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Abstract—The phenomenon of soil salinization in semi-arid re-
gions is getting amplified and accentuated by both anthropogenic
practices and climate change. Land salinization mapping and
monitoring using conventional strategies are insufficient and dif-
ficult. Our work aims to study the potential of synthetic aperture
radar (SAR) for mapping and monitoring of the spatio-temporal
dynamics of soil salinity using interferometry. Our contribution
in this paper consists of a statistical relationship that we establish
between field salinity measurement and InSAR coherence based
on an empirical analysis. For experimental validation, two sites
were selected: 1) the region of Mahdia (central Tunisia) and
2) the plain of Tadla (central Morocco). Both sites underwent
three ground campaigns simultaneously with three Radarsat-2
SAR image acquisitions. The results show that it is possible to
estimate the temporal change in soil electrical conductivity (EC)
from SAR images through the InSAR technique. It has been
shown that the radar signal is more sensitive to soil salinity in
HH polarization using a small incidence angle. However, for the
HV polarization, a large angle of incidence is more suitable.
This is, under considering the minimal influence of roughness
and moisture surfaces, for a given InSAR coherence.

Index Terms—Electrical conductivity (EC), interferometric
synthetic aperture radar (InSAR) coherence, polarimetric syn-
thetic aperture radar (SAR), soil salinity.

I. INTRODUCTION

S ALINIZATION can be divided into primary and sec-
ondary depending on its origin. The first is natural and

affects approximately 80% of lands. The second is induced
by anthropogenic activities, mainly irrigation [1]. Salinization
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poses a real threat to the world food security. Indeed, salin-
ization already has affected 400 million hectares, and an
equivalent area is threatened by this problem [2]. Tunisia and
Morocco, two countries located in arid and semi-arid climate
zones, are threatened by ground salinization. More than 8%
and 5% of Tunisian and Moroccan areas are already affected
by salinity to various degrees [3], respectively. Salinization
is characterized by its spatio-temporal evolution. Traditional
methods of monitoring its development (analysis in the labo-
ratory, in situ) are insufficient and unsuitable due to the speed
with which this phenomenon evolves. Therefore, exploration
of faster and more reliable methods of investigation is imper-
ative. Many techniques based on remote sensing data such
as radar and optical techniques are frequently used in the
mapping and monitoring of soil salinity evolution. However,
optical remote sensing outputs remain difficult to exploit
because of the presence of the cloud layer and dependence
on the sun’s rays [4], [5].

Radar imagery can provide as a reliable tool for detecting
temporal changes in soil salinity regardless of the weather
(clouds and rain) and temporal (day–night) conditions [6]–[8].
For agricultural soil, the radar signal is dependent mainly on
surface parameters [9], [10]. For example, soil salinity, coupled
with moisture (the presence of salt in solution), influences
the dielectric properties of soil and consequently the radar
signal [11], [12]. Several studies have been conducted on
the potential of radar remote sensing in moisture and soil
roughness estimation [11], [13], [8], [14]–[17]. Research on
salinization is less abundant, although a few studies have been
conducted [18]–[20]. Radar interferometry is also used for
detecting surface soil changes such as tectonic movement,
earthquakes, and desertification [21]. In this study, we use
the interferometric coherence as a technique for detecting
changes of soil surface characteristics; we then correlate those
changes with variation in soil salinity. The main objective
is to develop an empirical model that takes into account
acquisition parameters like incidence angle and polarization
to estimate soil salinity variation based on interferometric
coherence. This work aims to explore the capacity of synthetic
aperture radar (SAR) for the detection of spatio-temporal
variation of soil salinity through electrical conductivity (EC)
variation (imaginary part), which is considered as the only
quantifiable indicator of soil salinity. For this study, two areas
characterized by their different conditions were selected: 1) the
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Fig. 1. Location map of the Tunisian site.

Fig. 2. Location map of the Moroccan site.

first area is in an irrigated region with secondary salinization,
located in the plain of Tadla (Morocco), and 2) the second
area is in Mahdia region (Tunisia), which is characterized by
primary salinization.

II. STUDY AREA AND DATA USED

Test sites were established in two study areas in the semi-
arid bioclimatic zone that suffer from salinization: 1) the
governorate of Mahdia in Tunisia and 2) the plain of Tadla
in Morocco (Figs. 1 and 2). The sites were chosen in order
to test locations with differing origins of salinization and
study area characteristics. The Tunisian site is characterized
by bare soil, with no agricultural activity except some olive
trees grown without irrigation. In this site, salinization is
due to natural factors such as climate conditions (average
annual evaporation is 1700 mm). Water loss due to evapo-
ration exceeds the contributions by rain, leading to a deficit
in water balance [22]. As a result, the presence of saline
groundwater induces soil salinization by capillary rise. On
the Moroccan site, characterized by agricultural activities,
salinization is caused by farming practices such as irrigation
with brackish water (1.3 g/l) and excessive use of fertilizer

and plant protection products. The Tunisian site belongs to
the governorate of Mahdia in central Tunisia. It is located
between 10◦24′03.39′′E and 10◦31′36.65′′E longitude and
35◦36′33.08′′N and 35◦06′33.97′′N latitude. A location map
of this study area is given in Fig. 1. This test site extends
between Sebkhat (salt lake) el Ghorra and Sebkhat Echrita.
The soils of the Tunisian site are affected by primary salinity
due to their closeness to the Sebkhas and the ascent of ground-
water. The Moroccan site is the agricultural plain of Tadla,
located between 6◦51′49.1′′W and 6◦30′46.85′′W longitude
and 32◦19′40.39′′N and 32◦32′44.41′′N latitude (Fig. 2). It is
irrigated by water collected by the Ahmed El-Hansali dam.
The soil of the Moroccan site is characterized by secondary
salinization induced by irrigation. In this study, we used eight
SAR images of the Tunisian site and nine of the Moroccan
site acquired in September, October, and November 2011 by
the Radarsat2 satellite. The images were acquired in “Fine
Quad Pol” mode, which corresponds to a swath of 25 km
× 25 km and a spatial resolution of 8 m. The incidence angle
of acquisitions varied from 25◦ to 46◦. An interferometric
pair is created from two images acquired in a configu-
ration of identical acquisition (frame, mode of incidence;
Table I).

III. METHODOLOGY

A two-phase approach was adopted for modeling and mon-
itoring of soil salinity: the first is the phase, preprocessing,
involved georeferencing the SAR images and determining the
EC of the sites in situ. The second phase focused on the
modeling of EC according to coherence (Fig. 3). The following
section describes these two steps.

A. EC Determination In Situ

Soil samples were collected throughout each study site
during three field campaigns. For the Moroccan site, the first
campaign was held on September 27 and 28, 2011, with
38 samples collected (Fig. 4). This campaign was conducted
during a dry period, when the salt dynamics were low com-
pared to the wet period, which is characterized by significant
redistribution of salts. The second took place on October 24,
2011, with 24 samples. The last took place on November 17,
2011, with 24 samples. In total, 86 samples were collected
(Fig. 4). For the Tunisian site, the first campaign was con-
ducted on September 26, 2011, with 17 samples collected
(Fig. 5). The second took place on October 24, 2011, with
17 samples. The third was completed on November 17, 2011,
with 17 again collected. All sampling points were located
by geographical positioning system (GPS) to enable use of
the same points in subsequent campaigns. In each sampling
campaign, about 1 kg of soil was collected from the surface
layer of each point (0–5 cm of depth). The attributes (color,
texture, structure, and gross elements content estimation) of
each sample were recorded. This description was accompanied
by a physicochemical analysis in the laboratory to determine
properties such as EC (Table II).
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TABLE I
COHERENCE IMAGERY PAIRS

Fig. 3. Methodology used.

B. InSAR Coherence Computation

The study focused on nine pairs of images, four pairs
for the Moroccan site, and five pairs for the Tunisian site,
corresponding to the following periods.

1) The end of the dry season (September).
2) The onset of autumn (October).
3) The onset of winter (November).

C. Coherence Map Generation

Fig. 6 shows the methodology used to establish a model
linking variation in EC and interferometric coherence for the
two study sites. We first attributed geographical coordinates to
the SAR images using BEAM software. The projection used
is on the Universal Transverse Mercator (UTM) geospatial
reference system in the WGS84 geodesic system, zones 32 and
29 North, respectively, for the Tunisian and Moroccan sites.

Fig. 4. Location of sampling points (Moroccan site).

1) Generate coherence image: we generated a coherence
image for each of the different pairs and for each
polarization (HH/HV/VV).

2) Coherence was calculated for 3× 3 pixel windows.
We averaged coherence over windows of 3× 3 pixels,
corresponding to 24 m× 24 m, to avoid registration and
georeferencing errors.

D. EC Modeling With Respect to Coherence

Model calibration: Next, we developed general regression
models to analyze the variation in EC (measured in situ)
in relation to interferometric coherence (extracted from the
radar image). For this exploratory study, we used simple linear
regression models to determine the pattern of variation.

It should be noted that during the second and third cam-
paigns, some changes occurred in the agricultural field due to
the plowing by farmers. We eliminated the sampling points
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Fig. 5. Location of sampling points (Tunisian site).

TABLE II
DATE OF THE CAMPAIGN FOR EACH TEST SITE

Fig. 6. Methodology used to establish model Var CE = f◦ (coherence).

TABLE III
TUNISIAN SITE SAMPLE CHARACTERISTICS

TABLE IV
MOROCCAN SITE SAMPLE CHARACTERISTICS

where changes other than salinity occurred (Figs. 4 and 5). In
Tables III and IV, we list the changes in each sampled plot
(moisture, roughness, and vegetation cover) for the two sites.

1) Evaluation of the Models: To evaluate the performance
of the models, we used four indices (coefficient of determina-
tion R2, relative bias BIASr, relative root mean square error
RMSEr, and relative Nash–Sutcliffe efficiency Nr), and a
confusion matrix analysis.

1) Coefficient of determination R2 is defined as the squared
value of the coefficient of correlation. It is calculated
as [23]

R2 =

[ ∑n
i=1(Oi −O) ∗ (ESi − ES)√

(
∑n

i=1(Oi −O)2) ∗
√

(
∑n

i=1(ESi − ES)2)

]2
.

(1)

The value of R2 lies between 0 and 1. A value of zero
means no correlation, whereas a value of 1 means that
the dispersion of the prediction is equal to that of the
observation [23].

2) BIASr is calculated as

BIASr =
1

n
∗

n∑
i=1

(
ES −Oi

ESi

)
. (2)

3) RMSEr is a commonly used statistical measure of
error. Generally, the lower the value of RMSEr, the
better the performance of the model

RMSEr =

√√√√ 1

n
∗

n∑
i=1

(
ESi −Oi

ESi

)2

. (3)
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TABLE V
MODEL PERFORMANCE’ DETERMINATIONS (FIRST–SECOND CAMPAIGNS)

4) The Nash–Sutcliffe statistic evaluates model perfor-
mance by comparing the accuracy of estimated values
to the observed mean value of the entire data set [27]

Nr =

∑n
i=1

(
ESi−Oi

ESi

)2

∑n
i=1

(
Oi−O

O

)2 . (4)

where n is the sample size, Oi and Esi are the observed
and estimated values, and O and Es are the means of
the observed and estimated values.

If the result is negative, the estimation is worse than
using the mean value; the criterion is equal to one for a
perfect estimation [24].

5) The confusion matrix compared the predicted classi-
fications (using the InSAR coherence approach being
assessed) and the real (measured through the field
campaign) ones. The performance of such systems is
evaluated using the data in the matrix [30]. Samples
were classified in the confusion matrix into three classes
according to salinity variation: low, medium, and high.

IV. EXPERIMENTAL RESULTS

A. Monitoring Soil Salinity During First and Campaigns

To monitor soil salinity variation between the first and sec-
ond campaigns, we used HH, HV, and VV polarized coherence
images with an incidence angle of 25.7◦ (September 27–
October 21) for the Tunisian site and incidence angles of 28◦

(September 27–October 21) and 44.4◦ (September 30–October
24) for the Moroccan site. The objective was to examine the
impact of these parameters. There was almost no correlation
between EC variation and interferometric coherence for any
of the three types of polarization. The coefficients of determi-
nation of the different models confirm that, between the two
campaigns, EC variation was independent of interferometric
coherence. This means that the salinity variation was not
detected by the SAR signal. Cross-validation results confirmed

the inefficiency of the SAR tool for soil salinity detection: R2

was very low in all models, Nash values were negative, error
was very high, and bias values indicate that the EC values were
underestimated (Table V). In addition to the results of cross-
validation, the confusion matrix showed that the percentage
of samples that were well classified was low, confirming the
nonperformance of the model.

A classification system was established to distinguish be-
tween low, medium, and high variation of salinity. The con-
fusion matrix analyzed eight samples: six low, one medium,
and one high variation sample, according to the onsite mea-
surements. We can see from the matrix that the model had
trouble distinguishing between low and medium variation. The
majority of real classification samples were in the low variation
class, but the majority of the predictions were in the medium
class. When we examine the diagonal of the matrix, we note
that only 12.5% of samples were well classified (Table VI).
On the Moroccan site, the majority of real classifications were
in the medium variation class but the majority of predicted
classifications were in the high variation class. The inefficiency
of the SAR tool in the measurement of EC could be explained
by the low soil moisture content during this period. Indeed,
the dielectric constant of the area is the determinant of
the backscattered signal intensity. For all radar frequencies,
moisture corresponds to an increase of the dielectric constant
ε [12]. Thus, the greater the level of soil moisture, the more
significant the effect of salinity will be on the imaginary part
of the dielectric constant ε [12], [25], [26]. This is due to
the solubility of salts in water. Since soil moisture is largely
formed by rainfall, we decided to analyze the rainfall recorded
in the two study sites during the field campaigns. Fig. 7 shows
the diagram of rainfall. The acquisition of SAR images and
field measurements during the first period coincided with an
absence of rainfall, indicating low soil moisture. The first rain
was recorded on the afternoon of October 25, 2011, just a few
hours after image acquisition and soil sampling in the second
campaign.
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TABLE VI
CONFUSION MATRIX ASSESSMENTS (FIRST–SECOND CAMPAIGNS)

Fig. 7. Rainfall and temperature versus data acquisition’s dates.

B. Monitoring Soil Salinity During Second and Third
Campaigns

1) Tunisian Site: For the second and third campaigns, we
used coherence images with incidence angles of 25.7◦, 28◦,
and 43.6◦ and HH, HV, and VV polarizations. Figs. 8–10
represent the patterns established between change in the per-
centage of EC and InSAR coherence. For the incidence angle
of 25.7◦, the coefficient of determination was as high as 78%
in the HH polarization. However, the HV and VV polarizations
also produced acceptable results. We note that if the radar
detects variation in moisture and/or roughness, the InSAR
coherence variation should be very important (tends to lower
values). However, examination of Fig. 10 shows that around
0.7 (high value of coherence), InSAR coherence variation is
low and does not exceed 0.1 for a 20% variation of EC. This
low variability of coherence shows that variation in factors
other than salinity, i.e., moisture and roughness, did not have
a significant effect.

For the incidence angle of 28◦, the model has a very
low coefficient of determination. So, for this incidence, the

Fig. 8. Relationship between EC variation and interferometric coherence for
second to third campaigns (21 October–14 November) with an incidence angle
of 25.7◦ and HH polarization.

Fig. 9. Second to third campaigns (21 October–14 November) with an
incidence angle of 25.7◦ and HV polarization.

Fig. 10. Second to third campaigns (21 October–14 November) with an
incidence angle of 25.7◦ and VV polarization.

coherence cannot explain the EC variation. However, the
change that was detected by the SAR image could be ex-
plained by other biophysical parameters (roughness, mois-
ture, etc). In addition, the 4-day time lag between the
SAR image acquisition and the field campaigns (Image ac-
quisition: October 20–November 13; measurements in situ:
October 24–November 17) may have influenced the results.
The model was also nonsignificant for the incidence angle
of 43.6◦. Table VII shows that only the first model (25.7◦

incidence angle; HH polarization) was acceptable, with an
R2 value of 0.68, Nash value of 0.67, and RMSEr of 48%.
By contrast, the other models had lower R2, negative Nash,
and high RMSEr values. The results of the confusion matrix
confirm these conclusions (Table VIII). For this campaign, the
confusion matrix had nine samples: two low, five medium,
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TABLE VII
MODEL PERFORMANCE’ DETERMINATIONS (SECOND–THIRD

CAMPAIGNS), TUNISIAN SITE

TABLE VIII
CONFUSION MATRIX ASSESSMENTS (SECOND–THIRD CAMPAIGNS),

TUNISIAN SITE

and two high variation samples, according to the onsite
measurements. Predicted classifications included one low, four
medium, and one high variation. samples, i.e., only three
samples were not classified correctly. Interpretation of the
matrix diagonal showed that the model with the 25.7◦ angle of
incidence and HH polarization classified samples well 66.66%
of the time.

2) Moroccan Site: To monitor salinity at the Moroccan
site, between the second and third campaigns, we used coher-
ence images taken at 35.4◦ (19 October–21 November) and
44.4◦ (24 October–17 November) angles of incidence with
HH, HV, and VV polarization. For the incidence angle of
35.4◦, the model had a very low coefficient of determination.
Consequently, for this incidence angle the coherence cannot
explain the EC variation. However, the change detected by

Fig. 11. Second to third campaigns (24 October–14 November) with an
incidence angle of 44.4◦ Moroccan site.

the SAR image is explained by other biophysical parameters
(roughness, moisture variation, etc.). For the incidence angle
of 44.4◦, on the other hand, EC variation corresponded well to
the interferometric coherence fluctuation. The correlation was
highly significant for cross-polarization (HV). The coefficients
of determination confirm the strong relationship between the
measured variables (more than 94%), as shown in Fig. 11;
Table IX. The confusion matrix of the Moroccan site shows
that, during the second and third campaign, 100% of the
samples were well classified for the incidence angle of 44.4◦

and HV polarization. The samples of this campaign were
classified in the high variation class for both the real and the
predicted measures (11 samples in each case).

C. Monitoring Soil Salinity During the First and Third
Campaigns

As with the second and third campaigns and first and second
campaigns, we tried to establish a model relating EC variation
and coherence between the first and the third campaigns.
Fig. 12 shows the model calibration and cross-validation of
the first and third campaigns for the 25.7◦ incidence angle and
HH, HV, and VV polarizations. The first and third campaign
looks only at the Tunisian site because SAR images of the
Moroccan site were not available for the third campaign.
The analysis of the different models illustrated on Fig. 12
shows that the model featuring HH polarization was the most
acceptable because it had a coefficient of determination of
36%, whereas the HV model does not show any relationship
between coherence and EC variation. This affirms that the
results depend essentially on the polarization. Table X shows
the results of cross-validation of the model, confirms these
results and shows that only the model with an incidence angle
of 25.7◦ and HH polarization was acceptable, with a RMSEr
value of 36% and Nash value of 0.05. The confusion matrix
shows that a low percentage of samples were well classified,
indicating that the model performed poorly (Table XI). All
eight of the samples were predicted to be in the high variation
class. In fact, six samples were in the medium class, one was in
the low class, and one was in the high class. We can see from
the matrix that the model had trouble distinguishing between
low, medium, and high salinity variation. The modeling of
EC according to interferometric coherence shows that this
relationship was mainly influenced by two parameters: 1)
polarization and 2) incidence angle.
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TABLE IX
MODELS PERFORMANCE DETERMINATIONS (SECOND–THIRD CAMPAIGNS), MOROCCAN SITE

Fig. 12. Relationship between EC variation and coherence for first to third
campaigns (27 September–14 November) with an incidence angle of 25.7◦
Moroccan site.

TABLE X
CROSS-VALIDATION OF MODEL PERFORMANCE (FIRST–THIRD

CAMPAIGNS), TUNISIAN SITE

TABLE XI
CONFUSION MATRIX ASSESSMENTS (FIRST–THIRD CAMPAIGNS)

V. CONCLUSION

As mentioned above, this work sought to examine if the
spatio-temporal dynamics of soil salinity could be detected
by SAR. To answer this question, we applied several stages
of processing to images of two sites, one in Morocco and
one in Tunisia. The approach used was to consider the soil
EC data point by point in a 3×3 pixel grid. This enabled us
to develop a model to relate InSAR coherence to EC. In the
case of the Tunisian site, the obtained results showed optimum
estimation of salinity variation with HH and VV polarization
and low incidence angles (25.7◦). However, in Moroccan site,
the SAR signal was more sensitive to EC variation at high
incidence angles (44.4◦) with HV polarization. This work
provides some general indications of the best incidence angles
and polarizations for modeling salinity from SAR data.

A. Polarization Effect

1) For the Tunisian site, the obtained results showed opti-
mal estimation of EC according to interferometric coher-
ence in the case of HH polarization (horizontal emission
and reception). For low incidence angles like 25.7◦,
this model will provide more relevant information on
the ground and vegetation compared to VV polarization
(vertical emission and reception), which is sensitive to
vertical objects.

2) For the Moroccan site, HV polarization was more sensi-
tive to the EC variation than parallel polarization at the
44.4◦ incidence angle. According to [11], [12], cross-
polarization acquisitions are efficient for the detection
of water content, while the correlation between the high
soil moisture during this period and soil salinity can ex-
plain the sensitivity of the HV polarization in this case.

B. Incidence Angle Effect

In the case of the Tunisian site, the optimum configuration
for EC detection was a low incidence angle and HH polar-
ization. By contrast, for the Moroccan site, the sensitivity
of the SAR signal to EC variation was higher at the 44.4◦
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incidence angle and HV polarization. Due to the fact that the
Moroccan site is agricultural, there was more roughness due
to tillage at that site. In accordance with references [12], [13],
an increase in surface roughness influences the intensity of
the signal reflected back to the sensor, resulting in a clear
appearance of the surface on the SAR image. That surface
roughness is better perceived by the SAR sensor when the
angle of incidence is high [12], [28].

On the other hand, at the Tunisian site, which did not
contain rough, bare soil where salinity was mainly related to
moisture, our results confirm those of other studies that show
that the optimal configuration for the best sensitivity of the
backscattering coefficient as a function of soil moisture com-
bines HH polarization and a low incidence angle [12], [29].

Such results could be useful for future research on the use of
interferometric data to monitor soil salinization. However, to
obtain better results, several refinements must be considered.
We recommend that future studies.

1) Increase the number of soil samples collected. In order
to obtain better estimates, it is preferable that the sample
size be as large as possible.

2) Quantify the roughness of the surface. The desired
degree of accuracy cannot be achieved without a quan-
titative measure of this characteristic.

3) Test the “soil texture” in addition to its EC.
4) Use the same radar image configurations (incidence

mode) for the other study sites.
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