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ABSTRACT

Aim In order to mitigate the ecological, economical and social consequences of
future climate change, we must understand and quantify the response of vegetation
to short-term climate anomalies. There is currently no model that quantifies veg-
etation resistance and resilience at a global scale while simultaneously taking
climate variability into account. The goals of this study were therefore to develop a
standardized indicator of short-term vegetation resilience and resistance to drought
and temperature anomalies, and to improve our understanding of vegetation resist-
ance and resilience in drought-sensitive areas by linking metrics of vegetation
stability to the percentage of tree cover, non-tree vegetation and bare soil.

Location Global.

Methods The deviation of vegetation behaviour from expectations was quanti-
fied using anomalies in the normalized difference vegetation index (NDVI) and
modelled as a function of (1) past NDVI anomalies, (2) an instantaneous drought
indicator and (3) temperature anomalies. Metrics of resistance and resilience were
then extracted from the model and related to the percentages of bare soil, non-tree
vegetation and tree cover.

Results Comparisons of the globally derived resilience and resistance metrics
showed low resilience and low resistance to drought in semi-arid areas, low resist-
ance to negative temperature anomalies in high-latitude areas, and low resistance to
positive temperature anomalies in the Sahel and Australia. In drought-sensitive
areas, resilience was highest for vegetation types with 3–20% bare soil and 5–15%
tree cover.

Main conclusions Our ARx model is the first to simultaneously derive vegeta-
tion resistance and resilience metrics at a global scale, explicitly taking into account
the spatial variability of short-term climate anomalies and data reliability. Its results
highlight the impact of tree cover, non-tree vegetation and bare soil on vegetation
resilience.
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INTRODUCTION

Changing average climate conditions, combined with greater

and more frequent climate extremes, are expected to affect the

primary productivity of terrestrial vegetation and plant distri-

bution patterns. This may have major economic and ecological

implications (Field et al., 2012). For example, climate extremes

such as heat waves reduce primary productivity by diminishing
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water availability and decreasing the net CO2 exchange of eco-

systems. The resulting drought stress, combined with the higher

expected incidence of pests and pathogens, might further

decrease plant viability and increase mortality (McDowell et al.,

2008). The effects of droughts and temperature anomalies on

plant mortality have already been observed globally (Allen et al.,

2010). To anticipate the consequences of the affected ecosystem

functions and the associated ecosystem services, a comprehen-

sive global quantification of the susceptibility of vegetation to

droughts and temperature anomalies, and a better understand-

ing of the vegetation characteristics that mediate vegetation

response, are essential.

The stability of vegetation in the face of external disturbances

has generally been described using measures of resistance and

resilience in biomass productivity (Tilman, 1996). ‘Resistance’

expresses the ability of vegetation to withstand environmental

disturbances. It has been quantified using the magnitude of

vegetation response at the moment of the climate anomaly.

‘Resilience’ measures the speed of recovery after the disturbance

(engineering resilience), or the magnitude of disturbance

that can be absorbed before the ecosystem’s structure changes

(ecological resilience; Walker et al., 1981; Holling, 1996). Engi-

neering resilience can be quantified by measuring the time

required to return to the biomass state that existed before the

stress (Tilman, 1996; Lhermitte et al., 2010, 2011a), or by

autocorrelation or the persistence of trends within a time-series

of vegetation characteristics (Simoniello et al., 2008; Dakos

et al., 2012). Large-scale ecological resilience of tropical savan-

nas and forests, conversely, has been quantified through the

probability that forest, savanna or treeless cover will switch

states (Hirota et al., 2011).

A variety of studies, ranging from small-scale ecological

experiments to global vegetation surveys, have focused on the

stability of vegetation after short-term climate anomalies. Such

local studies mostly focus on vegetation biomass before, during

and after a drought event (e.g. Tilman, 1996). They have the

advantage of being based on accurate field measurements (e.g.

biomass) but, because they are labour-intensive and often

destructive, the same approach cannot be used for large-scale

studies. Satellite observations have therefore been used to assess

the response of vegetation at larger scales. The cyclic availability

of remote-sensing products directly associated with the state of

the vegetation, makes them highly valuable for ecosystem moni-

toring (Zeng et al., 2013). They include the leaf area index (LAI;,

e.g. Myneni et al., 2002), the fraction of photosynthetically active

radiation (fPAR;, e.g. Myneni et al., 2002), net and gross primary

productivity (NPP and GPP;, e.g. Justice et al., 2002) and indica-

tors of biomass and greenness of vegetation, such as the normal-

ized difference vegetation index (NDVI;, e.g. Tucker et al., 2005)

and the enhanced vegetation index (EVI;, e.g. Justice et al., 2002).

They also exhibit valuable properties, both temporal and spatial,

for ecological applications. For example, remote sensing provides

information over broad spatial extents, and such data are difficult

or impossible to obtain from field studies.Moreover, the continu-

ous data acquisition of satellites over periods of several years

enables the establishment of long-term time-series.

Despite the advantages of satellite data in quantifying vegeta-

tion responses to climate extremes at continental scales, such

time-series also suffer important drawbacks. First, because veg-

etation stability depends strongly on the characteristics of the

climate anomaly, a comparison of the vegetation stability

between different parts of the world is impossible without

accounting for the varying magnitude of the climatic disturb-

ance. For example, a drought may be extreme at location A but

mild at location B; if the vegetation at both locations were to

show a similar response, the vegetation of A and B would seem

to have similar sensitivities to drought, but when the magnitude

of the climate anomaly is accounted for, the vegetation of A is

less sensitive than that of B. In order to obtain a reliable assess-

ment of vegetation response to short-term climate anomalies at

large spatial scales, vegetation stability metrics must therefore be

standardized based on climate data. Second, vegetation has

‘memory’, in that its state depends both on current disturbances

and the residual effects of past climate conditions. This ‘memory

effect’ should be considered when assessing the immediate

response to short-term climate anomalies. Although many

studies have quantified ecosystem stability in response to envi-

ronmental disturbances (e.g. Lloret et al., 2007; Simoniello et al.,

2008; Telesca et al., 2008), none has simultaneously taken into

account metrics standardizing for short-term climate effects and

system memory.

The difficulties in assessing vegetation stability across large

spatial scales have contributed to the current lack of a global

assessment of the vegetation characteristics that determine

short-term vegetation stability. In drought-limited environ-

ments, vegetation response is expected to be mediated by the

access of plant roots to soil moisture. In savannas, functional

diversity in water uptake through interspecific variation in root

systems stabilizes the vegetation at large scales (Walter &

Mueller-Dombois, 1971; Scanlon et al., 2005). Mixtures of trees

and grasses may therefore show greater vegetation stability than

vegetation types with only trees or grasses. Scanlon et al. (2005)

confirmed this hypothesis using a hydrological model based on

tree cover and near-surface moisture using a transect from 12° S

to 26° S in southern Africa. This hypothesis has been challenged,

however, due to its oversimplified presentation of root-zone

profiles, and its failure to take herbivory, fire and competition

between grasses and tree seedlings into account (Bond, 2008).

Given the lack of a suitable model that quantifies vegetation

resistance and resilience at a global scale, and in order to assess

the vegetation characteristics that determine short-term vegeta-

tion stability, the overall objectives of this study were (1) to

present a model that globally quantifies short-term vegetation

stability by explicitly taking the magnitude of short-term

climate anomalies into account; and (2) to improve our under-

standing of the drivers of drought resistance and engineering

resilience in drought-sensitive areas. More specifically, we aimed

to present standardized indicators of short-term vegetation

resilience and resistance to drought and temperature anomalies,

and to assess whether mixtures of grassland and trees are more

stable than relatively pure grasslands and pure tree vegetation

by establishing a relationship between metrics of vegetation
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stability and the percentage of tree cover, non-tree vegetation

and bare soil in drought-sensitive areas. The model presented

here is based on a fit between global remote-sensing time-series

related to vegetation health (NDVI), and time-series of global

drought and temperature anomalies.

METHODS

Remote-sensing data

Global Inventory Modeling and Mapping Studies (GIMMS)

NDVI bimonthly time-series, acquired between July 1981 and

December 2006 with a spatial resolution of 0.072° were used to

quantify the temporal vegetation status. NDVI quantifies the

amount and greenness of vegetation, and so correlates with

vegetation biomass, vegetation dynamics and the fraction of

absorbed photosynthetically active radiation (fAPAR), and pro-

vides a widely used estimator of vegetation health (Zeng et al.,

2013). NDVI time-series generally consist of: (1) a seasonal

component, such as phenology; (2) anomalies, such as the

response to environmental factors; and (3) noise, including

sensor noise and atmospheric influences (Lhermitte et al.,

2011b). To study vegetation anomalies, the seasonal component

must be removed and noise must be reduced. To that extent,

low-quality data was removed from the bimonthly time-series

using the associated quality flags (Tucker et al., 2005). The

bimonthly NDVI time-series were then resampled to monthly

series using maximum-value compositing (Holben, 1986) in

order to be compatible with the monthly climate time-series.

Finally, the seasonal component was removed by subtracting the

monthly mean NDVI value.

The fractions of bare soil, tree cover and non-tree vegetation

(i.e. shrubs, crops and other herbaceous vegetation) were

extracted from the MODIS Vegetation Continuous Fields

(MOD44B.003; Hansen et al., 2003) to study the relationship of

the vegetation stability metrics with vegetation cover. This

dataset was subsequently resampled to the GIMMS grid by

assigning to each GIMMS pixel the average fraction of all

MODIS pixels situated within it.

Climate data

Monthly temperature anomaly time-series from July 1981 to

December 2006 were obtained from the 0.5° Goddard Institute

for Space Studies (GISS) data set (1200 km smoothing radius;

New et al., 2000). Droughts were quantified using monthly

time-series of the standardized precipitation–evapotran-

spiration index, SPEI, from 1981 to 2006 (Vicente-Serrano

et al., 2010). SPEI is a site-specific drought indicator based on

deviations from the average water balance. The latter is calcu-

lated as precipitation minus potential evapotranspiration over

a specified time-scale. Both the temperature and SPEI time-

series were spatially resampled to the GIMMS grid using

nearest-neighbour resampling. A three-month time-scale – i.e.

SPEI calculated for the cumulative water balance over the pre-

vious three months – was used, because this approach has been

shown to produce the highest correlation with NDVI while

reducing the influence of noise (Vicente-Serrano et al., 2013;

Zeng et al., 2013). As such, positive temperature anomalies and

SPEI values indicate warmer and wetter conditions than

average, respectively, whereas negative values represent cooler

conditions or a negative water balance. (See Table 1 for an

overview of the datasets.)

Because our objective was to characterize the short-term

response of vegetation to short-term climate anomalies, long-

term NDVI trends were of no interest. Such trends are consid-

ered to represent changes in the equilibrium state of the

vegetation (e.g. due to overgrazing or long-term successional

cycles) instead of being anomalies resulting from short-term

climate anomalies. Time-series of NDVI anomalies, SPEI and

temperature anomalies were therefore detrended whenever a

significant temporal linear trend was detected (Appendix S1).

Vegetation stability

The vegetation response to short-term climate anomalies was

modelled by considering the NDVI anomaly as a linear combi-

nation of the temperature anomaly, drought index (SPEI) and

NDVI anomaly history:

Y Y Tt t t t t= + + +−α β1 SPEI φ ε ,

where Yt is the standardized NDVI anomaly at time t, SPEIt is the

standardized SPEI index at time t, Tt is the standardized tem-

perature anomaly, and ϵt is the residual term at time t; α, β and

ϕ are the model’s coefficients. Standardization of the time-series

was performed in order to assure comparability between the

model coefficients. This model is known by the acronym ARx.

Table 1 Overview of the data properties.

Dataset URL Base period Resolution Reference

GIMMS NDVI http://gcmd.nasa.gov/records/GCMD_

GLCF_GIMMS.html

07/1981–12/2006 0.072° Tucker et al. (2005)

GISS Temperature anomaly

(1200 km smoothing)

http://www.giss.nasa.gov/ 1961–1990 0.5° Hansen et al. (1999); New

et al. (2000)

SPEI http://sac.csic.es/spei/database.html 01/1901–12/2011 0.5° Vicente-Serrano et al. (2010)

Land Cover Fractions https://lpdaac.usgs.gov/data_access/ – 500 m Hansen et al. (2003)
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Each of the model coefficients of the ARx model can be

related to metrics of ecosystem stability (Table 2). The coeffi-

cient of the standardized temperature anomaly time-series, ϕ, is

an indicator of the vegetation anomaly related to instantaneous

temperature changes, and thus represents a temperature-

resistance metric. Similarly, the coefficient of the standardized

SPEI time-series, β, represents the drought-resistance metric.

Finally, α gives an indication of the dependence of the anomalies

on the previous response values. Where α is large, anomalies are

strongly determined by the anomaly at time t−1 and the ecosys-

tem recovers slowly from any disturbance; where α is small,

ecosystems tend to recover quickly. As such, α is related to eco-

system resilience and can be considered a resilience metric that

quantifies memory effects.

In order to obtain a parsimonious fitted model with signifi-

cant coefficients, the ARx model was fitted for all combinations

of model terms, and the model with the lowest Schwarz infor-

mation criterion (Schwarz, 1978) was selected as optimal. This

optimal model was screened based on the root mean squared

error (RMSE) of the residuals and only pixels with RMSE < 0.9

were considered to show a good fit and were retained.

Finally, to achieve a better understanding of the vegetation

characteristics that mediate vegetation resistance and resilience

in drought-sensitive areas, each of the ARx coefficients was

related to the fractions of bare soil, non-tree vegetation and tree

cover.

RESULTS

Global resilience and resistance

The ARx model could be fitted in 77.5% of terrestrial pixels; it

did not converge for the remaining 22.5%. Half of the fitted

pixels showed a fit with RMSE lower than 0.9, and 62.8% of

the pixels with poor fit were located in arid, semi-arid or tem-

perate regions with trees and bare soil each covering less than

50% of the pixels. Regions of poor fit were largely located in

the upper northern latitudes and in coastal, desert or tropical

regions (Fig. 1a). Consequently, our model did not provide

information regarding the stability of these regions, mostly

consisting of either dense forests or sites with extremely sparse

vegetation.

The vegetation resilience metric (Fig. 1b), was positive for

99.9% of the pixels fitted by the model and explained the largest

part of the variation. Low resilience (large values of α) was

found in semi-arid areas, and more specifically in west-central

USA, Argentina, southern Europe, the Sahel, southern Africa,

Australia and semi-arid Asia. These regions had a relatively good

fit (RMSE ≈ 0.65) (Fig. 1e). The vegetation drought-resistance

metric (Fig. 1c) was mostly positive (91.9% of the pixels),

whereas the vegetation temperature-resistance metric (Fig. 1d),

was positive in some regions and negative in others. The resist-

ance metrics had contrasting spatial patterns: the temperature-

resistance metric (Fig. 1d) had positive values in northern USA,

western and eastern Europe, and negative values were present in

southern Africa, the Sahel, northern Australia and eastern Brazil.

In contrast, most semi-arid regions showed large positive values

for the drought-resistance metric, especially Australia (Fig. 1c).

The vegetation drought-resistance pattern was similar to the

resilience pattern, but with subtle differences. For example, high

values of the drought-resistance metric were found in northern

Argentina although the metric was not significant in southern

Argentina. The vegetation resilience metric showed the reverse

pattern, with large positive values in southern Argentina and

small positive values in north Argentina. Similarly, central and

western Australia showed the highest values for the vegetation

Table 2 Interpretation of the ARx coefficients.

Coefficient Interpretation magnitude Interpretation sign

α (coefficient of Yt−1) Absolute values between zero and one represent

systems returning to equilibrium, with large absolute

values indicating a low resilience, i.e. a slow return to

equilibrium

Positive Anomalies are similar to the previous

anomaly. In case α is smaller than one, the anomaly

gradually diminishes over time.

Negative Anomalies are similar to the previous

anomaly, but with the opposite sign. In case α is

larger than −1, the system returns to equilibrium in

an oscillating way

β (coefficient of SPEIt) and

ϕ (coefficient of Tt)

Large absolute values indicate a low resistance to

droughts/temperature anomalies, i.e. a large

vegetation response to short term

droughts/temperature anomalies.

Positive Wetter conditions/higher temperatures than

average induce a positive NDVI response, i.e. an

increase in biomass or vegetation greenness. Dryer

conditions/lower temperatures than average induce a

negative NDVI response, i.e. lower biomass or

vegetation greenness.

Negative Wetter/higher temperatures conditions than

average induce a negative NDVI response, i.e. a

decrease in biomass or vegetation greenness. Dryer

conditions/lower temperatures than average induce a

positive NDVI response, i.e. higher biomass or

vegetation greenness

W. De Keersmaecker et al.
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eFigure 1 Global overview of vegetation
cover fractions and vegetation stability,
i.e. the percentage of tree, non-tree
vegetation and bare cover (a), vegetation
resilience (b), vegetation resistance
against drought (c) and vegetation
resistance against temperature anomalies
(d) and the RMSE of the model (e). For
panels (b)–(e), only pixels with a
RMSE < 0.9 are represented.

Global vegetation resistance and resilience
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resilience metric, and eastern Australia had the highest values for

the drought-resistance metric.

Relationship between resistance, resilience and
land cover

Analysis of the vegetation temperature-resistance, drought-

resistance and resilience metrics as a function of vegetation

cover fractions (Fig. 2) demonstrated the importance of tree

cover, non-tree vegetation and bare soil cover on vegetation

stability. In order to allow comparisons with earlier studies on

savanna systems, only pixels with vegetation sensitive to drought

(positive drought-resistance metric) were selected. In addition,

for the analysis of resistance versus temperature anomalies, only

negative values of ϕ were selected. Drought-sensitive vegetation

with a low non-tree vegetation cover or a high fraction of bare

soil showed the least resilience (values higher than 0.5) and the

strongest vegetation memory effects. The area of low vegetation

resilience is indicated by point P1 in Fig. 2(a), having a resilience

value greater than 0.6 and tree cover, non-tree vegetation and

bare soil fraction of 15%, 57% and 28%, respectively. In con-

trast, vegetation types with high levels of tree cover (40–50%)

and low bare-soil fractions (0–5%) showed the highest resilience

(low values of α). For example, point P2 in Fig. 2(a) (tree cover

42%, non-tree vegetation 56%, bare soil 2%) shows a resilience

value below 0.5.

Two cross-sections (T1 and T2 in Fig. 2a) reveal the change in

resilience as a function of tree cover and non-tree vegetation

cover. For very low bare-soil fractions (< 5%) (cross-section T1:

1% bare cover), resilience decreases as the fraction of non-tree

vegetation increases. For higher bare-soil fractions (e.g. cross-

section T2, at 5% bare cover), this decrease was no longer

present; instead, resilience shows an optimum around a non-

tree vegetation fraction of 85% (point P3 in Fig. 2a). Finally, for

bare-soil fractions above 20%, the resilience optimum was no

longer present and the resilience showed a positive linear

relationship with the non-tree vegetation cover fraction. This

implies that for very low bare-soil fractions, the highest resili-

ence and the lowest vegetation memory effects are observed

when there are more trees, whereas for high bare-soil fractions

the opposite is true: the highest resilience is observed where trees

are less abundant.

The vegetation temperature-resistance (Fig. 2c) and drought-

resistance (Fig. 2b) metrics showed contrasting patterns when

analysed as a function of cover fractions. For example, the lowest

drought-resistance (high values of β) was found for ecosystems

with a tree cover of approximately 10% (e.g. point P4 in Fig. 2b).

In contrast, ecosystems with no tree cover and 80–90% non-tree

cover showed the highest sensitivity to temperature anomalies

(e.g. point P5 in Fig. 2c).

Although the two resistance metrics showed clear patterns in

terms of the cover fractions, the mean value of the resistance

metric (signal) is relatively low compared to its standard devia-

tion (noise; Appendix S2). The signal-to-noise ratio (SNR) of

the resilience metrics varied mostly between 6 and 8, whereas for

the relationships between resistance and anomalies in drought

and temperature, the SNR varied mostly between 2 and 4 and

between 4 and 6, respectively. The low SNR or relatively high

variability of the resistance metrics limits comparisons between

vegetation cover fractions. Factors other than tree cover, bare

soil and non-tree vegetation may play an important role in the

distribution of these stability metrics.

DISCUSSION

Model

We have presented a simple ARx model for extracting global

metrics for vegetation resilience and resistance against drought

and temperature anomalies based on NDVI and climate time-

series. This model assesses vegetation response to short-term

climate anomalies, and not the effect of vegetation state on

a

c

b

Figure 2 The mean vegetation resilience
(a), mean vegetation resistance against
drought (b), mean vegetation resistance
against temperature anomalies for pixels
with a negative metric (c) as a function
of the fractions of tree cover, non-tree
vegetation and bare cover for pixels with
a significant positive SPEI metric and an
RMSE < 0.9. Points P1 to P5 indicate
vegetation with a tree cover of 15%, 42%,
14%, 10% and 1%; a non-tree vegetation
cover of 57%, 56%, 83%, 80% and 86%;
and a bare soil cover of 28%, 2%, 3%,
10% and 13% respectively. Lines T1 and
T2 in (a) illustrate the transect for a bare
cover of 1% and 5% respectively.
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short-term climate anomalies. The proposed ARx model there-

fore describes only one part of the whole feedback system.

The ARx model differs from previous approaches in five

important ways.

1. Vegetation stability is estimated based on the vegetation

response to short-term climate anomalies. The explicit inclusion

of climate data allows us to standardize the response for the

timing and magnitude of the impact, thus enhancing the com-

parability of the metrics over large spatial scales.

2. Short-term climate anomalies – any deviation from average

climate conditions – are taken into account. This implies that

the response characteristics are based on the complete range of

vegetation response, and not only on climate extremes. The ARx

method therefore gives an indication of the immediate response

if the climate turns drier, wetter, colder or hotter, unlike

methods that focus on climate extremes (e.g. Liu et al., 2013a).

3. The ARx model estimates the short-term response of vegeta-

tion, which contrasts with the more common trend-analysis

studies, such as trends in GPP from 1982 to 1999 (Nemani et al.,

2003) or trends in vegetation optical depth from 1988 to 2008

(Liu et al., 2013b). In these long-term studies, changes in veg-

etation cycle and/or responses to climate change or management

were assessed. Furthermore, our method allows for the quanti-

fication of short-term vegetation resilience (engineering resili-

ence) on a global scale.

4. Anomalies in vegetation response might either result from

previous short-term climate anomalies (memory effect) or from

the instantaneous effect of a climate anomaly. The simultaneous

estimation of vegetation resistance and resilience allows us to

take into account the memory effect of vegetation when esti-

mating vegetation resistance. This approach differs from simple

cross-correlations between vegetation and climate time-series

(e.g. Zeng et al., 2013), which can be interpreted as simplified

versions of the ARx model estimating the (lagged) response of

vegetation but without including the memory effect.

5. One of the primary advantages of the ARx model approach is

that it provides an opportunity to assess the quality of the

model’s fit and the significance of the model’s coefficients sim-

ultaneously. If desired, insignificant coefficients or pixels with

poor fit can be excluded. The exclusion of low-quality data is

crucial in remote-sensing studies on vegetation stability, because

such data may contribute to spurious and contradictory results

(Samanta et al., 2010; De Keersmaecker et al., 2014a). This is

especially important when using anomaly data, which have a

lower signal-to-noise ratio (SNR) and higher uncertainty than

the original data. Most of the pixels excluded in this study were

found at northern latitudes in densely forested or bare areas.

This might be explained by (i) a high probability of noise in

these areas (e.g. presence of clouds, snow or high levels of aero-

sols) or (ii) small anomalies, causing a low SNR (Hird &

McDermid, 2009; De Keersmaecker et al., 2014a,b). The latter

might occur in high-biomass systems (e.g. forests), as the rela-

tionship between NDVI and vegetation properties such as LAI

tends to saturate (Delalieux et al., 2008). It should therefore be

stressed that the influence of noise can be severe and is spatially

dependent (De Keersmaecker et al., 2014a).

Global vegetation resilience

The ARx model estimates the short-term or engineering resili-

ence of ecosystems on a global scale using the relationship of

NDVI anomalies with past anomalies. This approach contrasts

with earlier studies that derived resilience from the persistence

of trends, based on the method of Simoniello et al. (2008). For

example, Harris et al. (2014) note that the resilience derived

from persistence depends on the sequence of wet and dry years.

Consequently, it is unknown whether the observed spatial

variation of the persistence metric is due to the sequence of

climate variation or due to ecosystem properties. This stresses

the importance of explicitly taking climate variability into

account.

The ARx approach to deriving engineering resilience also

differs from earlier studies that focused on ecological resilience

(e.g. Hirota et al., 2011). Engineering resilience gives an estimate

of the recovery time if equilibrium is assumed, whereas ecologi-

cal resilience quantifies the probability of an ecosystem switch-

ing to another state. These two resilience metrics inherently

differ by definition, but our results also show that they are

closely related. For example, the areas with low engineering

resilience and strong memory effects are generally situated in

semi-arid areas. In Australia, Africa and South America, these

regions coincide with locations with a high probability of con-

verting from a ‘savanna state’ to a treeless state or of remaining

in a treeless state (Hirota et al., 2011). This suggests that low

engineering resilience leads to low ecological resilience where

the ARx provided reliable fits: ecosystems that struggle to

recover from disturbances in the short-term also have a higher

chance of switching to another state.

Finally, the results of the ARx model suggest that engineering

resilience is related to the fractions of tree cover, non-tree veg-

etation and bare soil. To take one example, for a bare soil cover

of 5%, the optimal resilience occurs at 80–90% non-tree vegeta-

tion and 5–15% trees. Lower or higher tree-cover fractions lead

to a more unstable state. This agrees with the results of Scanlon

et al. (2005) and Walter & Mueller-Dombois (1971), who

studied the water efficiency in water-limited savanna ecosystems

across a transect in Botswana. They found that dynamic grass

cover stabilizes the precipitation that reaches the tree roots in the

wet season: more precipitation than average will result in a

higher grass cover, which in turn diminishes the water percola-

tion to the tree roots. This might be reflected in the ARx resili-

ence with an optimum for a tree-cover fraction between 10%

and 20%. This relationship, however, does not hold for very low

or high fractions of bare soil. Where there is a lot of bare soil, the

range of fractions of tree cover and non-tree vegetation cover

with significant coefficients becomes very small, although the

total vegetative fraction might be too low to benefit from any

hydrological optimization. Where there is very little bare soil, the

drought stress might not be severe enough for the vegetation to

benefit from the optimization. Furthermore, other disturbances

such as wildfires or herbivory may also affect the vegetation

composition, thus confounding this relationship (Spessa et al.,

2005; Bond, 2008).

Global vegetation resistance and resilience
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Global vegetation resistance

To a certain extent, the extracted vegetation resistance metrics

correspond to published ecosystem sensitivity metrics. For

example, comparing the output of the ARx model with the

drought- or heat-induced tree mortalities of Allen et al. (2010)

shows that the reported tree mortality in southern Africa, the

eastern Sahel, northern Morocco, eastern Australia, Mediterra-

nean Europe and east-central USA coincides with regions of low

drought- or temperature-resistance extracted from the ARx

model. The ARx model does not, however, detect tree mortality

in eastern and north-western USA, the Amazon forest, Scandi-

navia, Indonesia or the Philippines, because it provides insuffi-

cient fit for forests or dense tree vegetation. Furthermore, the

resistance patterns closely resemble the spatial patterns of cor-

relation between NDVI anomalies and SPEI drought index

(Vicente-Serrano et al., 2013), the vegetation growth simula-

tions using the dynamic global vegetation model (Notaro, 2008)

and the predicted suitability for crop production using a Global

Crop Model for four different global climate change models

(Ramankutty et al., 2002). Ramankutty et al. (2002) also found

positive effects of a temperature increase on crop production in

northern latitudes and negative effects of precipitation decrease

or temperature increase in semi-arid regions. Moreover, several

regional and continental studies support the high sensitivity of

areas in North America (Zhang et al., 2010), Europe (Reichstein

et al., 2007), Africa (Propastin et al., 2010), Asia (Mohammat

et al., 2013; Poulter et al., 2013) and Australia (McAlpine et al.,

2009). As such, local as well as other global studies confirm the

sensitivity of the low-resistance areas.

Comparing the outputs of the ARx model with the vegetation

and climate extremes of Liu et al. (2013a) illustrates that areas

with low resistance to drought and temperature anomalies cor-

respond to areas with frequent vegetation–climate extremes (e.g.

central USA, southern Europe, the Sahel, northern Patagonia

and eastern Australia). The spatial patterns of the vegetation–

climate extremes and ARx resistance metrics also show some

discrepancies, however: Liu et al. (2013a) found few vegetation

extremes in southern South Africa, large parts of Australia, the

Horn of Africa and eastern Brazil, whereas these areas show low

resistance in the ARx model. Moreover, Liu et al. (2013a) dem-

onstrated frequent vegetation extremes in the Amazon forest

and eastern USA, both of which have significant resistance or

low-quality fit in the ARx model. The discrepancy between these

studies might originate from (1) a low frequency of climate

extremes, (2) low-quality time-series or (3) other causes of

extreme vegetation responses, such as management or pests.

Although vegetation may be sensitive to short-term climate

anomalies, it may not show an extreme NDVI anomaly in cases

where no climate extremes occur. Regions with low resistance

may thus show few NDVI extremes.

Furthermore, low-quality time-series may show NDVI

extremes (negative spikes) that are related not to climate

extremes, but to cloud cover, aerosol concentration or snow.

These types of noise result in a high RMSE values of the

ARx model and the stability metrics of these pixels are not

represented. As such, some regions may show no ARx metrics,

although many NDVI extremes occur. NDVI extremes may also

occur due to management or pests (e.g. an early harvest might

cause an NDVI anomaly) and are thus not related to short-term

climate anomalies. They will not, therefore, directly affect the

resistance metrics, resulting in the common occurrence of a high

frequency of NDVI extremes and a high resistance to short-term

climate anomalies.

These three explanations for the low-quality ARx fit to the

results of Liu et al. (2013a) highlight the importance of properly

identifying the factors that drive ecosystem anomalies and of

understanding the data quality when using the ARx model,

because only then can a correct interpretation of ecosystem

stability be reached.

Vegetation stability and management

Large-scale stability metrics can support management in two

ways. First, they allow a holistic comparison of management

regimes over similar vegetation types. Second, the mapping of

vegetation stability allows highly vulnerable regions to be iden-

tified. These may become a focus for further research or their

management may be revised. For example, engineering resili-

ence has been related to ecological resilience and the fractions of

bare soil, tree cover and non-tree vegetation, offering a real-time

management opportunity. It must be noted, however, that addi-

tional factors, such as the occurrence of wildfires, may have to be

taken into account to provide more accurate management

guidelines. Furthermore, as noise may have an impact on the

availability of stability metrics, resulting in a lack of data over

forests, for example, the addition of field assessments is recom-

mended, if not a necessity. Such small-scale studies further

provide a relatively tight control on environmental conditions

and the composition of the vegetation, giving a detailed insight

into the factors that regulate stability (such as fertilization,

grazing and diversity; Tilman, 1996). This insight can lead to

more detailed guidelines on how to adapt the system given the

management goals (Mitchell et al., 2000).

To conclude, we have presented a model that quantifies veg-

etation resistance and resilience metrics while explicitly taking

short-term climate anomalies into account. We demonstrate

that this method contributes to vegetation management

through the identification of vulnerable regions with respect to

short-term climate anomalies and that it provides better insight

of the factors that drive vegetation response.
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