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Validating GEOV1 Fractional Vegetation Cover
Derived From Coarse-Resolution Remote Sensing

Images Over Croplands
Xihan Mu, Shuai Huang, Huazhong Ren, Guangjian Yan, Wanjuan Song, and Gaiyan Ruan

Abstract—Fractional vegetation cover (FVC) is one of the most
important criteria for surface vegetation status. This criterion
corresponds to the complement of gap fraction unity at the
nadir direction and accounts for the amount of horizontal
vegetation distribution. This study aims to directly validate the
accuracy of FVC products over crops at coarse resolutions
(1 km) by employing field measurements and high-resolution
data. The study area was within an oasis in the Heihe Basin,
Northwest China, where the Heihe Watershed Allied Telemetry
Experimental Research was conducted. Reference FVC was
generated through upscaling, which fitted field-measured data
with spaceborne and airborne data to retrieve high-resolution
FVC, and then high-resolution FVC was aggregated with a
coarse scale. The fraction of green vegetation cover product
(i.e., GEOV1 FVC) of SPOT/VEGETATION data taken during
the GEOLAND2 project was compared with reference data.
GEOV1 FVC was generally overestimated for crops in the study
area compared with our estimates. Reference FVC exhibits a
systematic uncertainty, and GEOV1 can overestimate FVC by
up to 0.20. This finding indicates the necessity of reanalyzing
and improving GEOV1 FVC over croplands.

Index Terms—Coarse resolution, fractional vegetation cover,
product validation, SPOT/VEGETATION.

I. INTRODUCTION

T HE COMMITTEE on Earth Observation Satellites con-
siders such satellites and complementary in situ net-

works as vital to effective monitoring and prediction of
changes in climate systems on Earth [1]. Coarse-resolution
satellite data exhibit advantages at the global scale. These data
are easily obtained and widely used to estimate research and
application parameters. Spatial resolutions between 250 m and
5 km are defined as coarse resolutions [2]. Coarse-resolution
data have high-temporal resolutions and are commonly applied
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to long-term global observations of land surfaces, biospheres,
atmospheres, and oceans. Validating coarse-resolution prod-
ucts is critical but problematic. The feasibility and accuracy
of remote sensing products must be initially verified before
data can be applied. At the minimum, the extent of data
quality must be determined. Direct validation using in situ
data is spatially insufficient to cover an area with one or
more coarse pixels because of field measurement limitations
[3]. Large-scale campaigns and experiments, such as BigFoot
[4], SAFARI2000 [5], Validation of Land European Remote
Sensing Instruments (VALERI) [6], and Watershed Allied
Telemetry Experimental Research (WATER) [7], have been
implemented. Subpixel variability should be considered in
estimating vegetation parameters at a coarse resolution be-
cause of the large scale of pixels [8]. Morisette et al. [9]
proposed a bottom-up approach to validate coarse-resolution
products using elementary sampling units (ESUs), transfer
functions, and high-resolution images. Several experiments
have applied upscaling methods to convert local biophysical
measurements into high-resolution maps, and subsequently,
into coarse-resolution products [6], [10]. VALERI adopted
empirical transfer functions and high-resolution images de-
rived from remote sensing. This campaign applied a pragmatic
approach in using high-resolution data with minimum field
calibrations for mapping vegetation parameters [11]. In this
study, we used fractional vegetation cover (FVC) to validate
a coarse-resolution product via an upscaling strategy.

FVC is a structural vegetation parameter that significantly
influences analysis and evaluation of the ecological
environment, ecological balance, and development trend.
FVC estimation generally uses field measurements and
remote sensing techniques. Digital photography is the
most common method to obtain FVC field measurements
[12]–[14]. Regression methods (e.g., vegetation index) and
machine-learning methods are frequently employed to derive
FVC products from remote sensing data at the global scale.
Commonly used methods for FVC extraction and current
FVC products are summarized in [15]. Such products, which
are mainly derived from Polarization and Directionality
of the Earth’s Reflectances (ADEOS/POLDER), Medium
Resolution Imaging Spectrometer (ENVISAT/MERIS),
(SPOT/VEGETATION), and Spinning-Enhanced Visible and
Infrared Imager (MSG/SEVIRI) sensors, are also listed in the
validation report of Land Surface Analysis Vegetation Prod-
ucts (2008; http://landsaf.meteo.pt/GetDocument.do?id=301).
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Fig. 1. Data processing and validation strategy.

Carbon Cycle and Change in Land Observational Products
from an Ensemble of Satellites (CYCLOPES) [16], GEOV1
[17], and POLDER FVC products are derived from
SPOT/VEGETATION and ADEOS/POLDER data that
provide global FVCs. GEOV1 FVC is a product based on a
CYCLOPES FVC product that corrects underestimation [17].

Although coarse-resolution data have high temporal
frequency, vegetation phenology is another issue that affects
validation. Fillol et al. [18] compared FVCs from Satellite
Pour l’Observation de la Terre (SPOT) with those from in situ
measurements and found that FVC results are related to
temporal interpolations. However, interpolation algorithms are
difficult to apply in vegetation that exhibits nonlinear and rapid
changes.

In 2012, the Heihe Watershed Allied Telemetry Experi-
mental Research (HiWATER) was performed in the Heihe
River Basin, China [19] with the aim of improving obser-
vation of hydrological processes in arid and semiarid re-
gions. The ground-measured and airborne FVC data employed
in this study were acquired during the HiWATER project.
The GEOV1 FVC coarse-resolution product (distributed at
http://land.copernicus.eu/global/products/fcover) was validated
through observations obtained during a crop-growing cycle.
GEOV1 FVC was derived from SPOT/VEGETATION sensors
with a 10-day temporal sampling and approximately 1 km
spatial sampling. The generation of reference data and valida-
tion strategies is summarized in Fig. 1. Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) FVC
was estimated from ASTER surface reflectance data (ASTER
L1B) and field-measured data. Airborne data obtained from
the Compact Airborne Imaging Spectrometer (CASI) were
processed similarly. GEOV1 FVC was processed by temporal
interpolation and compared directly with aggregated FVC
throughout the growing season.

II. STUDY AREA AND DATA DESCRIPTION

A. Study Area

The study area is part of the Heihe River Basin in the
arid region of China. The study period was from May to

Fig. 2. False-color picture derived from ASTER reflectance on May 30, 2012,
which illustrates the study area at the right frame. The red part represents
vegetation (i.e., cornfields), whereas the green and blue parts represent desert
and artificial areas, respectively.

September 2012. The Heihe River is the second longest conti-
nental river in China. The HiWATER project chose this area as
an experimental watershed for its research plan with the sci-
entific objective of improving the observation of hydrological
and ecological processes [19].

The test site is located in an artificial oasis that consists of
agricultural land (72%), residential land (24%), and woodland
(4%), as shown in Fig. 2. Irrigated and economic crops are
planted in the agricultural land. Corn is the dominant vegeta-
tion type, and small patches of orchards and land planted with
pepper, cauliflower, celery, red bean, and watermelon are also
found. A coarse-resolution FVC product was verified using
high-resolution remote sensing data. In situ data were then
prepared to develop a multiscale data set. Observational data
included ground-based FVC measurements, radiance images
from ASTER and CASI, GEOV1 FVC products, and several
ancillary data such as Moderate Resolution Imaging Spectro-
radiometer (MODIS) aerosol data, aerosol optical thickness
measured with a sun photometer, and solar-target observational
geometry data.

The hierarchy process for conducting upscaling and accu-
rately estimating FVC includes transfer from in situ FVC to
FVC derived from ASTER and CASI, and then a consecutive
transfer to the coarse-resolution FVC.

B. Ground Measurements of Reference FVC

1) Site Extent and Sampling Strategy: FVC ground mea-
surements were collected via digital photography from May
24 to September 14, 2012. Sampling unit positions were
optimized using the mean of surfaces with nonhomogeneity
(MSN) [20]. This sampling method considers the autocor-
relation and stratified nonhomogeneity of an area through a
classification map and other reference data (e.g., a vegetation
index map obtained in 2011). MSN ensures reasonable rep-
resentativeness of a study area with limited sampling units.
A total of 22 sampling plots were distributed throughout the
area; among these, 16 plots were located in cornfields. The
measurement frequency was initially 5 days (before late July)
and was increased to 10 days afterward. Ground measurements
can be considered as FVC ground truth at the scale of ASTER
pixels for upscaling. Artificial cropland is the dominant land
cover type in the study area. Agricultural management and
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Fig. 3. Schematic of a cropland photograph, which shows the spatial relation-
ships among a cropland patch, a sampling plot, and the photographs taken in
a plot.

vegetation growth status are considered to be homogeneous
within a cropland patch that typically occupies a rectangular
area with a side length of tens of meters. Similar to ESUs [9],
our sampling plots connected field measurements with high-
resolution data. Each plot represents a cropland patch with the
desired consistency.

2) Digital Photography: Digital cameras were used to
measure typical vegetation (e.g., cropland or orchard) FVC
according to the proposed photography guidelines [15]. These
measurements formed the validation basis by providing the
ground truth at the plot scale.

The FVC of each sampling plot was computed using nine
images for measurement. Plot size for corn and other low-
growing vegetation (below 2 m) is 10 m× 10 m (Fig. 3),
whereas that for fruit trees are 30 m× 30 m. Land surface
for irrigated crops and orchards is homogeneous, such that
the plot scale significantly represents an ASTER pixel scale
(15 m). Cropland patches for plot location are typically larger
than 2× 2 ASTER pixels.

FVC was measured along two diagonals across the sampling
plot, which was measured once for the overlapping section
at the cross point of the two diagonals [15]. In general,
nine photographs were taken. However, if the surface was
homogeneous, then less than nine photographs would be
sufficient. The arithmetic mean of FVC computed from the
images was determined as the FVC of the plot. This sampling
scheme is feasible for a plot in an irrigated cropland or orchard
because of land surface homogeneity.

Most photographs were taken during cloudy days or
evenings to ensure that they would be unaffected by shadows.
However, the method for extracting FVC from photographs
was not necessarily restricted by illumination [21]. A long
stick equipped with a camera at the end was used to control
shooting height. The camera was directed downward when
corn was photographed. The footprint of the sensor at the
nadir direction required a coverage that ranged from 1.5 to 2
times the total width of the row canopy [22]. The photographic
approach guarantees that the field of view comprises two
or more rows in one photograph. This strategy improves
representativeness of in situ FVC for FVC estimation at the
patch scale.

Given the tall trees in the orchard, a top-down direction
was used to capture low vegetation underneath the tree crown,
whereas a bottom-up direction was used to capture the under-
side of tree crown. FVC was obtained using [15]

FVC = fup + (1− fup) · fdown (1)

where fup and fdown are FVC values extracted from the
photographs captured by the bottom-up and top-down modes,
respectively. Equation (1) accounts for the FVCs of trees and
understory vegetation viewed at the nadir direction between
tree gaps.

3) FVC Extraction From Digital Images: Image edge dis-
tortion must be corrected before FVC can be further extracted.
The perspective effect and image edge distortion caused a
systematic error of up to 0.03 in the estimated FVC [23].
The most frequently used solution is cutting off image edges,
such that the number of rows covered in the footprint suffi-
ciently represents FVC at the patch scale (i.e., at least two
rows). We mainly used the original thresholding method to
extract FVC from the digital images [21]. This automatic
classification method transfers images from the RGB color
space to the Commission Internationale d’Eclairage LAB color
space, which easily distinguishes green vegetation from the
background. Green vegetation and nonvegetation were sepa-
rated through histogram clustering, which supposes that green
vegetation and the background distribution of greenness in the
color space are Gaussian. The FVC of a single photograph
was then computed. The original thresholding method is
automatic and highly accurate. Zhao et al. [23] evaluated the
accuracy of estimated FVC through various environmental
conditions and classification methods. They compared the
original thresholding method [21], which employs simulated
images, with supervised classification and concluded that both
methods produce similar results [23]. However, the perspective
effect resulted in an error of less than 5%, which can be
eliminated by cutting the edges of digital images.

The original thresholding method used in this study under-
estimated FVC when the photograph features deep shadows. A
new thresholding method [24] was adopted by introducing a
histogram equalization algorithm to preprocess images. The
original thresholding method was then applied to calculate
FVC after the images were enhanced. The improved classi-
fication method aims to reduce field measurement systematic
errors.

The differences between the results of the two methods are
plotted in Fig. 4. The estimated FVC values differed by as
much as 0.2 between the two data sets as corn reached FVC
maximum. By contrast, FVC values differed slightly during
the early and late corn growth stages because deep shadows
dramatically increased as corn grew tall and leaves became
dense. The results of the supervised classification supported
the feasibility of the improved method [24].

C. Remote Sensing Imagery

1) ASTER and CASI Images: ASTER L1B images were
acquired from May 30 to September 14, 2012. This period is
consistent with that of the ground experiment. The images had
a spatial resolution of 15 m and a frequency of 15 days.
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Fig. 4. Comparison between the FVC series calculated with the original
thresholding method [21] and that with the new thresholding method [24]
at a cropland plot. The black points represent field-measured FVC derived
from the original thresholding method, whereas the red points represent the
result derived from the shadow-resistant method.

Data observed by the CASI sensor [25] were collected on
June 29 and July 7, 2012. This procedure obtained visible,
near-infrared, and shortwave infrared airborne remote sensing
data over a 30 km× 30 km core observation area in the
middle reaches of the Heihe River. Relative aircraft height
was 2000 m (3500 m above sea level). The CASI sensor had
a wavelength that ranged from 380 to 1050 nm and a spatial
resolution of 1 m.

ASTER and CASI radiance images were processed through
radiometric calibration, atmospheric correction, and geomet-
ric correction using synchronous measurements. ASTER and
CASI projections were transformed into GEOV1 projections.
Digital sounders and sun spectrophotometers detected atmo-
spheric parameters (e.g., air temperature profiles, humidity
profiles, and aerosol properties). MODIS aerosol products, as
well as solar zenith angle and azimuth angle data, were also
required for atmospheric correction. ASTER and CASI surface
reflectance products were obtained after data processing to
generate high-resolution FVC reference maps.

2) GEOV1 FVC Product: The GEOV1 FVC product (http://
land.copernicus.eu/global/products/FCover) derived from
SPOT/VEGETATION data from 1999 to the present was gen-
erated based on the improved CYCLOPES FVC product. The
CYCLOPES project used a biophysical algorithm to generate
FVC data from VEGETATION observations. This algorithm
computes products at 10-day intervals and is based on neural
network inversion over the SAIL + PROSPECT radiative
transfer model [16], [26]. The Validation Report of Land Sur-
face Analysis Vegetation Products (2008) revealed that FVC
values from CYCLOPES are higher than those from SEVIRI
by approximately 0.15. Fillol et al. [18] noted that FVC
products derived from CYCLOPES data are lower than those
generated from high-resolution SPOT data. Camacho-de Coca
et al. [27] observed that CYCLOPES FVC products are under-
estimated because of signal saturation. GEOV1 was generated
by scaling CYCLOPES FVC with a constant derived from field
measurements to overcome the underestimation problem [17].

The main data applied to the validation process are summa-
rized in Table I.

TABLE I
REMOTE SENSING AND FIELD-MEASURED DATA USED FOR VALIDATION

GEOV1 FVC products were acquired from May 24 to
September 23, 2012. CASI data were acquired twice and
ASTER data had a temporal resolution of approximately
15 days, which do not coincide with GEOV1 generations.
GEOV1 FVC was temporally interpolated during the dates of
ASTER and CASI data because GEOV1 products reflect high-
frequency measurements (Table I) and spatial homogeneity in
the study area. Spatial matching between GEOV1 data and
ASTER or CASI images was accurately performed according
to distinct oasis and desert boundaries.

Reference FVC data were calculated at a high resolution to
verify the coarse-resolution FVC product.

III. UPSCALING FROM FIELD MEASUREMENTS TO

COARSE-RESOLUTION FVC

A. Estimating High-Resolution FVC

Data from sensors with high spatial resolution are readily
available but field measurements are still necessary to assess
the uncertainty of satellite products. High-resolution data are
typically combined with field-measured samples to produce a
high-resolution FVC map and aggregate this map at a coarse
resolution.

First, we corrected high-resolution radiance data (ASTER
L1B radiance) using the second simulation of a satellite signal
in the solar spectrum [28] to calculate surface reflectance and
normalized difference vegetation index (NDVI). Second, we
employed an empirical transfer function to convert NDVI into
FVC. Linear and nonlinear regressions frequently reveal good
agreement between NDVI and FVC [29], [30]. Therefore,
we chose an equation that combines linear and nonlinear
conditions as follows:

FVC = (a ·NDVI + b)k (2)

where a, b, and k are the conversion coefficients from NDVI
to FVC. The coefficient values are dependent on land type
and growth date. k indicates the linearity of FVC to NDVI,
where k = 1 corresponds to a linear form, whereas k �= 1
corresponds to a nonlinear form.

We employed ground-based FVC data extracted from field-
shot digital photographs and ASTER NDVI data to develop
a nonlinear relationship, as shown in (2). In situ data were
temporally interpolated at ASTER dates. The interpolation
results were reasonable even during rapid vegetation growth
because of the short interval of ground measurements.
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TABLE II
STATISTICAL VALUES OF ASTER FVC

Averages and standard deviations were obtained from ASTER FVC
images over the study area at a resolution of 15 m. R2 and RMSE are
derived from ASTER-fitted FVC and field-measured FVC.

Dynamic coefficient ranges were constrained in the regres-
sion calculations. FVC expansion is expressed as follows:

FVC =

(
NDVI−NDVImin

NDVImax −NDVImin

)k

=

[
NDVI

NDVImax−NDVImin
+

(
− NDVImin

NDVImax−NDVImin

)]k

(3)

where NDVImax and NDVImin are the NDVIs of a fully
covered vegetation area and bare soil, respectively. a =

1
NDVImax−NDVImin

, b = − NDVImin

NDVImax−NDVImin
.

The boundaries of a and b were determined from the empir-
ical estimations of NDVImax and NDVImin. The regression
coefficients were used to generate FVC from ASTER and
CASI NDVI data.

B. Estimating Coarse-Resolution FVC

GEOV1 FVC products were geometrically registered and
temporally interpolated to compare with aggregated FVC from
ASTER and CASI data. The preprocessing operations were
acceptable because GEOV1 data exhibited a smooth temporal
shape and homogeneity. To aggregate high-resolution refer-
ence maps, the difference among the point spread functions
of the products should be considered during validation [9],
[31]. However, this issue is complicated and has rarely been
addressed. The mean values of surrounding pixels (e.g., a
3× 3 pixel window) are recommended and applied for direct
validation and intercomparison [11], [31]–[33]. Homogeneous
3 km× 3 km areas are limited, and thus, using 3× 3 pixels
may introduce uncertainties [34]. Reference maps at a coarse
resolution were computed by aggregating ASTER and CASI
reference maps. GEOV1 and reference FVC were then com-
pared pixel by pixel.

IV. RESULTS AND DISCUSSION

Table II lists the averages and standard deviations of ASTER
FVC over 10 acquisition dates. Mean FVC varied significantly
from May to September, whereas standard deviation exhibited
the same trend and reached its peak at approximately 0.2
in July and August. FVC spatial variation increased during
July and August because of the significant difference between
vegetated land and bare surfaces (e.g., villages and roads).

Fig. 5. Spatial distributions of aggregated (a) ASTER FVC and (b) GEOV1
FVC on May 30.

Table II also lists the squares of the sample correlation
coefficients (R2) of ASTER-fitted and field-measured FVCs
over 10 ASTER image phases. ASTER FVC data were derived
from ASTER NDVI data using (2) and the conversion coef-
ficients. High-resolution FVC products exhibited the desired
correlation with field-measured FVC, which increased to 0.919
on May 30. However, FVC measurements were mainly per-
formed on corn, and FVCs measured on the same day slightly
differed. R2 varied from 0.7 to 0.9 on different dates. The fit of
field measurements and high-resolution NDVI data produced a
root-mean-square error (RMSE) close to 0.1 in each temporal
phase. The uncertainty of fitted high-resolution FVC was
reduced during upscaling when random errors were canceled
out during aggregation. The validation results exhibited a low-
correlation fit for FVC estimated on September 3 and an
unusable fit for FVC estimated on September 12. The temporal
intervals of ground measurements increased to over 10 days
after August, which caused errors in temporal interpolation,
particularly when vegetation grew or withered rapidly. The
September 12 results were not used for further analysis.

ASTER FVC distribution aggregated to a resolution of 1 km
and GEOV1 FVC presented a similar spatial pattern (Fig. 5).
Corn covers most of the area, whereas the desert (black area
at pixel A1 in Fig. 5) and orchards (white area at F5 and F7
in Fig. 5) are clustered. The coregistration errors of GEOV1
products and reference maps were supposed to be smaller than
1 coarse pixel because of distribution similarity.

Nine images from ASTER data were compared with
GEOV1 FVC images (excluding that on September 12). The
GEOV1 FVC interpolation is shown in Fig. 6. The red points
represent interpolated GEOV1 FVC at ASTER acquisition
dates. Reference FVCs derived from ASTER and CASI were
lower than GEOV1 FVC at pixel D3.

The spatial distribution of the averages and standard devi-
ations of the absolute difference between GEOV1 FVC and
ASTER reference maps over nine dates is shown in Fig. 7.
Pixels A2 and B1 were located on the boundary of the desert
and oasis, wherein a high variance [Fig. 7(b)] of FVC differ-
ence and serious coregistration errors among products were
observed. The average errors of GEOV1 generally increased
to 0.2 compared with those of reference FVC [Fig. 7(a)].

The scatter diagrams of ASTER FVC, CASI FVC, and
GEOV1 FVC over nine time phases are shown in Fig. 8.
The deviation degree from the y = x line was evident. When
the points are far from the y = x line, the difference among
ASTER FVC, CASI FVC, and GEOV1 FVC is significant.
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Fig. 6. Time series of GEOV1 FVC, interpolated GEOV1 FVC, aggregated
ASTER FVC, and CASI FVC data of pixel D3. The black points represent
the original GEOV1 FVC, whereas the red points represent the GEOV1 FVC
values that were temporally interpolated on ASTER dates.

Fig. 7. GEOV1 FVC and ASTER reference FVC over nine temporal phases:
(a) spatial distributions of the mean absolute difference and (b) standard
deviations of the absolute difference.

Fig. 8. Scatter plot of aggregated ASTER FVC (May 30; June 15 and 24;
July 10; August 2, 11, 18, and 27; and September 3) and CASI FVC (June
29 and July 7), and their corresponding GEOV1 FVC data.

The overall RMSE of GEOV1 was 0.193, and the intercept of
the regressed line was 0.20. Most points were concentrated,
whereas a few points were dispersed because of the residual
error in geometric rectification. The outliers in Fig. 8 corre-
spond to the pixels near the boundary of the desert and oasis
(A2 and B1), wherein spatial heterogeneity resulted in a signif-
icant product coregistration error. A single pixel in the desert
(A1) corresponds to some of the lowest FVC values in Fig. 8.

The biases of GEOV1 FVC from reference FVC at ASTER
and CASI acquisition dates are provided in Table III. The
most unfavorable results were exhibited on September 3, i.e.,

TABLE III
AVERAGE DEVIATIONS OF GEOV1 FVC FROM REFERENCE FVC AT A

RESOLUTION OF 1 KM

BiasASTER and BiasCASI represent the average deviations of GEOV1 FVC
from ASTER FVC and CASI FVC, respectively.

ASTER FVC deviated from GEOV1 FVC by over 0.3 because
of the high uncertainty in the temporally interpolated FVC.
FVC values were low on May 30, and a small difference
between ASTER FVC and GEOV1 FVC was observed, as
shown in Table III and Fig. 8. Positive biases from 0.051 to
0.219 were observed for all dates (excluding September 3).

V. UNCERTAINTY EVALUATION

The uncertainty associated with upscaling and FVC esti-
mates at a coarse resolution should be analyzed. However, the
true values of FVC are theoretically unobtainable, and each
error involved in validation is difficult to analyze quantitatively
(e.g., the point spread function of a product) [9]. Therefore,
we focused on the systematic errors in FVC measurement and
estimation although most random errors could be canceled out
with upscaling [33].

FVC field measurements at the plot scale included three
basic error types: 1) representativeness of pictures in a plot;
2) the measurement perspective effect; and 3) classification
into vegetation and nonvegetation. Row structures affect the
representativeness of the footprint of a sensor [22], [35].
Moreover, approximately 1.5–2 times the total width of a
row canopy is recommended to be covered in the footprint
of a sensor at the nadir direction [22]. The number of rows
in the footprint is relevant to different crop stages, i.e., few
rows are included at a fixed camera height when a crop grows
high. However, this error is insignificant because row canopy
gradually grows and becomes homogeneous, particularly after
rows are closed. The camera footprint in this study covered
at least two rows, as described in Section II-B. We applied a
classification method after histogram equalization of the image
to ensure equal misclassification probabilities of vegetation
and soil [21]. Thus, the classification errors were relatively
random after the algorithm was improved to be shadow-
resistant [24]. The photography method overestimated FVC by
up to 0.03 because of the perspective effect and camera field-
of-view with a shooting height of approximately 2–3 m [23].

The sampling strategy, transfer function, and aggregation
of high-resolution FVC caused upscaling error. The sampling
strategy (i.e., MSN) was expected to generate sampling po-
sitions according to spatial autocorrelation and stratification.
The fit between field measurements and high-resolution NDVI
data resulted in residual errors, which were slightly systematic
and exhibited an RMSE close to 0.1. This fitting error can be
reduced by aggregating high-resolution FVC. The upscaling
of field-measured FVC to high-resolution FVC benefited from
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the typical spatial scale of crop patches, which covered at least
2× 2 ASTER or more CASI pixels. Therefore, the spatial
coregistration error from field measurements to ASTER data,
as well as possible pixel-shift errors in the projection, was
mostly reduced. GEOV1 products were spatially and tempo-
rally interpolated during aggregation. However, interpolation
errors were unsystematic for each temporary phase and for the
entire region.

Although these errors have several sources of uncertainty,
the systematic errors transferred to FVC estimates at a
coarse resolution cannot account for the positive bias between
GEOV1 FVC and the estimated FVC during our validation.

Zhang et al. [36] reported that the NDVI method over-
estimates FVC because of land surface heterogeneity and
the nonlinear relationship between NDVI and FVC. This
scaling bias is discussed in [37] and [38]. However, this
phenomenon does not account for most biases observed during
validation. GEOV1 FVC was generated by linearly stretch-
ing CYCLOPES FVC, which was generally underestimated.
Moreover, the linear stretch introduced no scaling bias.

VI. CONCLUSION

FVC products obtained through coarse-resolution remote
sensing in typical arid and semiarid regions were validated
during crop-growing season. A multistep upscaling method
was applied using field-measured FVC and high-resolution
images to generate coarse-resolution FVC. The distributed
FVC products from the GEOV1 project and the estimated FVC
were compared; the estimated FVC was considered as refer-
ence data. Field measurements at the plot scale were carefully
designed to represent the spatial scale of cropland patches.
This scale is comparable with an ASTER pixel resolution.
High-resolution FVC data were generated from ASTER and
airborne radiances through empirical fitting functions and field
measurements after calibrating and preprocessing. Coarse-
resolution FVC was then obtained and compared with GEOV1
FVC.

The estimated FVC was examined step by step to ensure
reliable validation. GEOV1 values were found to be overes-
timated FVC during our validation. The systematic error that
occurred in our reference FVC at a coarse resolution was less
than the biases observed between reference FVC and GEOV1
FVC. Although GEOV1 FVC is significantly correlated to
ASTER FVC and CASI FVC, biases of 0.051–0.219 over 11
temporary phases in the growing season of corn were found
when the two data types were compared. The overall RMSE
was 0.193. The uncertainty analysis exhibited possible errors
associated with geometric correction, field measurements, and
upscaling. These reference data errors may be influential in
a small part of the area (e.g., adjacent areas of the desert).
However, the systematic error over the entire study area at
a coarse resolution of 1 km cannot be explained. The biases
observed during validation probably resulted from errors in
executing the GEOV1 algorithm when CYCLOPES FVC was
scaled with a constant to generate GEOV1 FVC.

We recommend that observations over croplands be inten-
sified worldwide to improve validations for coarse-resolution
products.
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bourg, France, in 2013.

He is currently a Postdoctoral Researcher with the
Institute of Remote Sensing and Geographic Infor-
mation System, Peking University, Beijing, China.
His research interests include the retrieval of land
surface temperature/emissivity and their angular cor-
rection. He has also devoted his efforts to the spectral
calibration of broadband images for airborne and

spaceborne instruments.

Guangjian Yan received the Ph.D. degree from the
Institute of Remote Sensing Applications, Chinese
Academy of Sciences, Beijing, China, in 1999.

He is currently a Professor with Beijing Normal
University, Beijing, China. He has published more
than 100 papers. His research interests include mul-
tiangular and thermal infrared remote sensing.

Wanjuan Song is currently pursuing the M.S.
degree from Beijing Normal University, Beijing,
China.

Her research interests include fractional vegeta-
tion cover and vegetation modeling on complex
surface area.

Gaiyan Ruan is currently pursuing the M.S. degree
from Beijing Normal University, Beijing, China.

Her research interests include the extraction and
retrieval of fractional vegetation cover in mountain
areas.


