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Abstract Understanding climate controls on spring phenolo-
gy in grassland ecosystems is critically important in predicting
the impacts of future climate change on grassland productivity
and carbon storage. The third-generation Global Inventory
Monitoring and Modeling System (GIMMS3g) normalized
difference vegetation index (NDVI) data were applied to
derive the start of the growing season (SOS) from 1982–
2010 in grassland ecosystems of Ordos, a typical semi-arid
area in China. Then, the conditional Granger causality method
was utilized to quantify the directed functional connectivity
between key climatic drivers and the SOS. The results show
that the asymmetric Gaussian (AG) function is better in re-
ducing noise of NDVI time series than the double logistic
(DL) function within our study area. The southeastern Ordos
has earlier occurrence and lower variability of the SOS,
whereas the northwestern Ordos has later occurrence and
higher variability of the SOS. The research also reveals that
spring precipitation has stronger causal connectivity with the
SOS than other climatic factors over different grassland eco-
system types. There is no statistically significant trend across
the study area, while the similar pattern is observed for spring
precipitation. Our study highlights the link of spring phenol-
ogy with different grassland types, and the use of coupling
remote sensing and econometric tools. With the dramatic

increase in global change research, Granger causality method
augurs well for further development and application of time-
series modeling of complex social–ecological systems at the
intersection of remote sensing and landscape changes.

Keywords Ordos . Semi-arid area . Grassland . Land surface
phenology . The start of the growing season (SOS) . Climate
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Introduction

Phenology is the study of the timing of recurring biological
cycles and their connection to climate (White et al. 1997,
2009). Vegetation phenology can influence the exchange of
energy, water vapor, and momentum between the land surface
and the atmosphere and, therefore, is critical for the global
carbon and water cycle (Luo et al. 2013; Cong et al. 2013).
Vegetation phenology can serve as one of the most important
biological indicators of the effects of climate change on bio-
logical systems (Dai et al. 2013b). An earlier occurrence of
spring phenology has been observed in the northern latitudes,
which correlates with rising temperatures, either using satellite
observations (Myneni et al. 1997; White et al. 2009; Cong
et al. 2013) or in situ stations (Menzel and Fabian 1999;
Parmesan and Yohe 2003; Menzel et al. 2006; Ma and Zhou
2012; Dai et al. 2013a, b). Thoroughly understanding vegeta-
tion phenology and its linkage to climate is essential to incor-
porate phenology in biogeochemical models and further ac-
curately predict future ecosystem changes (Ge et al. 2013; Wu
and Liu 2013).

With the applications of remote sensing in monitoring and
characterizing vegetation phenology, we usually used the term
land surface phenology (LSP) to refer to the seasonal pattern
of variation in vegetated land surfaces observed particularly
from remote sensing. LSP is distinguished from plant
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phenology which refers to specific life cycle events such as
budburst, flowering, or leaf senescence using in situ observa-
tions of individual plants and species (de Beurs and Henebry
2010). LSP is based upon “wall-to-wall” observations of
phenology at larger geographic scales instead of plant-
specific observations. The relationship between satellite mea-
sures of LSP and specific plant phenophases is still ambiguous
(de Beurs and Henebry 2010). For this reason, the terms about
phenological metrics in LSP as well as the methods to derive
these metrics are diverse. For example, the terms such as
green-up date, leaf-unfolding, green wave, and the start of
the growing season (SOS) appear to be interchangeable in the
literature (White et al. 2009). Here, we adopted the term SOS
which most authors use to represent the phenophase in spring.
Since the key LSP metrics are primarily based on time-series
analysis of vegetation indices (VI) from optical sensors, the
SOS is usually defined as the day of the year (DOY) that the
VI reaches the greatest temporal increase. To be specific, two
steps are usually applied to identify the SOS using satellite-
derived variables such as normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI), and normal-
ized difference water index (NDWI) (Zhang et al. 2005;White
et al. 2009; Cong et al. 2012, 2013). The first step is to depress
the noise and fit the shape of the VI curve using methods such
as curving fitting, harmonic analysis, and piecewise functions
(Jönsson and Eklundh 2002, 2004; de Beurs and Henebry
2010; Atkinson et al. 2012; Cong et al. 2012). The second
step is to calculate the DOY that the VI increases most
quickly. The SOS can be determined from the DOY that the
VI crosses a specific threshold in an upward direction (White
et al. 2009), the DOY when the positive derivative of the VI
curve reaches the highest point (Cong et al. 2012, 2013), or the
DOY that the first local maxima of the curvature of the VI
curve appears (Zhang et al. 2005). Each method has its ad-
vantages and limitations. Such differences among methods
might lead to the lack of consensus in derived information,
uncertainty, and bias between users (Atkinson et al. 2012). To
account for the potential uncertainty, White et al. (2009) and
Cong et al. (2012, 2013) conduct a multi-method research to
quantify changes in vegetation phenology, and conclude that it
would be difficult to find a single method suitable for all the
vegetation types of diverse landscapes. Besides multi-method
study, it is also important to make comparative analysis of
these methods using specific measures, particularly when
validation data are unavailable.

To our knowledge, greater efforts have been made to
investigate the variations in phenology of temperate decidu-
ous forests (tree species) and Qinghai-Tibetan Plateau (grass-
lands, meadows, and shrubs) (Chen et al. 2005; Piao et al.
2006, 2011; Cong et al. 2012, 2013; Dai et al. 2013a, b; Luo
et al. 2013; Zhang et al. 2013), but few exclusively focus on
LSP of grasslands in arid and semi-arid areas. These areas
have an annual precipitation range of 200–400 mm with high

intra- and inter-annual variations. For example, Zhu andMeng
(2010) have reported that mean annual precipitation in the
1980s and 1990s is lower than that in the 1960s and 1970s in
the middle part of Inner Mongolia, China. Ecosystems in arid-
and semi-areas are particularly sensitive to changes of precip-
itation regimes. Many studies have found a significant posi-
tive correlation between NPP and precipitation in water-
limited ecosystems (Zhu and Southworth 2013). Peng et al.
(2013) have also reported that precipitation amount, season-
ality, and frequency can regulate the carbon cycling of semi-
arid grassland ecosystems. It is also worth investigating spring
phenology of grassland ecosystems and its linkage to climate,
which will be useful in understanding the response of terres-
trial ecosystems to climate change. Using Ordos, a semi-arid
landscape as the study area, our study investigated spatial and
temporal variations in the SOS and quantified their relation-
ships with climatic drivers. To be specific, we address the
following research questions: (1) Which technique is more
appropriate to estimate the SOS in the study area? (2) How has
the SOS changed spatially and temporally from 1982–2010?
(3) What is the relative importance of climatic drivers in
determining the SOS? Our study is critical to predict the
impacts of future climate change on LSP, and on the produc-
tivity and carbon cycling of grassland ecosystems.

Materials and methods

Study area

The Ordos, which spans from 106°42′E to 111°27′E and
37°35′N to 40°51′N, is a region with relatively independent
geographic features in semi-arid areas of China (Fig. 1). The
elevation ranges from 1,000–1,500m and decreases fromwest
to east. This region consists of diverse landforms with a
plateau in the west, densely distributed gullies eroded by
rivers in the east, a flooding plain in the north, and deserts in
the center and south. The entire area exhibits a typical tem-
perate continental climate, with a mean annual precipitation
range of 170–350 mm and a mean annual temperature range
of 5.3–8.7° C. The total amount of precipitation decreases
noticeably from east to west, and rainfall is mainly distributed
in July and August. The dominant vegetation is grassland,
accounting for about 83.1 % of the study area. Grassland can
be subdivided into typical grassland, desert steppe, and mead-
ow (Fig. 1). Typical grassland is a type of zonal vegetation of
temperate continental climate in arid- and semi-areas. Desert
steppe is a grassland type transitioning from typical grasslands
to deserts. They are usually distributed inland with mean
annual precipitation less than 200 mm. Meadow is a kind of
azonal vegetation, which is composed of perennial grasses. It
grows in the semi-humid areas with abundant water. Deserts
accounts for 9.6 % of the entire study area. The major parts of
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the Kubuqi Desert and the Mu Us sandy lands are distributed
in this region. Grasslands play an important role in local
animal and husbandry, supporting the livelihoods of local
population. Due to frequent drought events, overgrazing,
and natural resources exploitation, grassland degradation and
desertification have become two severe environmental prob-
lems in recent decades, which are characterized by an increase
in bare lands and a decrease in grasslands (Zhu et al. 2013).
However, the deteriorating conditions have been reversed
since 2000 as conservation policies (e.g., grain-for-green pol-
icy) and management were implemented (Meng et al. 2011).

Data sets

Our study used the newly available GIMMS3g NDVI data
generated in the framework of the Global Inventory Monitor-
ing and Modeling System (GIMMS) project at the NASA
Goddard Space Flight Center. The data set was processed in
a way consistent with and quantitatively comparable to NDVI
generated from improved sensors such as MODIS and SPOT-
4 Vegetation, and was corrected for dropped scan lines, nav-
igation errors, data dropouts, edge-of-orbit composite discon-
tinuities, and other artifacts (Tucker et al. 2005). The empirical
mode decomposition/reconstruction method was applied to
minimize the effects of orbital drift by removing common
trends between the time series of Solar Zenith Angle and
NDVI (Fensholt et al. 2013; Zhu and Southworth 2013).
Moreover, the data set used the maximum NDVI value over
a 15-day period to represent each 15-day interval to minimize

corruption of vegetation signals from atmospheric effects,
cloud contamination, scan angle effects, and so on, at the time
of measurement (Bi et al. 2013). The data set spans from July
1981 to December 2011 and has a spatial resolution of around
8 km as well as a temporal resolution of about 15 days.
Despite the corrections and temporal compositing, the
GIMMS3g data set still contains residual invalid measure-
ments, well indicated by quality flags. A pixel with less than
80 % high-quality data points (quality flag=1 or 2) or mean
NDVI value less than 0.1 through the whole time span was
excluded from our analysis. For the data points with “bad”
quality (quality flag>2), we used a gap-filling procedure to
interpolate the NDVI values of these time points adopted by
Jin et al. (2013).

There are two National Standard Meteorological Stations
of China within our study area, and their locations are shown
in Fig. 1. The daily meteorological data from 1982 to 2008
available from the National Meteorological Information Cen-
ter of China were used to study the relationships between the
SOS and climatic factors. The climatic elements of each
station include daily average temperatures, daily maximum
temperatures, daily minimum temperatures, daily average rel-
ative humidity, daily precipitation, and daily sunshine hours.
We calculated the time series of potential climatic drivers of
spring phenology, which include mean spring (March, April,
and May) temperature (spring T), mean spring maximum
temperature (spring maxT), spring precipitation (spring P),
and mean spring sunshine hours (spring SH). We devoted
more attention to the relationships between spring

Fig. 1 Geographic location of the study area. The insetmaps show the geographic location of the study area in Inner Mongolia, China. The main map
demonstrates the spatial distribution of vegetation types
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precipitation and the SOS utilizing precipitation data from the
Climate Research Unit (CRU) at the University of East An-
glia. The CRU time-series (TS) data were month-by-month
variation on a spatial resolution of 0.5° with grid nodes
centered on the 0.25°, and they are now available at the global
scale from 1901 to 2011 (data version: CRU TS 3.21). The
CRU data were constructed from monthly observations at
meteorological stations across the world’s land areas. Station
anomalies were interpolated into 0.5×0.5° grid size and com-
bined with an existing climatology to obtain absolute monthly
values (Harris et al. 2014). There are 108 grid nodes within
and surrounding our study area (Online resource 1). To match
the spatial resolution of the SOS (about 8 km), we interpolated
monthly precipitation data into about 8×8 km grids using the
inverse distance weighted interpolation method. For interpo-
lation of each month, we separated the 108 grid nodes for two
sections: 78 for interpolation and 30 for evaluating the results
(Online resource 1). A comparison between raw values and
interpolated values suggest highly significant correlation and
close match of the 1:1 line (Online resource 1), and thus, we
can use the interpolated monthly precipitation surfaces for
further analysis. The vegetation map we used to define differ-
ent grassland ecosystems was derived from 1:1,000,000 scale
vegetation distribution map of China. It is digitalized based on
the vegetation atlas of China and available in the format of
ESRI shape file (The Chinese vegetation map editing
committee of Chinese Academy of Sciences 2001). These
data show detailed distribution of 11 groups of vegetation
types, 51 vegetation types, 833 communities, and about
2,000 dominant species. We reclassified and rasterized the
map into about 8×8 grids for further analysis.

Methods

Extracting the SOS

A global function which increases the flexibility and allows
the fitted function to follow a complex behavior of time series
can be constructed by including a set of local functions
(Eklundh and Jönsson 2012). Denoting the local functions
describing the time series in intervals around the left mini-
mum, the central maximum and the right minimum by fL(t),
fC(t), and fR(t), the global function F(t), which correctly
models the time series in the full interval [tL, tR], is

F tð Þ ¼ α tð Þ f L tð Þ þ 1−α tð Þ½ � f C tð Þ if tL < t < tC ð1Þ

F tð Þ ¼ β tð Þ f C tð Þ þ 1−β tð Þ½ � f R tð Þ if tC < t < tR ð2Þ

where α(t) and β(t) are cut-off functions that in small
intervals around (tL+ tC)/2 and (tC+ tR)/2, respectively,

smoothly drop from 1 to 0. The local functions can be
expressed as:

f tð Þ ¼ f t; c1; c2; a1; a2;…; anð Þ ¼ c1 þ c2g t; a1; a2;…; anð Þ
ð3Þ

where g(t;a1,a2,…,an) denotes the basis function. c1 and c2
determine the base level and the amplitude, and a1,a2,…,an
determine the shape of the basis function. Here, we used the
asymmetric Gaussian (AG) function and the double logistic
(DL) function as the basis function. The AG function has the
form:

g t; a1; a2;…; a5ð Þ ¼
exp −

t−a1
a2

� �a3� �
t > a1

exp −
a1−t
a4

� �a5� �
t ≤ a1

8>><
>>: ð4Þ

where a1 determines the position of the maximum or mini-
mumwith respect to the independent time variable t. a2 and a3
determine the width and flatness of the right function half, and
a4 and a5 determine the width and flatness of the left function
half. The DL function can be formulated as:

g t; a1;…; a4ð Þ ¼ 1

1þ exp
a1−t
a2

� � −
1

1þ exp
a3−t
a4

� � ð5Þ

where a1 determines the position of the left inflection point. a2
represents the rate of change. Likewise, a3 determines the
position of the left inflection point, whereas a4 denotes the
rate of change. Here, the SOS is defined as the DOY that the
NDVI ratio reaches 50 % in an upward direction. The NDVI
ratio (NDVIratio(t)), which represents the state of the ecosys-
tem, is transformed from the NDVI:

NDVIratio tð Þ ¼ NDVIt −NDVImin

NDVImax −NDVImin
ð6Þ

where NDVIt is the NDVI value at time t, and NDVImax and
NDVImin are the maximum andminimum values of the annual
NDVI curve. A 50 % point suggests that a certain pixel has
attained 50 % of its maximum greenness. The justification
offered for the choice of the 50% threshold is that the increase
in greenness is believed to be most rapid at this threshold.
Furthermore, the vegetation signals below this level tend to be
confounded with soil reflectance (White et al. 1997, 2009; de
Beurs and Henebry 2010; Cong et al. 2013).

Three statistical measures were used to evaluate the perfor-
mance of these functions in removing “noises”: root mean
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square error (RMSE), Akaike Information Criterion (AIC),
and Bayesian Information Criterion (BIC). The formula of
RMSE can be written as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

X
t¼1

T

VIfit tð Þ−VIobs tð Þð Þ
2

vuut ð7Þ

where VIfit(t) represents the smoothed value and VIobs(t) is the
observed value at time t. T is the number of input data points.
The AIC was used to measure the model performance by
penalizing the number of parameters, whose formula can be
written as:

AIC ¼ 2k þ T ln RSSð Þ½ � ð8Þ

where k is the number of parameters and RSS is the residue
sum of squares between the raw data and fitted data. The
lower the AIC value, the preferred the model is. For the AG
function, k is equal to 7 (c1,c2,a1,a2,a3,a4,a5), and for the DL
function, k is equal to 6 (c1,c2,a1,a2,a3,a4). The BIC, another
measure of goodness-of-fit using Bayesian framework, was
calculated as:

BIC ¼ T ln bσ2
� �� �

þ k ⋅ ln Tð Þ ð9Þ

where bσ2 is the error variance. T and k have similar meaning
as that in the AIC. The BIC penalizes parameters more strong-
ly than AIC does.

Trend estimation

A robust trend test statistic, proposed by Vogelsang, was used
to estimate the per-pixel trend in the SOS and spring precip-
itation from 1982–2010. This method does not require a priori
knowledge as to whether the time series is stationary or non-
stationary (Bi et al. 2013). The statistic is based on the fol-
lowing regression that is obtained by computing partial sums
of the original data, yt:

zt ¼ β1t þ β2
1

2
t2 þ t
� �� �

þ St ð10Þ

where zt=∑ j=1
t yj, St=∑ j=1

t μj, and the regressors are obtained
from the formulas t=∑ j=1

t 1 and 1
2 t2 þ tð Þ ¼ ∑t

j¼1 j . The
estimated β2 is further used to calculate the t-PST test
(Fomby and Vogelsang 2002). It is robust as it is effective
even when high serial autocorrelation or a unit root in the
errors exists (Bi et al. 2013).

Granger causality analysis

The Granger causality techniques was applied to the time
series of the SOS and climate factors of two meteorological
stations to determine whether variations in climate have driv-
en a delay or advance of the SOS. Granger causality, devel-
oped in 1960s (Granger 2007), has been widely used in
economics since then and becomes popular in neuroscience
within the last few years (Seth 2010). It is a powerful tech-
nique for extracting the direct functional connectivity called
Granger causality (G-causality). According to G-causality, X2
causes X1 if the inclusion of past observations of X2 reduce the
prediction error ofX1 in a linear regressionmodel ofX1 and X2,
as compared to a model which includes only previous obser-
vations of X1. Suppose that the temporal dynamics of one time
series X1(t) with a length of T can be described by X1(t) and
another time series X2(t) by a bivariate autoregressive model:

X 1 tð Þ ¼
X
j¼1

p

A11; jX 1 t− jð Þ þ
X
j¼1

p

A12; jX 2 t− jð Þ þ ξ1 tð Þ ð11Þ

where p is the maximum number of lagged observations
incorporated into the model, A denotes the coefficients of the
model, and ξ1 is the residuals for the time series. If the variance
of ξ1 is reduced by the inclusion of the X2 terms, then it can be
said thatX2 G-causesX1. Themagnitude of this interaction can
be measured by the log ratio of the prediction error variances
for the restricted (R) and unrestricted (U) models:

F2→1 ¼ ln
var ξ1R 12ð Þ

	 

var ξ1Uð Þ

2
4

3
5 ð12Þ

where ξ1R(12) is calculated from the model excluding the A12,j

coefficients, while the ξ1U is derived from the full model.
Bivariate G-causality can be further generalized to the multi-
variate case called conditional G-causality in which the G-
causality of X2 on X1 is tested in the context of multiple
additional variables X3, …, Xn. The conditional G-causality
can be estimated by multivariate autoregressive (MVAR)
models. Given space limitations, the detailed description of
this method can be found in Seth (2010, 2011). The G-
causality is sensitive to the selection of variables, the maxi-
mum number of lagged observations, and the significance test
of magnitude. We extracted the time series of the SOS for
64 pixels surrounding each of these two stations from 1982–
2010. These time series were summarized by grassland types
for each station: typical grassland, desert steppe, and meadow.
Two types, typical grassland and meadow, exist around the
Dongsheng station, while all three types exists around the
Otog station. The conditional G-causality was calculated to
show how climatic factors, spring T, spring maxT, spring P,
and spring SH, determine the SOS.
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Results

Comparisons of model performance

Figure 2 shows the spatial patterns of the differences in model
performance measures between the AG function and the DL
function. The area where the RMSE of the AG function is
larger than that of the DL function accounts for about 34.3 %,
whereas the area where the RMSE of the AG function is
smaller than that of the DL function makes up about 65.7 %
(Fig. 2a). The area where the AIC of the AG function is larger
than that of the DL function accounts for 35.2 %, while the
area where the AIC of the AG function is smaller than that of
the DL function occupies about 64.8 % (Fig. 2b). About
41.4 % of the study area is characterized by the larger BIC
of the AG function than that of the DL function. By contrast,
there is about 58.6 % of the study area where the BIC of the
AG function is smaller than that of the DL function (Fig. 2c).
Overall, the performance of the AG function in reducing noise
of the NDVI time series is better than that of the DL function
in our study area. Here, the AG function was selected to charac-
terize the shape of complex curves of the NDVI time series.

Spatial and temporal patterns of the SOS and its change

Figure 3a demonstrates the spatial pattern of the mean SOS
(1982–2010) across the study area. For the majority of the
study area, the growing season starts before May. Generally,

the SOS occurs earlier in the southeast than in the northwest.
Figure 3b shows the spatial pattern of the coefficient of
variation (CV) across the study area. The southeastern Ordos
has lower CV values, implying lower variability in the SOS,
whereas the northwestern Ordos has higher CV values, sug-
gesting higher variability. Figure 3c shows the changing pat-
tern of the SOS across the study area. No statistically signif-
icant trend is witnessed universally in the study area. Only
about 3.3 % of the entire study area has an advanced trend in
the SOS. Only about 2.9% has witnessed an increased trend in
the SOS, indicating a delay of the growing season start.

Relative importance of climatic drivers on the SOS

Figure 4 shows the annual variations in normalized climatic
factors for the Dongsheng meteorological station. The aug-
mented Dickey–Fuller (ADF) test, a test for a unit root in a
time series, was applied to test the stationarity. The null
hypothesis is that an individual time series contains a unit root
against the alternative that the time series is stationary. The
results show that the time series of spring T, spring maxT,
spring P, and spring SH for the Dongsheng station are station-
ary as the null hypothesis of the ADF test is rejected (Table 1).
An increasing trend in spring T, springmaxT, and spring SH is
observed, whereas there is no statistically significant trend in
other time series (Table 1). Figure 5 shows the annual varia-
tions in the SOS by grassland types from 1982–2008 for the
Dongsheng station. The SOS indicated by the day of the year

Fig. 2 Spatial pattern of the difference between the asymmetric Gaussian (AG) function and the double logistic (DL) function in terms of three statistical
measures: a RMSE, b AIC, and c BIC

Fig. 3 Spatial pattern of a the mean SOS, b the CV for the SOS, and c changing trends in the SOS from 1982–2010
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(DOY) occurs earlier over meadows (the DOY, 140) than
typical grasslands (the DOY, 142). There is no significant
trend in the SOS of both typical grassland and meadow
surrounding the Dongsheng station. Figure 6 demonstrates
the annual variations of climatic factors for the Otog meteo-
rological station. The null hypothesis that there is a unit root is
rejected for the time series of these climate factors, which
implies that these time series are stationary (Table 1). An
increasing trend in spring T and maxT is also observed, while
no significant trend exists underlying other time series.
Figure 7 shows the annual variations in the SOS by grassland
types from 1982–2008 for the Otog station. The SOS occurs
earlier over meadows (the DOY, 140) than typical grasslands
(the DOY, 141) and desert steppes (the DOY, 143). There is no
significant trend in the SOS of the three grassland types

(Table 1). Table 2 reports the G-causality connectivity be-
tween climate factors and the SOS for the two stations. Higher
values indicate greater causal influence of climatic factors on
the SOS. As for typical grasslands surrounding the
Dongsheng station, spring P has a significant influence on
the SOS, as indicated by its largest magnitude value (Table 2).
Other factors, spring T, spring maxT, and spring SH, have
weaker influence on the SOS. The similar results were found
over meadows surrounding this station. As for typical grass-
lands surrounding the Otog station, spring P exerts the most
significant influence on the SOS, but no significant influence
is found for other factors (Table 2). For meadow and desert
steppe, no significant causal connectivity of climate factors
with the SOS is detected, although the magnitude value for
spring P is still the largest.

Fig. 4 Annual variations in
potential drivers of the SOS at the
Dongsheng station from 1982–
2008: a spring T (mean spring
temperatures); b spring maxT
(mean spring maximum
temperatures); c spring P (total
spring precipitation), and d spring
SH (mean spring sunshine hours).
All the time series were
standardized using maximum–
minimum normalization

Table 1 Stationarity test and trend analysis for the time series of
climatic factors and the SOS at the two meteorological stations
(Dongsheng and Otog)

Dongsheng Otog

Stationarity Trend Stationarity Trend

Spring T Stationary 0.11a Stationary 0.09a

Spring maxT Stationary 0.12a Stationary 0.09a

Spring P Stationary 0.79 Stationary −0.57
Spring SH Stationary 1.57a Stationary 0.14

SOS (grassland) Stationary 0.11 Stationary 0.08

SOS (meadow) Stationary 0.27 Stationary −0.05
SOS (desert steppe) – – Stationary 0.25

The ADF test was applied to test whether the time series is stationary

spring T mean spring temperature, spring maxT mean spring maximum
temperature, spring P total spring precipitation, spring SH mean spring
sunshine hours
a The trend is statistically significant

Fig. 5 Annual variations in the SOS at the Dongsheng station from
1982–2008 by grassland types: a typical grassland, b meadow

Int J Biometeorol (2015) 59:237–248 243



Spatial relationships between the SOS and spring precipitation

Given that spring P is the dominant driver of the SOS in
different grassland ecosystems, we devoted more attention to
the relationships between the SOS and spring P spatially and
temporally. Figure 8 shows the spatial pattern of correlation
coefficient between the SOS and spring P across the study
area. There is a universal negative correlation between the
SOS and spring P, suggesting that more spring precipitation is
in favor of the advance of the SOS. The correlation in the
northwestern Ordos is stronger than that in the southeastern
Ordos, implying that spring precipitation makes greater influ-
ence on the SOSwhen precipitation is less. Figure 9 shows the
spatial pattern of mean spring precipitation (1982–2010).
Mean spring precipitation decreases from southeast to north-
west. The pattern corresponds to the spatial pattern of the SOS
which is characterized by the earlier occurrence of the SOS in
the southeast than in the northwest (Fig. 3a). The spatial
pattern of the CV for spring precipitation is also closely related
to that for the SOS, which is characterized by the lower CV for

spring precipitation and the SOS in the southeast, and the
higher CV the northwest (Figs. 3b and 10). Figure 11 shows
the spatial pattern of the changing trend in spring precipitation
from 1982–2010. Although there is a universal decreasing
trend in spring precipitation with higher decreasing rate in
the southeast and lower in the northwest, the trend is not
statistically significant. This might be the reason why about
94.8% of the study area shows no significant trend in the SOS
from 1982–2010 given the significant importance of spring
precipitation in determining the SOS (Fig. 3c).

Discussion

The accuracy and reliability of the techniques are critically
important to estimate phenological metrics from remotely
sensed time series whose applications are usually hindered
by noise chiefly due to atmospheric conditions and sun-
sensor-surface viewing geometrics (Atkinson et al. 2012).
Our research evaluated the performance of two techniques in

Fig. 6 Annual variations in
potential drivers of the SOS at the
Otog station from 1982–2008: a
spring T (mean spring
temperatures), b spring maxT
(mean spring maximum
temperatures), c spring P (total
spring precipitation), and d spring
SH (mean spring sunshine hours).
All the time series were
standardized using maximum–
minimum normalization

Fig. 7 Annual variations in the
SOS at the Otog station from
1982–2008 by grassland types: a
typical grassland, b meadow, c
desert steppe
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removing noise of the NDVI time series using three statistical
measures: RMSE, AIC, and BIC. Overall, such tests pointed
to the better performance of the AG function in depressing
noise in grassland ecosystems of our study area. Views differ
in relation to the superiority of different fitting techniques for
phenology applications. Given NDVI data with identical du-
ration, satellite correction scheme, geographic region,
compositing scheme, and spatial resolution, the SOS estimates
still differ with different techniques (White et al. 2009; Cong
et al. 2012, 2013). Beck et al. (2006) have found that the DL
function describes the NDVI data better than the AG function,
as suggested by RMSE. Hird and McDermid (2009) have
revealed the general superiority of the DL and AG functions
by comparing to other four alternative filtering techniques:
Savitzky-Golay filter, 4253H, twice filter, mean-value itera-
tion filter, and ARMD3-ARMA5 filter. Therefore, it is critical
to choose the “right” technique for specific regions depending
on performance. Our research emphasizes the use of NDVI
ratio, which can better represent the state of ecosystem, to
detect the phenophase of spring phenology. Moreover, the
increase in greenness is believed to be most rapid at 50 %

threshold. This is important particularly when there is no
strong a priori belief about which threshold will prove to be
the “best” or most useful (Richardson et al. 2010).

Our study highlights the use of econometric models in
assessing the relative importance of climatic factors on the
SOS in different grassland ecosystems. We found that spring
precipitation generally G-causes the SOS of different grass-
land types much stronger than other climatic factors in such
arid and semi-arid study area. This conclusion is supported by
existing studies in water-limited ecosystems which state that
precipitation is considered to be an important determinant of
spring phenology (Lotsch et al. 2003; Zhang et al. 2005; Piao
et al. 2006). It should be noted that the G-causality of spring
precipitation for meadow and desert steppe is not significant.
Compared to typical grassland, meadow is a kind of azonal
vegetation whose development is severely influenced by local
edaphic conditions rather than climate. Meadows in our study
area usually grow around the salt lakes or other water points
where precipitation is not the only supply. Therefore,
meadows receive relatively abundant water and are less sen-
sitive to spring precipitation. Previous studies have also

Table 2 G-causality connectivity between climatic factors and the SOS by grassland types for two meteorological stations (Dongsheng and Otog)

SOS (Dongsheng) SOS (Otog)

Typical grassland Meadow Typical grassland Meadow Desert steppe

spring T 0.02 0.03 0.01 0.00 0.01

spring maxT 0.02 0.02 0.01 0.00 0.02

spring P 0.18a 0.15a 0.12a 0.05 0.11

spring SH 0.02 0.02 0.01 0.04 0.01

spring Tmean spring temperature, spring maxTmean spring maximum temperature, spring P total spring precipitation, spring SHmean spring sunshine
hours
a The magnitude of connectivity is statistically significant

Fig. 8 Spatial pattern of the correlation coefficients between the SOS and
spring precipitation Fig. 9 Spatial pattern of mean spring precipitation (1982–2010)
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reported the relationships between the SOS of meadow and
climate (Piao et al. 2006; Shen et al. 2011; Cong et al. 2012,
2013). Piao et al. (2006) discovered that the onset date of
green-up for the alpine meadows postpones with an increase
in preseason precipitation. However, Shen et al. (2011) found
that increased precipitation tends to advance the SOS in alpine
meadow. This might be caused by different definition of
preseason cumulative precipitation. Cong et al. (2012, 2013)
reported that positive but not significant correlation between
the SOS and precipitation was observed. For alpine meadow,
the SOS is mainly controlled by preseason temperatures,
while precipitation has a little influence. Our study will further
enhance and complement the understanding of spring phenol-
ogy in meadows. The insignificant influence of spring precip-
itation on spring phenology over desert steppe does not negate
the importance of water (e.g., underground water, lakes) and
the impacts of other precipitation characteristics on spring

phenology (e.g., timing of rainfall, rainfall frequency) (Cong
et al. 2013). Desert steppe is dominated by drought-tolerant
and deep-rooted grasses with small leaves and thus can reduce
evapotranspiration and utilize the deep-soil water. Additional-
ly, the first rain of spring can usually prompt germination and
green-up of such grassland type. These potential drivers are
not captured by total spring precipitation only. The detected
weaker importance of other climatic factors does not negate
their influence on the SOS through interacting with spring
precipitation. Higher temperatures might induce more evapo-
ration, faster loss of rainwater, and soil moisture deficit in
water-limited ecosystems. The less water available to plants
may cause the delay of the SOS (Cong et al. 2013;Wu and Liu
2013). Identifying causality in complex systems can be diffi-
cult. Correlation alone is not sufficient to establish causation,
and lack of correlation does not imply lack of causation. For
these reasons, the use of correlation to infer causation is risky,
especially as we come to recognize that nonlinear dynamics
are ubiquitous. Granger causality provides a framework which
using predictability as opposed to correlation to detect causa-
tion between time-series variables.

Given the importance of spring precipitation, our research
paid more attention to the linkage of the SOS and spring
precipitation spatially and temporally. The spatial pattern of
the gradient of the SOS from southeast to northwest is closely
linked to humidity affected by the proximity to the ocean
(continentality). Previous studies have also reported that the
SOS is less dependent on spring precipitation in humid areas
than in arid areas (Cong et al. 2012, 2013; Wu and Liu 2013).
The variability of the SOS is also related to water availability,
which is characterized by lower variability in more humid
areas. Our research used a robust trend estimation tool with
no requirement of the assumption of time-series stationarity to
estimate trend. Although spring precipitation shows a wide-
spread decreasing trend, it is not statistically significant across
the study area. This corresponds to the pattern of the SOS
change, characterized that only few pixels with an advance or
delay of the SOS from 1982–2010 are observed in eastern
Ordos. It also should be noted that changes in spring phenol-
ogy result not only from the effects of climate but also from
anthropogenic activities such as land-use change and land
management. More studies are required to tease out the driv-
ing mechanism of these factors.

In conclusion, the spatial and temporal dynamics of the SOS
(1982–2010)were derived based on theGIMMS3gNDVI data,
and the conditional Granger causality measures were applied to
determine the relative importance of key climatic drivers on
spring phenology by grassland ecosystem types. The analysis
has advantages in developing robust causal relationships
through allowing important phenomena to be investigated
across time. Our research found that spring precipitation plays
a dominant role in determining the SOS in comparison with
other climatic drivers. The spatial patterns of the SOS and its

Fig. 10 Spatial pattern of the coefficients of variation for spring precip-
itation from 1982–2010

Fig. 11 Spatial pattern of the changing trends in spring precipitation from
1982–2010
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variability are generally controlled by the corresponding pat-
terns of spring precipitation. No statistically significant trends
are observed universally, which is closely linked with the
pattern of trends in spring precipitation. Our study supports
existing conclusions and also reveals the characteristics of
spring phenology for different grassland types in semi-arid
areas. The SOS for meadow occurs earlier than that of typical
grassland and desert steppe. Such a difference may be useful to
landscape management (e.g., setting the grazing period) and
map vegetation types. Our attention to grassland phenology
will enhance and complement previous studies which make
more efforts to investigate the phenology of tree species (Chen
et al. 2005; Dai et al. 2013a, b; Luo et al. 2013). The research
highlights the utilization of coupling remote sensing and econo-
metric tools. It is not only valuable for understanding contem-
porary changes in grassland landscapes but also has great
implications for predicting the effect of future climate change
on vegetation phenology and further on productivity and the
carbon cycling. Long-term remotely sensed time series pro-
vides promising options for characterizing the complexity of
ecosystems and landscape dynamics. With the rapid increase in
global change research, Granger causality method is still under
development and will play a critically important role in quan-
tifying the directional function connectivity at the intersection
of remote sensing and land change science.
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