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Abstract Periodic and regular assessment of land

degradation in arid regions of the world is essential for

implementing suitable corrective measures in time.

Assessment of soil properties based on soil sampling from

hot arid tracts followed by laboratory analysis is a for-

midable task. Reflectance spectroscopy appears to be an

emerging technology for the assessment of soils in extreme

environment. In this study, soil spectral library of 138 soil

samples from hot arid western Rajasthan have been created

in visible, near-infrared and short wave infrared

(350–2500 nm) region of the electromagnetic spectrum

along with the measurements of basic soil properties.

Further, spectral reflectance-based algorithms have been

developed for rapid assessment of soil resources of arid

regions. Results showed that sand and clay content may be

satisfactorily estimated from linear models involving

principal components (PCs) or derived band reflectance as

the input variables (R2 = 0.41–0.43). Organic carbon (OC)

content of soil was also found satisfactorily correlated with

spectral data (R2 = 0.27). Derived band reflectance corre-

sponding to Operational Land Imager bands of Landsat-8

has been found best to predict soil properties. Soil OC

content has been found to be best estimated by derived

spectral band data corresponding to spectral bands of IRS-

P6 satellite. Partial least square regression-based models

were found even better than the PCs-based and band re-

flectance-based multiple regression models for estimating

soil properties. Thus, the present study indicates that soil

spectral reflectance data captured by remote sensing

satellites may have a great potential for rapid assessment of

soil resources in arid regions.

Keywords VIS–NIR–SWIR � Indian Thar Desert �
Principal components � Band reflectance � Partial least

square regression (PLSR) � Soil resource assessment

Introduction

Desertification processes are affecting the livelihoods of

more than 2 billion people of the world in dry lands, which

occupy nearly 41 % of the Earth’s land area. In India,

about 31.7 m ha of land lies under hot arid ecosystem,

most of which again falls in western Rajasthan (62 %). The

region is characterized by limited seasonal precipitation

with erratic distribution. Mean annual rainfall in the region

varies from 185 mm at Jaisalmer to more than 467 mm at

Sikar. About 80–90 % of the annual rainfall is received

during the southwest monsoon. It has been reported by Kar

et al. (2009) that between 1982–1983 and 2005–2006 net

irrigated and double cropped area in hot arid region has

increased by 128 and 70 %, respectively. Such rapid and

drastic change in land use pattern in cultivated area has a

potential impact on native soil resources. Moreover, map-

ping effort of desertification under different land uses in the

arid western Rajasthan revealed that 76 % area is affected

by wind erosion, encompassing all the major land uses,

mostly croplands and dunes/sandy areas. Under such
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dynamic situation, regular monitoring of soil resources is

essential for implementation of any corrective measures in

future. However, assessment of soil resources through

surveying remote desert tracts is not always feasible and

therefore may rely on indirect estimation through remote

sensing techniques.

Over the last few decades, the reflectance spectroscopy

(RS) technique over the visible, near-infrared and short

wave infrared (VNIR–SWIR) region (350–2500 nm) has

emerged as a rapid non-invasive technique for the in situ

estimation of soil properties (Ben-Dor et al. 2009). The

technique has been successfully used for estimating soil

organic matter content (Galvão and Vitorello 1998; Fox

and Metla 2005), nitrogen content (Vagen et al. 2006), soil

electrical conductivity (Shrestha 2006), cation exchange

capacity (Fox and Metla 2005), iron content (Galvão and

Vitorello 1998), soil colour (Mathieu et al. 1998), soil

moisture content (Carlson et al. 1995; Gillies et al. 1997),

soil carbonates (Lagacherie et al. 2008), and soil miner-

alogical composition (Clark 1999) among others. Recent

studies have shown that proximal spectral reflectance may

be used for estimating soil hydraulic properties (Santra

et al. 2009). The RS approach has the following advan-

tages: (1) less sample preparation (only drying and crush-

ing), (2) non-invasive analysis, (3) no chemicals are

required, (4) rapid measurement, (5) several soil properties

can be estimated from a single scan, and (6) feasible

technique in both laboratory and in situ conditions (Vis-

caraRossel et al. 2006).

Spectral signatures of soil in the VNIR region

(350–2500 nm) are mainly due to electronic transition of

atoms, overtones and combinations of the fundamental

vibrations found in the mid-infrared region

(2500–20,000 nm). The reflectance spectra of soil exhibits

vibrational absorbance due to –OH functional group in

minerals, and to –OH, –CH, and –NH organic functional

groups in soil organic matter (ViscarraRossel and

McBratney 1998; Reeves et al. 1999).The reflectance

spectra of soils generally have three prominent absorption

peaks at 1400, 1900 and 2200 nm. The absorption peaks at

1400 and 1900 nm are the water absorption bands (Leone

and Sommer 2000), while the 2200 nm denotes the metal-

hydroxyl stretching occurring due to clay mineral

(Chabrillat et al. 2002).The other absorption bands are

around 870 and 1000 nm for iron oxides, and between

2200 and 2500 nm for carbonates (Clark et al. 1990; Chang

and Laird 2002).

Over the last decade, both space-borne and air-borne

hyperspectral sensors have been used as a companion of

several resource management systems. Successful imple-

mentation of VNIR–SWIR spectroscopic methods are

needed for the successful exploitation of hyperspectral

technology in managing soils from drylands. A basic

requirement in the RS approach is the availability of robust

relationships between soil property of interest and its cor-

responding reflectance spectra (Lagacherie et al. 2008).

Generally, large databases on soil properties and soil re-

flectance spectra are required to develop such relationships.

This paved the way for concept of the development of a

global soil spectral library that can be used for local or

regional scale predictions and thereby uplifting soil spec-

troscopy as a robust method for soil analysis and mapping

(ViscarraRossel 2009). There is a need for evaluating the

capability of RS approach locally, regional and with re-

spect to soil types. With a large variation in soil properties

across the country, there is a requirement for developing

larger spectral libraries for different regions as the

calibrations are soil specific. In addition the global

calibrations are often less accurate in comparison with re-

gional or local scale calibrations (Brown 2007; Stevens

et al. 2010). In this regard, there is a necessity to perform

soil specific calibrations at local scale for characterizing the

soil.

Literature survey revealed that there are limited reports

on predicting soil properties in arid regions or drylands

through RS approach. Therefore, the present study aims at

generating a soil spectral library of drylands in India with a

view to develop the spectral reflectance-based proximal

sensing technique for rapid estimation of different soil

properties.

Materials and methods

Study area

The study was carried out in western Rajasthan, India,

which occupies 62 % area of hot arid ecosystem in India

consisting of twelve districts of Rajasthan, e.g., Jaisalmer,

Barmer, Jalore, Pali, Jodhpur, Bikaner, Nagaur, Sikar,

Churu, Ganganagar, Hanumangarh, Jhunjhunu and Sikar

(Fig. 1). In western Rajasthan, soils are majorly classified

under two soil order; Entisol and Aridisol, which consti-

tutes about 61 and 38 % of the total area of western Ra-

jasthan, respectively. Torripsamments is the major great

groups under Entisol covering 87.7 % area, whereas

Haplocambids are the major great group under Aridisol

covering 71.1 % area. Soils under Entisols are generally

found in those parts of western Rajasthan where high

aeolian activities are observed. Average soil depth of soil

profiles under Entisols is 118 cm and bulk density of these

soils is 1.58 Mg m-3. Surface horizon is rich in sand

content in comparison to subsurface horizons. Soil texture

is sandy with average sand content of 89 %. In contrast to

Entisols, Aridisols are dominant in those parts of arid re-

gions where aeolian activity is comparatively less. Average
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depth of this type of soil is 100 cm with well-demarcated

horizons. Concretions of calcite below the soil profile are a

common feature of these soils. Average bulk density of

these soils is 1.43 Mg m-3 whereas average sand content is

lesser than Entisol and is around 70 %.

Soil sampling and laboratory analysis

Surface soil samples from 138 locations in western Ra-

jasthan spreading over 20 million ha area were collected in

four sampling campaigns covering the major soil types of

the region (Fig. 1). Since the area is very large, we could

not collect samples from each districts in western Ra-

jasthan; however, the collected samples represented two

dominant soil orders Aridisols and Entisols found in Ra-

jasthan. Limited budget was the major constraint of col-

lecting well distributed samples throughout western

Rajasthan. However, the sampled locations covered

Orthids, Psamments, Psamments–Orthids and Orthids–

Psamments, which are the major suborders found in

western Rajasthan. Thus, the sampling strategy adopted in

this study included major soil resources of western

Rajasthan.

Collected soils were air-dried, ground manually, and

transferred through a 2 mm sieve and stored in plastic

containers for laboratory analysis. The processed soils were

used to determine pH, electrical conductivity (EC), soil

organic carbon (OC) contents and particle size distribution

using respective standard procedures. Soil pH was mea-

sured potentiometrically in soil–water slurry in the ratio 1:2

using an electronic pH meter equipped with combination

electrodes that contain hydrogen ion sensitive electrode

and a reference electrode. Prior to sampling routine

calibration of the instrument was performed with buffer

solutions of known pH values. Electrical conductivity of

soil was determined 1:2.5 soil to water ratio using a

Thermo Orion electrical conductivity meter. Chromic acid

digestion method, commonly known as the Walkley and

Black method, was used to determine SOC contents

(Walkley and Black 1934). Proportion of sand (%), silt (%)

and clay (%) in the soil was determined by international

pipette method (Gee and Bauder 1986).

Measurement of soil spectral reflectance

Soil reflectance spectra was acquired using a portable

spectroradiometer (Model: FieldSpec� 3, Analytical

Spectral Devices, CO, USA) equipped with a high intensity

contact probe at about 1 nm resolution over a wavelength

range of 350–2500 nm. About 50 g of soil was taken in an

aluminium soil moisture can (5 cm diameter) and the sur-

face was levelled with a rubber cork used as a mallet. Four

reflectance spectra were taken for each soil sample from

different quadrants over the central area of the container.

To optimize the measurements spectral reflectance from a

Spectralon standard white reference panel (99 % re-

flectance, Labsphere) was acquired prior to that for soil

samples. The scan number was set to 30 for obtaining an

average of 30 scans for each spectrum. In this fashion, the

reflectance spectra of each soil sample was acquired and

saved with the help of RS3 software associated with the

radiometer.

Fig. 1 Location of study area in India; sampling locations on soil maps with district boundary of western Rajasthan has been shown in right

frame of the figure
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Extraction of band reflectance

Band reflectance was derived from raw spectral reflectance

data keeping in view of future translation of developed

algorithm to remote sensing platform. The spectral bands

of the LISS-III, LISS-IV and AWiFS camera of IRS-P6

satellite and Operational Land Imager (OLI) sensor on-

board Landsat-8 satellite were selected for estimating band

reflectance values from R(k) obtained from the spectrora-

diometer. The details of spectral bands of above said

cameras of IRS-P6 and Landsat-8 are given in Table 1. The

following relationship was used for estimating the band

reflectance:

Ri ¼

Pkli

kui

RðkÞuiðkÞ

Pkli

kui

uiðkÞ
ð1Þ

Where Ri is the calculated ith band reflectance, kui is the

upper boundary of band i, kli is the lower boundary of band

i, R(k) is the reflectance for wavelength i, u(k) is the

spectral response function of band i.

Principal component analysis of spectra

Principal component analysis (PCA) involves a mathema-

tical procedure that transforms a number of possibly

correlated variables into a number of uncorrelated variables

called principal components, related to the original vari-

ables by an orthogonal transformation. In this study, PCA of

spectra was carried out to reduce the dimension of raw data

from 2151 (350–2500 nm) to a limited number for better

realization and further analysis. Principal components (PCs)

describing cumulatively about 95 % of the total variation in

data, were considered in final spectral data with reduced

dimensions. The eigenvalue of each PC indicates the

amount of variation explained. To establish the physical

significance of the PCs, relationship between original

variables and eigenvectors, commonly referred to as factor

loadings (Hair et al. 1995), were checked. The original

variables with large loadings on a given PC determine its

physical significance. Scores for major PCs across soil

samples were then calculated for further analysis.

Development of linear regression model

Models were developed using the multiple linear regres-

sion (MLR) equation of the form given below to estimate

soil properties using soil spectral data:

Y ¼ a0 þ
Xk

k¼1

akXk ð2Þ

where Y is the dependent variable (soil properties), Xk is the

kth independent variable (spectral data), a0, a1, a2, …, ak

Table 1 Spectral bands of

LISS-III, LISS-IV and AWiFS

camera onboard RS-P6 satellite

and of Operational Land Imager

(OLI) onboard Landsat-8

satellite

Satellite Camera Band Band region Spectral

width (nm)

Spatial

resolution (m)

IRS-P6 LISS-III B2 Green 520–590 23.5

B3 Red 620–680

B4 NIR 770–860

B5 SWIR 1550–1700

LISS-IV B2 Green 520–590 5.8

B3 Red 620–680

B4 NIR 770–860

AWiFS B2 Green 520–590 56

B3 Red 620–680

B4 NIR 770–860

B5 SWIR 1550–1700

Landsat-8 Operational Land

Imager (OLI)

Band 1 Coastal aerosol 430–450 30

Band 2 Blue 450–510 30

Band 3 Green 530–590 30

Band 4 Red 640–670 30

Band 5 Near infrared (NIR) 850–880 30

Band 6 SWIR 1 1570–1650 30

Band 7 SWIR 2 2110–2290 30

Band 8 Panchromatic 500–680 15

Band 9 Cirrus 1360–1380 30
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are regression coefficients and k is the number of inde-

pendent variables in the regression equation. Three sets of

spectral data were used to develop the linear model. First

set consisted of major PCs obtained from PCA. Second set

consisted of four band reflectance data corresponding to

spectral bands of IRS-P6 satellite. Third set consisted of

five band reflectance data corresponding to spectral bands

of OLI onboard Landsat-8. The MLR equations were de-

veloped using the lm function of R-package. Before, run-

ning the lm function, stepwise procedure with both forward

and backward approach was applied to each set of inde-

pendent variable to select significant input variables. Fi-

nally, developed linear model was validated using tenfold

cross validation approach and prediction accuracy of soil

properties was calculated.

Partial least square regression (PLSR)

The PLSR method is similar to PCA, except that both

predictor and response variables are used to build vectors

with the greatest predictive power. The PLSR algorithm

integrates the compression and regression steps and it se-

lects successive orthogonal factors that maximize the co-

variance between predictor and response variables

(ViscaraRossel and Behrens 2010). In this study, apart

from linear model using PCs as input, PLSR model was

also developed, keeping in view of the slight advantage of

this technique over PCA because it takes on account the

relationship between target variable and inputs while re-

ducing the total data into few components. Since, PLSR

technique reduces the data dimension considering the tar-

get variable and input relationship, for each target variable

the component set will be different. Optimal number of

components was decided by checking the root mean

squared error (RMSE) of prediction of cross validation

with different number of components. Optimal number of

components corresponds to first local minima. Finally, the

developed PLSR model with optimum number of compo-

nents were used for tenfold cross validation and corre-

sponding prediction accuracy of soil properties were

measured.

Results and discussion

Soil reflectance spectra

Soil reflectance spectra of 138 surface soils from arid

western Rajasthan are depicted in Fig. 2a. Wide variation

in spectra across soil samples may be observed,

specifically, in the SWIR region. Peak reflectance varied

from as low as 0.3–0.6. Two distinct absorption features

near 1400 and 1900 nm are characteristics of water

absorption features of these soil spectra. All these spectra

depicted in Fig. 2a represent different land use situations in

western Rajasthan covering open sand dunes, stabilised

sand dunes, wastelands, open scrubs, grasslands and cul-

tivated area etc.

Selected soil reflectance spectra representing two major

land forms in western Rajasthan, open dunes and arid

grasslands dominated with Sewan grass (Lasiurus sindicus)

are shown in Fig. 2b. It has been observed that from the

figure that the overall soil spectral brightness in arid

grasslands is higher than that in open dunes, which may be

due to the difference in particle size distribution and carbon

content. Sand content in sand dune site and arid grassland

site was 96 and 90 %, respectively, whereas OC content

was more (0.28 %) in sand dune site than arid grassland

site (0.22 %). However, the specific analysis of these

samples revealed that inorganic carbon content in the form

of CaCO3 was more (0.36 %) in arid grassland site than

sand dune site (0.28 %), which ultimately resulted in

brightness of the spectra in case of arid grasslands.

Fig. 2 Soil spectral signatures in arid western Rajasthan; a measured

reflectance spectra of 138 surface soil samples and b selected

reflectance spectra for open dune and arid grassland situation from

Jaisalmer, Rajasthan (field views of sampling locations of the selected

spectra are shown in the bottom two frames)
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Soil properties

Descriptive statistics

Descriptive statistics of soil properties are shown in

Table 2. Soil pH is generally found more than 7 with an

average value of 7.9. Such soil reactions are characteristics

of desert soil. Soil EC ranged widely from as low as

6–805 mS m-1.

Organic carbon content has been found very low for most

of the soil samples with an average content of 0.19 %.

Average sand content of soil samples from western Rajasthan

is 90.1 %, representing the dominance of aeolian activity in

the region, a typical feature of arid regions. Consequently,

clay and silt contents of soils are very low, 5.4 and 4.5 %,

respectively. Histogram of soil properties are depicted in

Fig. 3. From the histogram plot, it is clear that only soil pH is

normally distributed, whereas other soil properties are

skewed. Electrical conductivity is negatively skewed with

almost half of the soil samples having EC of\200 mS m-1;

similarly, sand content is highly negatively skewed with most

of the soil samples having value [80 %. Organic carbon

contents of majority of soil samples have been found in low

category (\0.5 %). Except few soil samples, silt content has

been found \10 %. Clay content has been found within a

range of 0–15 % except for some outliers.

Correlation matrix

Correlation among soil properties is presented in Table 3.

Organic carbon content appears to be significantly corre-

lated with EC (r = 0.37**), sand content (r = -0.49**),

and clay content (r = 0.44**).

Before developing the linear model for predicting soil

properties, correlations of them with PCs and band re-

flectance were checked. Correlation between soil properties

and PCs is presented in Table 3. PC1 showed significant

correlation with OC and clay content. PC2 showed sig-

nificant correlation with OC content only. PC3 showed

significant relation with particle size distribution especially

sand and clay content. From the correlation table, it is

noted that pH and EC were not significantly correlated with

any of three PCs.

Correlation between soil properties and derived band

reflectance from spectral data corresponding to spectral

bands of LISS-III, LISS-IV, and AWiFS camera onboard

IRS-P6 is given in Table 3. Spectral band reflectance in red

(B3) and NIR (B4) region have been found significantly

correlated with OC, sand, silt and clay content. Soil pH and

EC were not found significantly correlated with spectral

band reflectance. Moreover, spectral band reflectance in

SWIR region (B5) was not correlated with soil properties.

Correlation between soil properties and derived band

reflectance from spectral data corresponding to spectral

bands of OLI camera on-board Landsat-8 is given in

Table 3. Spectral band reflectance in red region (Band 4)

has been found significantly correlated with OC, sand, silt

and clay content. Band reflectance in green (Band 3) and

NIR region (Band 5) were also found significantly corre-

lated with OC, sand and clay contents. Soil pH and EC

were not found significantly correlated with any band re-

flectance. Moreover, spectral band reflectance in SWIR

region (Band 6 and 7) were not found correlated with most

soil properties except the negative correlation between

Band 7 and clay content (r = 0.22*).

Fig. 3 Histogram of soil properties; a pH, b electrical conductivity

(mS m-1), c organic carbon content (%), d sand content (%), e silt

content (%) and f clay content (%)

Table 2 Descriptive statistics

of soil properties from western

Rajasthan, India

Soil properties Minimum Mean Maximum Standard deviation

pH 7.02 7.90 8.73 0.27

Electrical conductivity (EC) (mS m-1) 6 209 805 136

Organic carbon content (%) 0.01 0.19 0.94 0.15

Sand content (%) 46.0 90.1 98.0 8.53

Silt content (%) 0 4.5 34.4 5.45

Clay content (%) 0 5.4 23.40 3.98
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Principal components of reflectance spectra

Variance explained by major principal components showed

that three major PCs explain about 95 % variation in

dataset. Therefore, original spectral dataset of 2151 di-

mension may be reduced to three prominent dimensions of

the three principal components. Loading factor, indicating

the weight for each wavelength reflectance, is depicted in

Fig. 4. It may be seen that the first principal component has

positive weight for the maximum portion of VIS–NIR–

SWIR wavelength region except for some lower values in

the visible region, and thus may be represented as the

overall brightness of the spectra. More is the value of first

PC; higher will be the brightness or height of the spectra

from x-axis. Second major principal component has nega-

tive but higher loadings in the visible region and has been

changed to positive higher values in SWIR region and,

thus, may be considered to represent slope of the re-

flectance spectra. Third principal component has higher

loadings in the wavelength regions with absorption features

and, thus, may be considered to represent the absorption

features of the spectra.

Scores of principal components

Scores of three major principal components clearly showed

that soil samples are well separated from each other in four

distinct quadrants in PC1 vs PC2 plot and PC1 vs PC3 plot,

except few outliers. PC1 score generally varied from -100

to 100 whereas PC2 and PC3 varied from -40 to 40 to -20

to 20, respectively. Sample with PC1 value of -197.37

may be considered as an outlier, and examined in the

dataset, which revealed that the soil sample was collected

from an area dominated with red sandstone rocks, and thus

was totally different from other soils. A nearby sample

from this outlier sample also showed very small value of -

111.47. Soil samples collected from Churu district located

at north-eastern part of western Rajasthan have shown

positive values for both PC1 and PC2 and, thus, are dis-

tinctly separated from soils collected from Jalore district

having negative PC1 score but positive PC2 score.

Hyperspectral algorithm for estimation of soil

properties

Linear model for estimating soil properties from spectral

signatures

Keeping in view the correlation between soil properties and

PCs of reflectance spectra, linear regression models were

developed. However, before developing the model step-

wise regression was run in both forward and backward

approach and significant PCs were selected to develop the

model. In case of OC as target variable, all PCs were found

Table 3 Correlation matrix of

soil properties and different

spectral signatures

Soil properties pH EC OC Sand Silt Clay

pH 1

EC 0.10 1

OC 0.04 0.37** 1

Sand 0.04 -0.14 -0.49** 1

Silt -0.09 0.11 0.45** -0.93** 1

Clay 0.03 0.14 0.44** -0.87** 0.63* 1

PC1 0.07 -0.03 0.21* 0.12 -0.06 0.18*

PC2 0.14 0.13 0.28** -0.08 0.07 0.08

PC3 0.10 0.02 0.13 -0.64** 0.53** 0.64**

IRS P6-B2 0.10 -0.11 -0.33** 0.22** -0.14 -0.27**

IRS P6-B3 0.10 -0.13 -0.45** 0.32** -0.26** -0.34**

IRS P6-B4 0.13 -0.13 -0.43** 0.24** -0.18* -0.26**

IRS P6-B5 0.04 0.02 -0.1 -0.02 0.07 -0.05

Landsat 8-Band 3 0.10 -0.11 -0.33** 0.22** -0.15 -0.27**

Landsat 8-Band 4 0.10 -0.13 -0.45** 0.33** -0.26** -0.34**

Landsat 8-Band 5 0.13 -0.13 -0.38** 0.17* -0.12 -0.21*

Landsat 8-Band 6 0.04 0.02 -0.10 -0.02 0.07 -0.05

Landsat 8-Band 7 0.02 -0.01 -0.11 0.15 -0.07 -0.22*

Landsat 8-Band 3, 4, 5, 6 and 7 are derived band reflectance corresponding to spectral bands of Operational

Land Imager (OLI) on-board Landsat-8

* Significant at p \ 0.05, **significant at p \ 0.01; PC—principal components (PCs) of soil reflectance

spectra in VIS–NIR–SWIR region; B2, B3, B4 and B5 are band reflectance corresponding to spectral bands

of LISS-III, LISS-IV and AWiFS camera on-board IRS-P6
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significant in the stepwise procedure whereas PC1 and PC3

were found significant for sand content, silt content and

clay content. Linear regression models developed with

selected significant inputs from stepwise procedure are

presented in Table 4. Models for predicting sand and clay

content were found better with R2 value of 0.41 and 0.43

than for predicting OC content and silt content with R2

value of 0.12 and 0.27, respectively. Since the correlation

of spectral data with pH and EC was very poor, the model

performance was also very poor as reflected in R2 value of

the developed model and thus may be neglected.

Stepwise analysis of soil properties as target variable to

estimate from IRS-P6 bands revealed that B2 and B3 were

selected in most cases whereas band reflectance in SWIR

region (B5) has been additionally selected as significant

input for sand and clay content (Table 4). Similar to the

model performance with PCs, pH and EC were not able to

predict satisfactorily from IRS-P6 band data. The predic-

tive performance of sand, silt and clay was better with PCs

of spectral data in VIS–NIR–SWIR as input than the band

reflectance corresponding to IRS-P6 bands. However, it is

interesting to note here that OC can be better predicted

from band reflectance corresponding to IRS-P6 bands

(R2 = 0.27) than from PCs of spectral data in VIS–NIR–

SWIR (R2 = 0.12).

Developed linear models for estimating soil properties

from derived band reflectance corresponding to OLI cam-

era on-board Landsat-8 are given in Table 4. Similar to

findings mentioned above, models for predicting OC, sand,

silt, and clay content from derived OLI band data were

found satisfactory and even better than from PCs of spec-

tral data and derived IRS-P6 bands whereas model per-

formance for pH and EC was very poor. It is interesting to

note here that band reflectance in SWIR regions (Band 6

and 7) have been found as significant inputs for estimating

sand, silt and clay contents.

Cross validation of linear model

Developed models were cross validated using tenfold cross

validation approach, where whole dataset was divided into

ten segments randomly and models were developed from

combined data of nine segments and then tested on re-

maining one segment.

Observed and predicted values of soil properties using

all type of developed spectral models (see Table 4) were

plotted and RMSE values were checked. The best predic-

tions of soil properties were observed corresponding to

models with Landsat-8 OLI band reflectance data as a

predictor variable and are shown in 1:1 plot (Fig. 5). Since,

the R2 values of the models for soil pH and EC were very

poor, cross validation was not performed on these two soil

properties.

In case of PC-based model, RMSE value for organic

carbon content was observed 0.15, whereas for sand, silt

and clay content it was 6.75, 4.76 and 3.02, respectively.

RMSE values of predicted soil properties using model in-

volving derived spectral band data corresponding to

available spectral bands of IRS-P6 were 0.13, 7.84, 5.05

and 3.75, respectively for OC, sand, silt and clay content.

Comparatively, RMSE value for OC was lower than PCs-

based model whereas it was higher for sand, silt and clay

content than PCs-based model. RMSE values of predicted

soil properties by Landsat 8 OLI band based model were

lower than PCs—based and IRS-P6 band—based models

developed in this study and were found 0.13, 6.58, 4.68 and

3.03 for OC, sand, silt and clay contents, respectively.

Observed and predicted values of soil properties using

derived OLI band based model in Fig. 5 shows that except

for few soil samples with high silt, clay and OC contents,

most of the points lies around 1:1 line. It indicates that

derived band data corresponding to OLI bands of Landsat-8

data are better than other spectral information tested here to

Fig. 4 Loading factor of three

major principal components

derived from raw reflectance

spectra in VIS–NIR–SWIR

region
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predict soil properties. It also indicates that remotely cap-

tured band reflectance in spectral bands of Landsat-8

satellite may be used for estimation of soil properties in

future, specifically for arid regions or drylands of the

world.

PLSR based estimation of soil properties

Apart from linear models involving PCs and derived band

reflectance data, PLSR-based models were also developed

to estimate soil properties. Although the PLSR technique is

quite similar with PC analysis in regrouping the data with

reduced dimensions capturing the most variations in data-

set, it has the additional advantage of selecting components

as per target variable. Leave-out-one cross validation ap-

proach with ten components as initial guess was used to

obtain optimal number of components. Optimal number of

components in PLSR model was decided corresponding to

first local minima of RMSE estimate.

Scores of major components was plotted to see the

percentage variation of data explained by respective com-

ponent. For example, in case of OC content first major

component explained 71.8 % variation in dataset. Overall,

97.7 % variation in dataset was explained by four major

components. Here, it is notable that component 3

explaining 3.4 % variation in dataset was lower than 4.1 %

variation explained by component 4. Yet, it has been

ranked three because this component had greater role in

estimation of OC than the component 4. Thus, the relative

importance of components in relation to target variable has

been considered in PLSR analysis, which is generally ig-

nored in PCA.

Cross validation results of PLSR model are presented in

Fig. 6 as 1:1 plot of measured vs predicted value of soil

properties along with RMSE of prediction. RMSE values

for OC, sand, silt, and clay content were observed 0.14,

6.28, 4.47, and 3.01, respectively. Performance of PLSR

model was better than PCs-based linear model as well as

derived band data-based models for estimation of sand, silt

and clay content as shown by lower values of RMSE than

the linear models. Similar to linear models, PLSR models

have also shown poor performance to estimate soil pH and

EC.

Proximally derived relationship to satellite images

Translating the developed laboratory-derived relationship

between soil properties and proximally-measured spectral

reflectance characteristics to remote sensing platform de-

pends on several factors such as the spectral consistency of

Table 4 Developed spectral algorithms for estimating soil properties using principal components of soil reflectance spectra in VIS–NIR–SWIR

region, derived IRS-P6 band reflectance and Landsat-8 OLI band reflectance

Model type Model equation R2

PCs of hyperspectral soil

reflectance based model

pH = 7.90 9 PC1 - 0.002 9 PC2 0.01

EC = 209.23 ? 1.049 9 PC2 0.01

OC = 0.192 - 0.0008 9 PC1 ? 0.002 9 PC2 ? 0.002 9 PC3 0.12

Sand = 90.15 ? 0.025 9 PC1 - 0.537 9 PC3 0.41

Silt = 4.46 ? 0.284 9 PC3 0.27

Clay = 5.40 - 0.017 9 PC1 ? 0.252 9 PC3 0.43

Derived IRS-P6 band

reflectance based modela
pH = 7.70 ? 4.66 9 B2 - 10.76 9 B3 ? 11.81 9 B4 - 4.07 9 B5 0.02

EC = 278 - 1319 9 B4 ? 882 9 B5 0.02

OC = 1.11 ?3.82 9 B2 - 5.64 9 B3 0.27

Sand = 66.3 - 304.5 9 B2 ? 605.7 9 B3 - 366.3 9 B4 ? 88.1 9 B5 0.20

Silt = 11.53 ? 157.52 9 B2 - 264.82 9 B3 ? 102.10 9 B4 0.17

Clay = 18.19 ? 109.65 9 B2 - 255.16 9 B3 ? 175.8 9 B4 - 49.42 9 B5 0.16

Derived Landsat-8 OLI band

reflectance based modelb
pH = 7.32 ? 1.42 9 Band 5 0.01

EC = 422 ? 1240 9 Band 4 - 3945 9 Band 5 ? 4217 9 Band 6 - 2320 9 Band 7 0.05

OC = 1.12 ? 3.72 9 Band 3 - 5.56 9 Band 4 0.27

Sand = 52.8 - 168.5 9 Band 3 ? 316.1 Band 4 - 129.1 9 Band 5 - 434.9 9 Band

6 ? 480.5 9 Band 7

0.44

Silt = 22.54 ? 102.21 9 Band 3 - 147.35 9 Band 4 ? 266.63 9 Band 6 - 253.86 9 Band 7 0.32

Clay = 23.67 - 45.91 9 Band 4 ? 251.89 9 Band 6 - 252.77 9 Band 7 0.44

a Derived band reflectance corresponding to IRS-P6 bands of LISS-III, LISS-IV and AWiFS camera: B2 = 520–590 nm, B3 = 620–680 nm,

B4 = 770–860 nm, B5 = 1550–1700 nm
b Derived band reflectance to Landsat-8 OLI bands: Band 3 = 530–590 nm, Band 4 = 640–670 nm, Band 5 = 850–880 nm, Band

6 = 1570–1650 nm, Band 7 = 2110–2290 nm
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satellite images, spectral resolution, atmospheric degrada-

tion of spectral behavior, surface roughness, soil moisture

content, spatial resolution, the presence of gravels on sur-

face, land surface composition, etc. To demonstrate this

transferability, we estimated a few soil properties using the

OLI band reflectance from the Landsat-8 scene (path 142,

row 49) of 19th June 2013 downloaded from the earth

explorer website (http://earthexplorer.usgs.gov/) and the

Fig. 5 Observed and predicted

values of soil properties from

derived band reflectance

corresponding to OLI onboard

Landsat-8 satellite; a organic

carbon content (%), b sand

content (%), c silt content (%)

and d clay content

Fig. 6 Observed and predicted

values of soil properties using

partial least square regression

(PLSR) analysis; a organic

carbon content (%), b sand

content (%), c silt content (%)

and d clay content
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developed reflectance-based model (Table 5) from prox-

imal sensing as a possible example. Figure 7 shows the

estimated sand content for Shergarh Tehsil of Jodhpur

district in western Rajasthan.

Soil pH and EC could not be satisfactorily predicted

from soil spectral reflectance data in the present study

although better estimation methods of these soil properties

have been reported by previous researchers (Shrestha 2006;

Lagacherie et al. 2008; Farifteh et al. 2007; Nawar et al.

2014). Most of these studies have reported the soil salinity

assessment by using Landsat band reflectance or few

derived indices such as normalized difference salinity in-

dex, salinity index, brightness index, etc. from satellite-

measured band reflectance and not from proximally mea-

sured reflectance data. Therefore, we also tried to estimate

soil EC and pH from OLI band reflectance of Landsat-8

using Landsat scene of 19th June 2013 (path 149, row 42).

Land surface reflectance corresponding to sampling points

located within the scene was extracted from Landsat im-

age. Table 5 shows the correlation coefficients estimated

using the measured and extracted EC and pH values from

the Landsat-based surface maps. Negative correlation for

EC shown in this table was also observed by Nawar et al.

(2014) in contrast to the positive correlation between

measured EC and Landsat-ETM? derived EC observed by

Shreshta et al. (2006). Stepwise regression of band re-

flectance and soil properties showed that OLI Band 2 and

OLI Band 3 reflectance data are significant to predict soil

EC (mS m-1) with following relationship:

EC ¼ 447�� þ 266612�� � Band 2�18671��

� Band 3 (Adj R2 ¼ 0:20Þ

(* and ** represents the significance at p \ 0.05 and

p \ 0.01, respectively).

The prediction performance of the developed model to

estimate soil pH from OLI band reflectance was poor:

pH ¼ 8:337��� þ 5:795� Band 4�5:430�

� Band 7ðR2 ¼ 0:08Þ

(* and *** represents the significance at p \ 0.05 and

p \ 0.001, respectively).

This may be because of the heterogeneity of land sur-

face with scattered vegetation in most of the sampling

points and small sample size of the collected soils in this

study. However, an improvement in prediction

performance of EC and pH was observed while Landsat-8

OLI band reflectance was used instead of derived band

reflectance to develop the linear model. Similarly, im-

proved prediction of sand, silt, clay, and OC was also ob-

served with R2 value of 0.70, 0.54, 0.58, and 0.54,

respectively.

Conclusion

Soil samples (N = 138) from western Rajasthan were

collected and analysed in laboratory to generate soil

spectral library at VIS–NIR–SWIR (350–2500 nm) region

of the electromagnetic spectrum along with the measure-

ments of basic soil properties. Subsequently, soil spectral

information was related with soil properties to develop

spectral reflectance-based algorithms for the rapid assess-

ment of soil resources of arid regions. Overall, following

observations and/or conclusions may be made from this

study:

1. A soil spectral library consisting of 138 spectra of

surface soil representing different land use situation of

western Rajasthan covering Jaisalmer, Barmer, Jodh-

pur, Pali, Churu and Jalore was developed. Along with

these spectral signatures, basic soil properties e.g. pH,

electrical conductivity, organic carbon content, sand

content, silt content and clay content were measured

and added to soil spectral library.

2. Principal components of raw reflectance spectra were

calculated. Three major principal components were

identified to explain the total variation in spectra.

These principal components represented overall bright-

ness, slope of VIS–NIR–SWIR region and the absorp-

tion features of the spectra, respectively. Band

reflectance corresponding to spectral bands available

in LISS-III, LISS-IV and AWiFS camera onboard IRS-

P6 and spectral bands available in OLI onboard

Landsat-8 was also derived from measured reflectance

spectra.

3. Linear regression models were developed to relate soil

properties with PCs and derived band reflectance. Sand

and clay content of arid western Rajasthan were

satisfactorily estimated from linear models involving

PCs as the input variables (R2 = 0.41–0.43). Organic

carbon content was also found satisfactorily correlated

Table 5 Correlation of satellite measured OLI band reflectance of Landsat-8 and soil electrical conductivity and pH

Soil

property

Band 1 (coastal aerosol) Band 2 (blue) Band 3 (green) Band 4 (red) Band 5 (NIR) Band 6 (SWIR 1) Band 7 (SWIR 2)

pH -0.09 -0.02 -0.02 -0.03 -0.09 -0.19 -0.23

EC -0.08 -0.11 -0.18 -0.18 -0.15 -0.10 -0.16
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with spectral data (R2 = 0.27); however, soil pH and

electrical conductivity could not be satisfactorily

predicted using the spectral reflectance data.

4. Among different spectral data derived from raw re-

flectance spectra, band reflectance corresponding to OLI

bands of Landsat-8 has been found to predict soil

properties specifically sand and clay content. Organic

carbon content of soils from arid western Rajasthan has

been found to be best estimated by spectral bands of IRS-

P6 satellite with predicted R2 value of 0.27. Overall,

derived band data corresponding to spectral bands of

Lansat-8 satellite has been found satisfactory to estimate

soil properties. Considering this performance, it is

suggested to include Landsat-8 data in digital soil

mapping approach of soil properties, specifically where

availability of legacy soil data is limited and scattered.

5. PLSR model was also developed to relate soil prop-

erties with reflectance spectra. The PLSR-based mod-

els were found better than the PC-based multiple

regression models for estimating soil properties from

reflectance data. RMSEs of predicted organic carbon

content (%), sand content (%) and clay content (%)

were found to be 0.14, 4.47 and 3.01, respectively.

From the above findings, it may be concluded that soil

spectral information has a great potential for the rapid

assessment of soil resources. It has a special relevance in

arid region for translation of ground-based spectral algo-

rithm to remote sensing platform, since abstraction of soil

reflectance by canopy vegetation and atmospheric cloud is

negligible in the arid ecosystem. Moreover, robust algo-

rithms relating soil resources with spectral data may be

developed in future involving raw reflectance spectra as

well as other secondary products.
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