
Identifying and managing risk factors for salt-affected soils:
a case study in a semi-arid region in China

De Zhou & Jianchun Xu & Li Wang & Zhulu Lin &

Liming Liu

Received: 17 December 2014 /Accepted: 25 May 2015
# Springer International Publishing Switzerland 2015

Abstract Soil salinization and desalinization are com-
plex processes caused by natural conditions and human-
induced risk factors. Conventional salinity risk identifi-
cation and management methods have limitations in
spatial data analysis and often provide an inadequate
description of the problem. The objectives of this study
were to identify controllable risk factors, to provide
response measures, and to design management strate-
gies for salt-affected soils. We proposed to integrate
spatial autoregressive (SAR) model, multi-attribute de-
cision making (MADM), and analytic hierarchy process
(AHP) for these purposes. Our proposed method was
demonstrated through a case study of managing soil
salinization in a semi-arid region in China. The results
clearly indicated that the SAR model is superior to the
OLS model in terms of risk factor identification. These
factors include groundwater salinity, paddy area, corn

area, aquaculture (i.e., ponds and lakes) area, distance to
drainage ditches and irrigation channels, organic fertil-
izer input, and cropping index, among which the factors
related to human land use activities are dominant risk
factors that drive the soil salinization processes. We also
showed that ecological irrigation and sustainable land
use are acceptable strategies for soil salinity
management.
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Introduction

Soil salinization as a result of environmental changes
and land use activities is a major form of soil degrada-
tion in arid and semi-arid regions (Dumanskia and
Pierib 2000; Li et al. 2007). Primary soil salinization
(PSS) is caused by environmental conditions such as
climate, topography and landforms, soil types, and hy-
drology, while secondary soil salinization (SSS) is
mainly caused by land use activities such as excessive
irrigation and/or lack of adequate salt leaching (Pereira
et al. 2007; Zhou et al. 2013). Environmental conditions
are mostly uncontrollable risk factors, whereas land use
activities are controllable risk factors. The interactions
between these two types of risk factors make the iden-
tification of the key controllable risk factors a difficult
task. We define the key controllable risk factors as the
factors that mainly cause the soil salinization problem in
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a region, and effective soil salinity management strate-
gies should be targeted at controlling these factors.

Many studies in the past had already tried to identify
risk factors for soil salinization (e.g., Florinsky et al.
2000; Bennett and Virtue 2004; Poulton et al. 2005;
Grundy et al. 2007; Smith 2008; Holland et al. 2009;
Caccetta et al. 2010; Acosta et al. 2011; Bilgili 2013).
Darwish et al. (2005) found that poor quality irrigation
water and excessive uses of water and fertilizers had
resulted in soil salinization in an irrigation area in
Lebanon. Wiebe et al. (2007) reported that summer
fallow had increased soil salinity in Canadian Prairies.
He also suggested that uninterrupted land use with more
surface cover, especially permanent plant cover, would
keep water from becoming redistributed within soils
hence reducing soil salinization. These studies had con-
tributed to our understanding of soil salinization and its
risk factors, but the process of identifying risk factors for
soil salinization is still subject to stochastic and subjec-
tive limitations.

Statistical and neural networks models have been
used for soil salinity risk identification and for further
exploration of the relationship between soil salinization
and its risk factors (Bradd et al. 1997; Patel et al. 2002;
Triantafilis et al. 2004; Wang et al. 2008; Akramkhanov
and Vlek 2012). However, traditional statistical tech-
niques such as linear regression model (Zhang et al.
2010b), multiple gray relation model (Rao and Yadava
2009), and system dynamic model (Ali Kerem and
Yaman 2001) are limited when they are used to analyze
spatial data due to spatial autocorrelations in geographic
variables (Overmars et al. 2003; Merckx et al. 2011;
Naimi et al. 2011). Spatial autoregressive (SAR) model
(Anselin and Griffith 1988) is a powerful tool for spatial
analysis (Kissling and Carl 2008; see also Aguiar et al.
2007; Kissling and Carl 2008), and it can be used to
examine the relationship between soil salinity and its
risk factors (Akramkhanov et al. 2011).

Once key controllable risk factors are identified, the
multi-attribute decision making (MADM) analysis
(Hatami-Marbini et al. 2013) can be used to help land
owners, resource managers, and policymakers to devel-
op strategies for soil salinization management. By inte-
grating simple additive weighting (SAW) (Chou et al.
2008), analytic hierarchy process (AHP) (Ludovic-
Alexandre et al. 2011), elimination and choice express-
ing translating reality (ELECTRE) (Vahdani et al.
2013), and the technique for order preference by simi-
larity to ideal solution (TOPSIS) (Vahdani et al. 2011),

the MADM is normally used to develop multi-principle
strategies for soil salinity control and management
(Hatami-Marbini et al. 2013).

The objective of this study is twofold: (1) identifying
key controllable risk factors for soil salinization process-
es using a SAR model and (2) developing soil salinity
management strategies using the MADM analysis. The
attainment of the research objective is demonstrated
through a case study of managing the salt-affected soils
in a semi-arid region in northwest China. The work flow
of our study is presented in Fig. 1.

Study area

The Yinchuan Plain (YCP) of Ningxia Hui Autonomous
Region (37° 44′–39° 20′ N, 105° 45′–106° 54′ E) covers
an area of 7790 km2 in a typical semi-arid region in
northwest China (Fig. 2). The YCP is influenced by a
continental climate with an average annual temperature
of 9 °C and an average annual precipitation of 185 mm.
The average annual evaporation is 1825 mm, as much as
10 times higher than the average annual precipitation
(Zhang et al. 2010a). The YCP has three major land-
forms, i.e., the Yellow River alluvial-lacustrine plain, the
YellowRiver floodplain, and the Helan piedmont alluvial
plain (Fig. 2). Soils are alkaline and calcareous with
medium to fine textures, altered significantly by more
than 2000 years of irrigated land use (Xiong et al. 1996).

The YCP has been traversed by the Yellow River
which irrigates vast stretches of arable land along its
course and has been undergoing extensive grain produc-
tion to meet the demand of the rapid population growth
and socio-economic development. The region has a
modern irrigation agriculture system that was converted
from natural prairie system more than 2000 years ago.
Most grassland and forest land had been cultivated for
paddy production with approximately 30×104 ha of
agricultural land. The irrigated land increased from
20.07×104 ha in 1990 to 27.64×104 ha in 2000 (Guo
2009; Jia et al. 2002). The principal crops are corn,
wheat, and rice. The cash crops are Lycium chinense,
rape, benne, and soybean (Zhang et al. 2010a).

Due to the poor environmental condition (intense
evaporation and low-lying terrain), the plain has been
suffering serious soil salinization. Human activities are
the main driving factors of the SSS, including unreason-
able agricultural irrigation practice (e.g., flooding irriga-
tion), high groundwater table, poor drainage, and
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intensive agricultural land use (Zhang et al. 2010a). In
the history of the plain, the alternate process between
soil salinization and desalinization has gone through
three stages, i.e., 1958–1962, 1962–2000, and 2000-
present (Zhang et al. 2010a). Fortunately, the SSS in
the plain has been controlled through the improvement
of the land use (the adjustment of agricultural infrastruc-
ture) and the enhancement of the land use awareness of
farmers and policy-makers, especially the establishment
of the irrigation-drainage system with about 3000
major-minor channels of a total length of more than
7000 km (Cai et al. 2010). Currently, soil salinization
in the plain has been mitigated and further stabilized

because of implementing a consistent series of rational
agricultural practices.

Material and methods

Data and pre-processing

Total soluble salts in topsoils (1–20 cm) (i.e.,
SAL_TOPSOIL in Table 1) were measured at 101 sam-
pling sites in cultivated lands in Spring 2005 (Zhang et al.
2010a). Total soluble salts in soils were measured using
the method described in Dehaan and Taylor (2002).

Soil site sampling

Topographic map

Socio–economic data

Remote sensing images

Study area

Land use system analysis

Natural conditions analysis

Data normalization

Variable selection

Model determination

SAR model

Model validation

Identified and selected key

controllable risk factors

Response measures and strategies

AHP model

Data

Selecting optimal strategy

Sustainable salt-affected land use

management

MADM

Fig. 1 The work flow diagram of identifying and managing risk factors for soil salinization
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Data for a total of 16 variables classified in terms of
eight aspects (i.e., climate, topography, groundwater
regulation, agricultural structure, land cover, infrastruc-
ture, agricultural technology, and demography, see
Table 1) were collected for key controllable risk factor
identification. These variables were further grouped as
natural factors and human factors (see Table 1).

The natural factors include evaporation to precipita-
tion ratio (RATE_ER) and relative relief (REL_RELIEF).
The RATE_ER was obtained from Ningxia weather ser-
vice, and the REL_RELIEF was calculated using a sec-
ondary (computed) Digital Elevation Model (DEM) map
at a scale of 1:10, 000 in GIS software ArcGIS 10.0
(ESRI Inc., USA).

Human factors include fourteen variables. Depth to
groundwater (GROU_DEPTH) and groundwater salt
content (GROU_SAL) were recorded at 253 groundwa-
ter monitoring wells (Zhang et al. 2010a). Normalized
difference vegetation indices (NDVI) and three distance
variables, including the distance to irrigation channels
(DIS_IRRIG), distance to drainage channels
(DIS_DRAIN) and distance to road (DIS_ROAD), were
extracted from remote sensing images (Landsat-7
ETM+) with 30×30 m resolution taken on April 27,
2004. Themain distance variables were calculated using
Euclidean distance tool in ArcGIS 10.0 (ESRI Inc.,
USA). Other data were collected from the Ningxia
Statistical Yearbook (NSB Ningxia Statistical Bureau
2000–2010). Household surveys were conducted in

2010 and the survey data were stored in a geo-database.
Socio-economic data were collected at the county level.

All data were subsequently transformed into spatial
variables and interpolated using ordinary Kriging tech-
nique. These data were further standardized and stored
in relational database using ArcGIS 10.0 platform
(ESRI Inc., USA) (Wang et al. 2010).

Soil salinization, especially soil secondary saliniza-
tion, is an outcome of both natural conditions and land
use activities. Zhou et al. (2013) reviewed the risk factors
for soil salinization. Among those studies reviewed, only
a few studies (e.g., Lamble and Fraser 2004; Biggs et al.
2009) included geological risk factors when developing
soil salinity risk maps, mainly because of lack of geolog-
ical data. In this study, risk factors such as lithologic unit
texture, soil texture, and water stagnation were not con-
sidered due to lack of data. For example, the seepage
effect and deep percolation from the vast network of
irrigation and drainage channels on soil salinity were
simply represented by the distance to irrigation channels
and the distance to drainage ditches (see also Zhou et al.
2012; 2013). The irrigation canals are not lined and the
canal efficiency is about 0.44 (Jia et al. 2006).

Spatial autoregression model

Spatial statistical models include spatial relationships
among geographic variables, that is, positive and nega-
tive spatial correlations, spatial clusters, and spatial

Fig. 2 Study area, sampling sites,
and irrigation-drainage systems
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outliners (Overmars et al. 2003; Aguiar et al. 2007; Huo
et al. 2011). Global Moran’s I is a commonly used
statistical measure for spatial autocorrelation, and it is
computed as follows (Huo et al. 2011):

I ¼ n
X n

i¼1

X n

j¼1
wi j

⋅

X n

i¼1

X n

j¼1
wi j yi−yð Þ y j−y

� �

X n

i¼1
yi−yð Þ2

i≠ j ð1Þ

where n is the number of variables; yi and yj are the
observations at locations i and j; y is the average value of
y; andwij, is an element of spatial weight matrixW, is the
spatial weight between locations of i and j. The weight
matrix describes the relationship between an element
and its surrounding elements and is normally computed
based on distance (Huo et al. 2011).

In this study, the spatial correlation analysis was
conducted using distance-based weight matrix. Global
Moran’s I values range from −1 (indicating perfect
dispersion) to +1 (perfect correlation). Negative
(positive) values indicate negative (positive) spatial au-
tocorrelation. A zero or near zero value indicates a
random spatial pattern, and there is no spatial autocor-
relation (Overmars et al. 2003; Huo et al. 2011; Slavik
et al. 2011).

The SAR model is a natural extension to ordinary
least squares regressionmodels for land use modeling. It
is also easy to interpret the model’s coefficients
(Kanaroglou et al. 2013). The SAR model normally
includes two sub-models, spatial lag model (SLM),
and spatial error model (SEM) (Geoda 2005; Wulder
et al. 2007). The spatial lag model is described as
follows:

Y ¼ ρWyþ Xβ þ ε; εeN 0;σ2
� � ð2Þ

where ρ is the spatial autoregressive coefficient, Y is a
vector of observations on the dependent variable,Wy is a
spatially lagged dependent variable for weight matrixW,
X is a matrix of observations of explanatory variables,
and ε is error term. ρ and β are model parameters.

The spatial error model is expressed as follows:

Y ¼ Xβ þ ε ε ¼ λWεþ u ð3Þ

where Y is a vector of observations of the dependent
variable,W is the spatial weight matrix, X is a matrix of
observations of explanatory variables, ε is a vector of
spatial autocorrelation error terms, and u is a vector of
random error. λ and β are parameters.

Pseudo R2 should be used to test the goodness of fit
for the SARmodels since R2 is not an unbiased measure
in this case. The pseudo R2 is defined as the ratio of the
variance of the predicted values over the variance of the
observed values for the dependent variable (Anselin
1990; Overmars et al. 2003). Maximized log likelihood
(LIK), Akaike information criterion (AIC), and
Schwartz criterion (SC) can also be used. The higher
value of LIK or the lower values of AIC and SC indicate
good fit for the SAR models. The standardized regres-
sion coefficient (β) and associated significance level (p
value) can be used to compare the relative importance
and positive or negative correlations among risk factors
in a SAR model.

Ten variables (or risk factors) were selected using
stepwise regression analysis to be included as explana-
tory variables in the final SARmodel (see Table 1). SAS
9.2 (SAS Inc., USA) was used for stepwise regression
analysis, and GeoDaTM 0.95i (Geoda 2005) was used
for SAR modeling.

MADM techniques using the AHP method

The MADM were developed to find the best strategy
from a set of alternatives for organizational decision
making (Zhang and Lu 2009). The best alternative has
the highest degree of satisfaction for all of the relevant
attributes and can be made through evaluation and com-
parison of these feasible alternatives which are charac-
terized by trade-off among constraints (Zare Mehrjerdi
2014). The MADM has been widely used to facilitate
decision making in evaluating complex projects (Cakir
and Canbolat 2008; Javanbarg et al. 2012), including
wind farm siting (Leda-Ioanna et al. 2010), prioritization
of operator selection (Yuen 2010), and re-vegetation
policy options (Qureshi and Harrison 2001).

The AHP by Saaty (1980) can be applied to rank
strategies and ultimately select the optimal strategy. The
AHP model addresses the complex decision problem
using a hierarchical framework, consists of an overall
goal, of a group of options or alternatives for reaching
the goal, and of a group of factors or criteria that relate
the alternatives to the goal (Ludovic-Alexandre et al.
2011). The hierarchy of the AHP can be visualized in a
diagram as in Fig. 3. The procedure can be summarized
as follows: structuring the decision problem, making
pairwise comparisons and getting the judgmental ma-
trix, checking the consistency of the judgments, aggre-
gating weights across varieties of levels, and obtaining a
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final decision (Mattiussi et al. 2014; Zhou et al. 2013).
More details about the AHP methodology can be found
in the literatures (Leda-Ioanna et al. 2010; Qureshi and
Harrison 2001; Saaty 1980; Vaidya and Kumar 2006;
Wang et al. 2010; see also Zhou et al. 2013).

Results and discussion

Spatial autocorrelation of soil salinity and risk factors

Global Moran’s I values were calculated for soil salinity
and ten risk factors that were included in the SARmodel
using stepwise regression analysis (see Fig. 4). The

distance-based weight matrices were computed using a
lag distance of 8 km (i.e., 0–8, 8–16 and 16–32 km, etc).
Figure 4 shows positive spatial autocorrelations for soil
salinity and risk factors within about 32 km. The spatial
autocorrelations decrease gradually as distance in-
creases, which is consistent with the findings by Wang
et al. (2007). Therefore, the spatial autocorrelations of
these variables should be considered in the SAR model
(Overmars et al. 2003; Wulder et al. 2007).

A pattern can be found in Fig. 4 for the global
Moran’s I values for the ten risk factors. The global
Moran’s I values are higher for the risk factors related
to frequent human activities (e.g., X14, organic fertilizer
input per county; X15, cropping index) than those

Level 1:

Level 2:

Level 3:

Decision Goal

Criterion 1 Criterion i Criterion j

Sub-criterion 1 Sub-criterion i Sub-criterion j

… …

……

… …

……

Alternative 1 Alternative i Alternative jLevel 4: … … … …

Fig. 3 The AHP methodology
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Fig. 4 Moran’s I values of soil
salinity and its risk factors
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related to natural conditions (e.g., X2, relative relief).
Higher global Moran’s I values for human factors suggest
that the influences of land use presented a regionalized
pattern in the YCP, whereas the natural factors became a
more localized phenomena. Although the global Moran’s
I values can explain continuous variation over space well,
it ignores local instability of geographical variables
(Anselin 1995). Thus, the Local Indicators of Spatial
Association (LISA, see Anselin 1995) for a sensitivity
analysis (outliers) may be analyzed in the future.

SAR modeling

Table 2 presents the differences between the OLS model
and two SLM models. Both OLS and SLM1 include all
ten risk factors as explanatory variables. SLM2 only
include eight explanatory var iables , minus
REL_RELIEF and PER_ANIMAL.

The OLS model has the lowest R2 value (0.517)
among all models while the SLM1 has the highest
Pseudo R2 value of 0.885. Both SAR models (SLM1
and SLM2) are better than OLS, having lower values of
AIC and SC or a higher value of LIK.

For natural factors, Table 2(b) shows that
REL_RELIEF is not significant (p=0.015>0.01),
whichmeans that REL_RELIEF is not a main risk factor
contributing to the YCP’s SSS problem. This is not
consistent with other studies that reported that topogra-
phy was a predominant factor for primary soil saliniza-
tion in local areas (Grundy et al. 2007; Wiebe et al.
2007). The plausible explanation may be that the YCP
consists of three major landforms which are the Yellow
River alluviale−lacustrine plain, the Yellow River flood-
plain, and the Helan piedmont alluvial plain (Zhou et al.
2013). So, topography is not a direct risk factor for
regional soil salinization but a direct risk factor for local
soil salinization. Therefore, REL_RELIEF was re-
moved from SLM2 (Table 2(c)).

For human factors, Table 2(b) shows that
PER_ANIMAL is not significant (p=0.753>0.05). Li
et al. (2007) have reported that improper land use such
as overgrazing (PER_ANIMAL) is a main risk factor for
salinized wasteland expansion and aggravates the con-
version from grassland to saline and alkaline land.
Although the animal husbandry was one of the pillar
industries in the YCP, the situation is different now (Li
et al. 2012). Another reason is that the policy of
returning farmland to woodland and grassland has been
launched by the local government. Compared with

farmland, woodland and grassland were more salt-
tolerant and more effective in curbing salinization than
the ordinary grain (e.g., wheat and corn) (Zhou et al.

Table 2 Three different models for soil salinization in the YCP

Variable Coefficient (β) S.D. t value Probability (p)

(a) Ordinary least squares model (OLS)

R2=0.517; LIK=–889.603; AIC=1801.21; SC=1850.07

CONSTANT 2.804 0.041 68.692 0.000

REL_RELIEF 0.215 0.057 3.766 0.000

GROU_SAL 1.077 0.059 18.414 0.000

PER_PADDY –0.011 0.103 –0.109 0.913

PER_CORN 0.607 0.174 3.494 0.001

PER_AQUA 0.240 0.109 2.208 0.028

PER_ANIMAL –0.187 0.120 –1.557 0.120

DIS_DRAIN –0.331 0.050 –6.669 0.000

DIS_IRRIG 0.275 0.042 6.544 0.000

INPU_FERTI –0.877 0.454 –1.931 0.054

INDEX_CROP 1.200 0.525 2.287 0.023

Variable Coefficient (β) S.D. Z–value Probability (p)

(b) Spatial statistic model 1 (SLM1)

Pseudo R2=0.885; LIK=–502.321; AIC=1028.64; SC=1081.95

ρ 0.774 0.020 39.082 0.000

CONSTANT 0.651 0.059 11.037 0.000

REL_RELIEF 0.067 0.028 2.424 0.015

GROU_SAL 0.290 0.035 8.327 0.000

PER_PADDY –0.115 0.050 –2.304 0.021

PER_CORN 0.231 0.085 2.719 0.007

PER_AQUA 0.173 0.053 3.270 0.001

PER_ANIMAL 0.018 0.058 0.314 0.753

DIS_DRAIN –0.086 0.025 –3.490 0.000

DIS_IRRIG 0.114 0.021 5.489 0.000

INPU_FERTI –0.501 0.220 –2.273 0.023

INDEX_CROP 0.674 0.255 2.645 0.008

Variable Coefficient (β) S.D. Z–value Probability (p)

(c) Spatial statistic model 2 (SLM2)

Pseudo R2=0.884; LIK=–505.324; AIC=1030.67; SC=1075.09

ρ 0.778 0.020 39.521 0.000

CONSTANT 0.640 0.059 10.878 0.000

GROU_SAL 0.276 0.034 8.145 0.000

PER_PADDY –0.126 0.048 –2.634 0.008

PER_CORN 0.184 0.077 2.387 0.017

PER_AQUA 0.174 0.051 3.413 0.001

DIS_DRAIN –0.065 0.023 –2.834 0.005

DIS_IRRIG 0.121 0.021 5.845 0.000

INPU_FERTI –0.515 0.215 –2.394 0.017

INDEX_CROP 0.746 0.253 2.944 0.003
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2013). So PER_ANIMAL was also removed from the
SLM2. After removing these two risk factors, there is no
significant improvement from SLM1 to SLM2 in terms
of LIK, AIC, and SC. But both PER_PADDY and
INPU_FERTI have a smaller p value in SLM2.

For all regression models in Table 2, positive β of a
factor means that the soil salinity increases as the value
of that factor increases. In contrast, negative β means
that the soil salinity decreases as the value of that factor
increases. Table 2(a) shows that the three risk factors
including PER_PADDY, PER_ANIMAL, and
INPU_FERTI are not positive significant (p>0.05),
while the factor PER_PADDY has the lowest negative
contribution to soil salinity (β=−0.011).

All eight remaining factors in SLM 2 have significant
effect on soil salinization (p<0.01 or p<0.05)
(Table 2(c)). Controllable factors of human activities
including GROU_SAL, PER_CORN, PER_AQUA,
DIS_IRRIG, and INDEX_CROP aggravate soil salini-
zation, while other factors including PER_PADDY,
DIS_DRAIN, and INPU_FERTI alleviate soil saliniza-
tion. In general, soil salinization and desalinization are a
lengthy and complex processes affected by natural con-
ditions (such as climate, hydrology, topography, and
geology) and human-induced risk factors (such as land
use patterns, irrigation systems, and farmer’s economic
behaviors). Zhou et al. (2013) reported that
GROU_SAL was a main risk factor in the YCP. The
northwestern region of the YCP had the highest ground-
water salinity, and the southern region had the low
groundwater salinity. PER_CORN contributed to soil
salinization because of excessive irrigation and the lack
of adequate leaching and removal of salts (Corwin and
Lesch 2003). PER_AQUA is positive significant means
that increasing fish-farming would increase soil salinity
(Hamed 2008). Since the late 1980s, the previously
abandoned (unused) low-lying lands have been convert-
ed to aquaculture lakes and ponds in the YCP (Xiong
et al. 1996) and were constructed for fish farming (Yao
1995) to improve the regional economic development.
DIS_IRRIG is also a key risk factor, which makes the
following negative effects in the region: (1) high
groundwater tables caused by over irrigation, (2) carry-
ing saline irrigation water to areas where irrigation is
needed, and (3) moving salts from deep geological
storage to the rooting zone and surface soils by the
raised water level (Zhou et al. 2013). INDEX_CROP
represents the land use intensity for agricultural produc-
tion as well as the irrigation frequency and irrigation

amount in the YCP where irrigation agriculture is dom-
inant. INDEX_CROP is also one of the main causes of
salinity expansion (Li et al. 2007).

For negative risk factors that alleviate soil salinity,
the percentage of cultivated areas for paddy rice
(PER_PADDY) is a double-edged sword to salinization
process (negative or positive). On the one hand, paddy
rice increases irrigation demand and causes higher
groundwater table. On the other hand, paddy rice, by
high quality irrigation water, meets the leaching require-
ment for salt removal. Therefore, different irrigation
practices for paddy rice may lead to difference in salinity
risk. Land consolidation and converting paddy rice cul-
tivation into rotations between paddy rice and other
dryland crops may result in improved groundwater ta-
ble, reduced irrigation demand, and less uncontrolled
drainage (Sato 2001; Mao et al. 2004). Organic fertilizer
inputs (INPU_FERTI) can alleviate soil salinization.
The result is consistent with the previous findings by
Zhou et al. (2013). Finally, the eight risk factors includ-
ed in SLM2 can be selected to develop measures to
control SSS in the following MADM analysis.

Multi-attribute decision making analysis using
a hierarchal framework

The structure of the hierarchal framework (i.e., an AHP
model) is organized as shown in Fig. 5, including the
overall goal, the criteria, the sub-criteria (i.e., a group of
factors or measures), and the alternatives. The weight
vector of normalized relative importance of each risk
factor is developed by experts’ knowledge (Saaty 1980;
Zare Mehrjerdi 2014). The first layer is named as the
overall layer (A), i.e., the overall goal of decision mak-
ing aiming at preventing the secondary soil salinization
and developing sustainable land uses.

The second layer is called the criterion layer (B),
consisting of three criteria, i.e., the economic feasibility
(B1), the ecological feasibility (B2), and the societal
feasibility (B3). In order to achieve the overall goal,
three fundamental principles of sustainability (i.e., eco-
nomic, ecological, and social feasibilities) should be
considered in the MADM analysis. In terms of econom-
ic feasibility, the purpose is to determine positive eco-
nomic benefits for the salt-affected land uses, which the
proposed projects will lead to, through a typical cost and
benefit model (Young 1970). For example, land consol-
idation (or leveling) and/or irrigation and drainage sys-
tem improvement not only mitigate soil salinization, but
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also increase large economic consumption. These types
of projects should have highest funding priority. In
contrast, increasing paddy rice and irrigation water for
salt-leaching may be able to decrease surface soil salin-
ity, but it may be not economical in certain areas. On the
other hand, ecological and social feasibilities are also
important. For example, increasing cropping index may
produce more agricultural products and generate higher
farm revenue; it may also intensify the land use, which
may eventually lead to pollution and destruction to the
environment and the society.

The third layer is defined as the key controllable risk
factors layer (C). The eight key controllable risk factors
(C1–C8) were selected based on the previous SAR
analysis. The fourth layer is named as the response
measures layer (D). These eight measures (D1–D8)
were derived from both quantitative SAR analysis and
qualitative experts’ assessment. Researchers, land users,
and resource managers have experimented a set of mea-
sures to alleviate the YCP’s soil salinization. These
measures include drainage, planting paddy, colmatage,
reasonable irrigation, land consolidation (leveling), or-
ganic fertilizer application, paddy-upland rotation, and
salt-tolerant crops (Lu 2004). Additionally, since 1999,
the Yellow River Conservancy Commission (YRCC)

started to reallocate the Yellow River’s water resources
among the nine provinces along its course (Zhang et al.
2010a; Zhou et al. 2013). Water resources conservation
plans are being implemented to achieve sustainable use
of land and water resources (Pereira et al. 2007). In this
case study, we merged the C and D layers into one layer
and called it risk-response layer (SC/D).

The bottom layer in the hierarchy is called the alter-
native layer (E). It includes three strategies (E1, E2 and
E3) through expert elicitation (Table 3) to regulate land
uses for the purpose of sustainable use of land and water
resources. The soil salinity in the YCP is irrigation-
induced salinity (Xie et al. 2002; Zhou et al. 2013).
Therefore, these three strategies include rice field-
upland field rotation between paddy rice and other dry-
land crops (E1), high efficiency water resources utiliza-
tion (E2), and ecological irrigation and sustainable land
use (E3).

Element’s relative importance in each decision layer
and the relative importance of each key controllable risk
factor in the AHP framework have been compared using
paired comparison judgment matrices (Saaty 1980; Zare
Mehrjerdi 2014). The consistency ratio (CR) of judg-
ment matrices and the largest eigenvalue (λmax) were
also calculated. The three judgment matrices of A-B, B-
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Fig. 5 The hierarchy framework for managing risk factors of soil salinization in the YCP
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SC/D, and SC/D-E were calculated based on the con-
structed AHP framework, and the results are presented
in Tables 4, 5, and 6. The key controllable risk factors in
each decision layer were also ranked. As a result, the
consistency tests of all judgment matrices are acceptable
(all CRs<0.10).

Tables 4 and 5 show that the economic feasibility
criterion (B1, weight value=0.472) dominates the deci-
sion making process, followed by the societal feasibility
criterion (B3, weight value=0.316), and the ecological
feasibility criterion (B2, weight value=0.212). Table 6
shows that response measures, such as improving

irrigation system (SC/D1, weight value=0.210), estab-
lishing reasonable drainage system (SC/D2, weight val-
ue=0.161), adjusting the structure of agricultural land
use (SC/D7, weight value=0.127), and optimizing agri-
cultural industry structure (SC/D8, weight value=
0.189), should have priorities over other measures to
control soil salinization risk. The weights for three al-
ternatives are also given in Table 7, including improve-
ment of the paddy-upland rotation in rice paddy field
(E1, weight value=0.214), high efficiency water re-
sources use (E2, weight value=0.298), and ecological
irrigation and sustainable land use (E3, weight value=
0.488). The weights suggest that E3 has the highest
priority in preventing soil secondary salinization risk.

Implications of the proposed methodology

Through integrating SAR modeling, MADM analysis,
and AHP method, we proposed an approach to identi-
fying and managing risk factors for the salt-affected
soils in a semi-arid region of Northwest China. The

Table 3 The Multi-attribute decision making strategies for managing risk factors of soil salinization

Strategies
Land use patterns

Description of strategies

Strategy 1 (E1)
− promoting the rice field-upland field rotation
between paddy rice and other dryland crops

– Keeping current land use pattern and structure for solving contradictions between
population growth and food security

– Improving current irrigation and drainage system, and more funding for farmland
infrastructure

– Changing current unreasonable irrigation schedules and irrigation practices

Strategy 2 (E2)
− High efficiency water resources utilization

– Using water resources conservation as a guide to promote the water-saving
agriculture practices

– Updating the irrigation and drainage system and developing the agricultural
water-saving projects

– Combining the use of both groundwater and surface water of irrigated agriculture
for risk aversion of soil salinization

– Adjusting the water price of agricultural irrigation at a reasonable level for
enhancing the efficiency of water resources use

Strategy 3 (E3)
− Ecological irrigation and sustainable land use

– Aiming at the use of water-saving, rearranging the limited agricultural water
based on the land use difference between north area and south area of the YCP

– Combination of transforming the lower-yield farmland and the Grain for Green
Project (GGP) in heavily salt-affected areas; implementing sustainable ecological
restoration projects for the purpose of protecting and restoring soil fertility

– In the premise of guaranteeing food production, adjusting agricultural land use
structure for developing cash crops and salt-tolerant crops that have been
characterized as water-saving in the YCP

– Optimizing agricultural industry structure and establishing the sustainable rural
eco-economic pattern based on the all-round development of in farming,
forestry, animal husbandry, sideline occupation, and aquaculture.

Table 4 The judgment matrix and weight values for A–B

A B1 B2 B3 Weights

B1 1.000 2.226 1.492 0.472

B2 1.000 0.670 0.212

B3 1.000 0.316

CR=0.0000<0.10, λmax: 3.0000
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results are substantial and will be able to help us develop
more consistent management tools to manage soil sali-
nization and its risk factors in the region. Firstly, the
integrated quantitative and qualitative method was able
to identify key controllable risk factors of natural and
human environment variables related to soil saliniza-
tion. Particularly, this method provides an evidence-
based selection process for the construction of multi-

attribute decision making strategies. Secondly, the pro-
posed methodology also has a great advantage in
avoiding the subjectivity of soil salinization risk
management.

We also like to emphasize that the main objective of
our paper was to propose an analysis framework based
on the integrated approach of the SAR modeling, the
MADM analysis , and the AHP, which was

Table 5 The judgment matrix
and weight values for B-SC/D

aAll CRs <0.10

B1 SC/D1 SC/D2 SC/D3 Weights CRa λmax Total weights

SC/D1 1.000 1.221 2.226 0.445 0.0043 3.0044 0.472
SC/D2 1.000 1.492 0.341

SC/D3 1.000 0.214

B2 SC/D4 SC/D5 SC/D6 Weights CRa λmax Total weights

SC/D4 1.000 1.492 2.718 0.498 0.0171 3.0178 0.212
SC/D5 1.000 1.221 0.292

SC/D6 1.000 0.209

B3 SC/D7 SC/D8 Weights CRa λmax Total weights

SC/D7 1.000 0.670 0.401 0.0000 2.0000 0.316
SC/D8 1.000 0.599

Table 6 The judgment matrix
and weight values for SC-E

aAll CRs < 0.10

Total weights E1 E2 E3 Weights CR a λmax

SC/D1 0.210 E1 1.000 0.819 0.449 0.228 0.004 3.004
E2 1.000 0.670 0.298

E3 1.000 0.475

SC/D2 0.161 E1 1.000 0.670 0.301 0.172 0.000 3.000
E2 1.000 0.449 0.257

E3 1.000 0.571

SC/D3 0.101 E1 1.000 0.670 0.449 0.212 0.000 3.000
E2 1.000 0.670 0.316

E3 1.000 0.472

SC/D4 0.106 E1 1.000 1.000 0.670 0.286 0.000 3.000
E2 1.000 0.670 0.286

E3 1.000 0.427

SC/D5 0.062 E1 1.000 0.670 0.301 0.172 0.000 3.000
E2 1.000 0.449 0.257

E3 1.000 0.571

SC/D6 0.004 E1 1.000 1.221 0.670 0.298 0.004 3.004
E2 1.000 0.449 0.228

E3 1.000 0.475

SC/D7 0.127 E1 1.000 0.819 0.449 0.228 0.004 3.004
E2 1.000 0.670 0.298

E3 1.000 0.475

SC/D8 0.189 E1 1.000 0.670 0.301 0.178 0.017 3.018
E2 1.000 0.670 0.304

E3 1.000 0.518
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demonstrated through the Yinchuan Plain case study.
The results for the plain can be improved as more high
quality data become available in the future. This was the
case for the Canadian SRI, which was originally
proposed by Eilers et al. (1995) and later modified and
updated by Florinsky et al. (2000) and Wiebe et al.
(2007) when a better soil map became available for the
region. In addition, when the improved high quality data
and the data for these environmental qualities (or eco-
logical risk receptors) become available in the future,
approaching soil salinization and its risk factors as a
problem of sustainability also empowers us to shift our
focus of risk factor identification and management from
the response measures of salinity to its broad impact on
agricultural productivity, biodiversity, infrastructure,
and other ecosystem services.

Our analysis also showed that human land use
activities have greater contributions (alleviation or
aggravation) to soil salinization than the natural
environment conditions in the YCP. The study sug-
gests that land users and managers should carefully
implement the policies as they would cause soil
salinization in any areas with poor environmental
conditions. More land use policies and measures
should be carried out to maintain salt-water balance,
including land cover regulations and hydrologic
condition adjustments (George et al. 1997). That is
the reason why the principles of the MADM analy-
sis were guided by the water and land resource
conservation in this study.

In order to achieve the study’s overall goal, more
supporting measures or management practices are need-
ed in the future. These mainly include the following:

– Establishing a long-term early warning system for
soil salinization, including population change early
warning subsystem, water safety and use early-
warning subsystem, and cultivated land resource
security early warning subsystem.

– Developing land suitability assessment system for
salt-affected land uses.

– Integrating risk prevention mechanism into land
and water resources use planning.

– Strengthening farmers’ risk prevention awareness
of soil salinization through education.

Conclusions

Through a case study in the Yinchuan Plain in a semi-
arid region of northwest China, we tested the applica-
bility of the integrated approach of SAR modeling,
MADM analysis, and AHP process as an alternative
tool for identifying and managing the soil salinization
and the key controllable risk factors.

The results of this study show that spatial autocorrela-
tion of soil salinization and its risk factors decrease grad-
ually with the increasing of distance in the YCP.
Comparison of the goodness of fit clearly indicates that
the SAR model is superior to the OLS model. The SAR
model is a robust tool for identifying the key risk
factors related to soil salinization. Our analysis also
shows that PER_PADDY, DIS_DRAIN, and
INPU_FERTI are important SSS alleviators, while
GROU_SAL, PER_CORN, PER_AQUA, DIS_IRRIG,
and INDEX_CROP are important SSS aggravators.

This study also shows that the constructed hierarchy
framework can be used to decompose the overall goal of
secondary soil salinity risk management. The AHP
model incorporates both quantitative information (e.g.,
SAR model) and qualitative information (e.g., experts’
opinions) to reduce the subjectivity of selecting the key
controllable risk factors, to update preventive measures,
and to develop multi-attribute decision making strate-
gies. The MADM analysis relates to the overall man-
agement goal through a hierarchy framework for orga-
nizing and analyzing complex decisions, structuring a
decision problem, quantifying controllable risk factors,
and evaluating alternative strategies. The obtained opti-
mal alternatives, i.e., ecological irrigation and sustain-
able land use, are generally acceptable by experts.
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Table 7 The weight
values of three alterna-
tives of managing soil
salinization in the YCP

Strategies Weights

Strategy 1 (E1) 0.214

Strategy 2 (E2) 0.298

Strategy 3 (E3) 0.488
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