NDWI and 0.68 (p < 0.01) and 1.44% for the MSI,
respectively.

These results show the capacity of both NDWI and MSI to simultaneously estimate
both vegetation water content and soil moisture, even when the soil is completely covered
by the canopy, as confirmed by the k-fold validation results in Table 5.

Table 4 shows that change in land-cover type induced an MSI with opposing trends.
As MSI uses the NIR band that behaves differently according to the type of cover (Ning
et al. 2013), this index is not suitable for comparing different land-cover types
simultaneously.

3.3. Soil moisture assessment during the main growth stages of wheat

Following the strong ability of NDWI and MSI to estimate soil moisture separately for
bare soil and full vegetation cover, we tested the capacity of these spectral indices to
estimate this parameter throughout the wheat cropping season, apart from the senescent
stage which was not studied, since no irrigation is applied during this stage of wheat
development.

Figures 4 and 6 show the comparison between observed soil moisture values and
those derived using the spectral indices for the 10 acquisition dates. The statistical
indicators R2 and RMSE were 0.86 (p < 0.01) and 1.62% for NDWI, respectively
(Table 4).

The point clouds for MSI, representing different kinds of cover, show opposite trends
according to the main growth stages of wheat (Figure 6). This indicated that there was no
unique linear relationship between MSI and surface soil moisture, for the entire wheat

Figure 3. Relationship between vegetation and soil moisture measurements (FC, field capacity;
PWP, permanent wilting point). Data were acquired on 21 March 2013, 26 March 2013, 11 April
2013, 26 March 2014, and 15 April 2014.
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crop cycle (apart from the senescent stage). The standard deviation of this index varies
between 0.009 and 0.1 (Figure 6). The ratio between MSI values and the standard
deviation expressed as a percentage varies between 0.23% and 11.88%.

In contrast, there was good agreement between NDWI and soil moisture, whatever the
wheat growth stage, with standard deviation values ranging between 0.007 and 0.087
(Figure 4). The ratio between NDWI values and the standard deviation as a percentage
ranges between 1.12% and 12.87%. The relationship was maintained from one year to
the other (cf. Figure 4). The dispersion of the observed cloud points was mainly due to the
spatial heterogeneity which characterized soil moisture at plot level (Bi et al. 2009;
Xiaoning et al. 2009; Wang, Zhu, and Yan 2013), and the variable time lags ranging
from 0 to 3 days between field measurement and satellite pass.

As shown in Table 4, the slope values (a) of the different types of cover for NDWI
were relatively similar. For mixed cover, the slope was slightly steeper, indicating the
stability of NDWI at different stages of crop cover (from emergence to grain filling) and
its ability to quantify soil moisture throughout crop growth.

This finding was confirmed when comparing estimated and observed soil moisture
using the k-fold CV approach (Figure 5). The statistics obtained for NDWI were
RMSE = 1.61% and R2 = 0.85 (p < 0.01).

With regard to MSI, the statistical analysis showed that this index is not suitable for
estimating soil moisture throughout the crop-growing period, although it can accurately
estimate bare soil moisture and vegetation water content separately (Figure 6). The NIR
reflectance of covered soil is significantly higher than that of bare soil (Ning et al. 2013).
As MSI uses NIR as the reference band, the values of this index are much higher for bare
soil than for covered soil, which means that MSI cannot be used to compare dissimilar
land-cover types.

Feng et al. (2013) simulated soil moisture using the MSPSI model and obtained an R2

of 0.66. They also obtained R2 values of 0.54, 0.48, and 0.60 for the PDI, MPDI, and
SPSI models, respectively, for both bare and covered surfaces.

Figure 4. Relationship between soil moisture and NDWI values derived from all the acquired
images (cropping season 2012–2013 in blue and cropping season 2013–2014 in red: squares, bare
soil; cross, covered soil; circles, mixed cover). Error bars (based on standard deviation) show the
range of NDWI values in each sub-plot.
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Ning et al. (2013) proposed using the VSDI for monitoring soil and vegetation
moisture simultaneously over different land-cover types. This index is based on exploiting
the SWIR and red bands. In a comparison between VSDI and the fractional water index
over different land-cover types, they obtained an R2 of 0.54.

3.4. Mapping soil moisture

Figures 7 and 8 show the soil moisture maps derived from the 10 SPOT-5 dates
based on NDWI for the first (2012–2013) and second (2013–2014) cropping seasons,
respectively. These maps were generated using a regression model (soil
moisture = −20.51 × (NDWI) + 3.42) obtained by comparing the 10 available images
and field measurements (see Figure 4). Soil moisture ranged from 6% (red) to 24%
(blue). Figures 7(f) and 8(f) show the location of the plots.

The maps display change and variability in soil moisture between and within the plots,
showing in particular differences between dry and wet plots. Such results could be very
useful for monitoring water stress on a large scale for wheat and for detecting irrigation
supplies.

In Figure 7(a), plots P1, P2, P3, P4, and P5 have a higher moisture content than other
plots. This variation is caused by the first irrigation being applied before 12 December
2012, the date when the satellite image was acquired.

Some plots (P6, P7, P8, and P9) in Figure 7(b) show internal heterogeneity of the
surface water content. The drying process is apparent in these plots, indicating the onset of
water stress in the crop. This figure also shows heterogeneity among different plots,
mainly due to irrigation supplies not being provided at the same time.

Figure 7(b) shows high soil moisture values, exceeding 16%, for plots P1, P2, P3, P4,
and P15 in the red square and P10 in the blue square. These plots were irrigated during the
last 10 days of January 2013. This was the second irrigation applied by farmers in the
study area. Plot P4 did not appear to be completely irrigated at this time, indicating that

Figure 5. Comparison between observed and predicted soil moisture using the k-fold CV of all
acquired images.
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irrigation was in progress on the image acquisition date. The other plots were irrigated in
January or after 2 February 2013, the date of the satellite pass.

Figures 7(c) and 7(d) show significant homogeneity and a dominance of blue,
indicating that soil moisture was high (20–24%). This is explained by rainfall that
occurred between 14 and 18 March 2013 (31.3 mm) and on 24 March 2013 (14 mm).
These dates correspond to the dates when images were acquired (i.e. 21 and 26 March
2013). Figure 7(e) shows that after two weeks of rainfall, there was a homogeneous drying

Figure 6. Relationship between soil moisture and the MSI values derived from all the acquired
images: (a) covered soil; (b) mixed cover; and (c) bare soil. Error bars (based on standard deviation)
show the range of MSI values in each sub-plot.
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of the plots, with soil moisture ranging from 14% to 16%. The drying process was
somewhat attenuated for plots P4 and P5, which were irrigated by the end of March.

In Figure 8(a), some pixels in P24 displayed quite a high surface water content level
(16−18%), explained by the first irrigation. In wheat fields, irrigation water is supplied
straight after sowing. Thus, the detection of the first irrigation can generally indicate the
sowing date.

In Figure 8(b), it is interesting to note that plot P17 appears to be partly irrigated,
indicating that irrigation was in progress. Plots P8, P9, P11, P16, P18, P19, P20, P24, and
P25 were irrigated a few days before acquisition of the satellite image on 6 January 2014.

Figure 8(c), derived from the satellite image acquired on 1 February 2014, shows high
and homogeneous surface water content (20–24%). This is explained by significant
rainfall that occurred between 30 and 31 January 2014 (36.5 mm).

Both Figures 8(d) and 8(e), derived from images acquired on 26 March 2014 and 15
April 2014, show relatively low humidity, ranging from 12% to 15%. This can be

Figure 7. Soil moisture maps derived from the NDWI data: (a) 12 December 2012; (b) 2 February
2013; (c) 21 March 2013; (d) 26 March 2013; (e) 11 April 2013; and ( f ) codes for the experimental
plots.
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explained by irrigation that was scheduled at the beginning of March and after mid-April,
in addition to lack of rainfall for a period of 12 days before the date of image acquisition.
These figures portray the process of drying and the start of water stress of the wheat crop.

The developed method can be used as an operational tool for managing irrigation and
crops and monitoring the evolution of surface water content at the plot scale, as well as on
a larger scale across the irrigated area.

The practical aspects of this method that could improve irrigation water management in an
irrigated perimeter include the following:

● The method can be used for triggering irrigation supplies in water stress situations
and otherwise prevent contributions in excess of irrigation water. Such information
could be valuable for decision-makers in charge of irrigation and crop management
in irrigated areas.

Figure 8. Soil moisture maps derived from the NDWI data: (a) 2 December 2013; (b) 6 January
2014; (c) 1 February 2014; (d) 26 March 2014; (e) 15 April 2014; and ( f ) codes for the experi-
mental plots.
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● It could also be useful for detecting illegal irrigation and pumping. This is relevant
in irrigated areas where irrigation has not been scheduled and uncontrolled water
pumping is prohibited.

● It could also be used for detecting the date of sowing, which is usually concomitant
with the first irrigation.

4. Conclusions

This study sought to assess the ability of two spectral indices, NDWI and MSI, derived
from SPOT-5 HRV satellite images, to estimate surface water content from bare soil to
completely covered soil throughout the cropping season in irrigated semi-arid areas.

The comparison between NDWI, using the red and SWIR bands, and soil moisture
measurements at a depth of 0–10 cm throughout the cropping season showed good
agreement, with an R2 of 0.86. MSI appeared to be less suitable for quantifying and
comparing soil moisture content at different stages during the wheat cycle. This index
could be used, however, to estimate bare soil moisture, covered soil moisture, and
vegetation water content separately. The derived soil moisture maps showed interesting
spatial patterns that could be related to the dates of irrigation and rainfall events in the
irrigated perimeter of Tadla.

NDWI can be used to compare, quantify, and map surface water content, at different
stages of crop cover (from sowing to grain filling) over several years. It shows potential
for improving irrigation monitoring, detecting irrigation supplies, wheat stress manage-
ment, and our understanding of surface water content changes at field and regional levels
in the study area. The performance of the methodology should be checked in other
contexts before judging its suitability for application in other areas.
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