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ABSTRACT

Zoige County, China, represents a fragile sub-alpine
rangeland eco-environment with a severe land
desertification problem. This paper aims at detecting
land desertification change in Zoige County over
15 years with quantitative remote-sensing techniques
using multi-spectral imagery. Landsat images acquired
in 1994 and 2009 were analyzed using the following
methodology: (1) image pre-processing; (2) spectral
mixture analysis (SMA) to obtain precise sub-pixel
classification results of land cover; and (3) change
vector analysis (CVA) to conduct a multi-temporal
comparison process. Change detection results depict the
land desertification conditions and vegetation re-growth
conditions. In this way, we characterized the spatial-
temporal change pattern of land desertification in
Zoige County between 1994 and 2009. After categoriz-
ing ecological regions based on change detection
results, we analyzed the driving factors of both land
desertification conditions and vegetation re-growth
conditions, finding out that grasslands under intense
grazing pressure tend to suffer severe desertification,
while topographic relief has an obvious influence on
vegetation re-growth. Specific suggestions for each
ecological region are proposed, which can assist the
development of environmental restoration measures and

environmental protection measures in Zoige County in
an effective way. Furthermore, this methodology for
monitoring land desertification could be carried out
across neighboring counties or in other regions with
similar sub-alpine rangeland and land desertification
problems.

INTRODUCTION

China is one of the many countries around the
globe facing a serious problem of land desertification
(Heshmati and Squires, 2013). Land desertification
areas in China cover 2.632 million km2, accounting for
27.33 percent of its total national territory (SFA,
2011). Due to its wide distribution, land desertifica-
tion threatens the living conditions of nearly 200
million people in China (DPSSTS, 2002). Land
desertification affects a wide range of benefits pro-
vided by the environment to humans: products such as
food and water, natural processes such as climate
regulation, and also non-material services such as
recreation, and supporting services such as soil
conservation (Millennium Environment Assessment,
2005). Moreover, land desertification has environ-
mental impacts that go beyond the areas directly
affected. For instance, wind erosion of the desertified
areas can increase the formation of large dust clouds
that can cause health problems in more densely
populated areas thousands of kilometers away (Wang,
2004). To combat desertification, large-scale and long-
term monitoring is needed to understand desertifica-
tion processes and determine the extent of land
desertification. Remote-sensing techniques stand out
as a time- and cost-efficient method for monitoring1Corresponding author email: xianwei@cuit.edu.cn.
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land desertification (Helldén, 1984; Tripathy et al.,
1996; and Collado et al., 2002).

Using remote-sensing techniques, previous research
has mostly focused on desertification in arid and
semi-arid areas. Commonly applied approaches to
detecting land desertification are vegetation indices
such as the NDVI (Normalized Difference Vegetation
Index) (Piao et al., 2005; Huang and Siegert, 2006)
which is calculated from visible and near-infrared
bands and image classification (Wu and Ci, 2002; Qi
et al., 2012). However, land desertification of sub-
humid and humid areas in China is still lacking
research (Wang, 2004). Zoige County, through which
the upper Yellow River flows, is located on the
northeastern part of Qinghai-Tibet Plateau, with
a typical humid plateau climate in a frigid temperate
zone. Under the influence of climate change and stock
over-grazing, land desertification has been a severe
environmental problem in Zoige County since the

early 1990s, threatening its fragile sub-alpine range-
land eco-environment and its water conservation
functions (Dong et al., 2010).

In the remote-sensing images of Zoige County
where grassland, wetland, and sandy soil are distrib-
uted closely, one pixel usually contains mixed spectral
information due to the high variability in the
distribution of land-cover components. According to
a previous case study in Zoige (Qiu et al., 2009),
supervised classification, which has been commonly
used for monitoring land desertification, is sensitive
to pixel-level changes of land-cover components.
Therefore, this paper applies a sub-pixel classification
technique, spectral mixture analysis (SMA), to im-
prove accuracy of land desertification monitoring in
Zoige. SMA is designed to derive the proportions of
vegetation, sandy soil, and water that compose a
mixed pixel to monitor land desertification in a precise
way. SMA has been proven effective in a variety of
quantitative applications with multi-spectral imagery
(Peddle et al., 1999; Small, 2001; Okin et al., 2004;
Powell et al., 2007). Therefore, applying SMA to
monitor land desertification in a fragile sub-alpine
rangeland eco-environment with humid plateau cli-
mate has much potential.

MATERIALS AND METHODS

Study Area

Zoige County (seen in Figure 1), which is located
on the northeastern part of the Qinghai-Tibet
Plateau, covers 10,436.58 km2 (latitude 32u569–
34u199N, longitude 102u089E–103u399E). Plateau hills
and alpine valleys form its landscape. Containing the
headwaters of the Yellow River, Zoige County has
a crucial water conservation function for southwest
China. It enjoys a humid plateau climate in a frigid
temperate zone with annual rainfall ranging from 600
to 750 mm. Average annual temperature is around
1uC, with the lowest 210.3uC in January and the
highest 10.9uC in July. The major vegetation types in
Zoige County are sub-alpine meadow and marsh-
meadow, dominated by Festuca nivina, Kobresia
setchuanensis, Elymus nutans, Carex muliensis, and
Kobresia tibetica; soil types in Zoige County include
peat moor soil, alpine meadow soil, sub-alpine
meadow soil, swamp soil, and swampy meadow soil
(Yong et al., 2003). Grassland accounts for more than
60 percent of the total land cover area in Zoige
County; therefore, pastoral farming has been a major
part of local husbandry for centuries. Wetland is
distributed widely in Zoige County: 178 plant and 218
animal species have been identified in the Zoige
National Wetland Nature Reserve. Among them,

Figure 1. Location of Zoige County and field photos (A, B, C, D
indicate the locations of field photos).
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about one third of birds (46 species) and 40 percent of
mammals (10 species) belong to international or
national protected birds and animals (McNamee,
2003). With the impacts of global climate change and
stock over-grazing, land desertification has been
a severe environmental problem in this area for
decades.

Data Acquisition and Pre-Processing

Landsat-5 Thematic Mapper (TM) images of the
studied area on the dates of August 4, 1994, and July 28,
2009, were acquired. For each date, acquired images
were on the tracks of path130/row37, path131/row36,
and path131/row37, respectively. Multi-temporal
images were analyzed to monitor spatial-temporal
change of land desertification in Zoige County in the
15 year period. Landsat-5 TM has a spatial resolution
of 30 m with six visible/near infrared bands and one
thermal band. Bands 1 (0.45–0.52 mm), 2 (0.52–0.60 mm),
3 (0.63–0.69 mm), 4 (0.76–0.90 mm), 5 (1.55–1.75 mm),
and 7 (2.08–2.35 mm) from the Landsat-5 TM sensor
for both dates were used for the analysis. Band 6 (10.4–
12.5 mm) was not included in the analysis because the
thermal infrared wavelengths are not required for
performing atmospheric correction.

For the application of SMA, conversion from
digital values to reflectance was carried out by
atmospheric correction for all TM images. The
atmospheric correction is based on a revision of the
dark-object method, which estimates atmospheric
transmissivity as a function of the cosine of the zenith
angle (Chavez, 1996). Reflectance for the six non-
thermal channels is then computed as follows:

rk~
Kp Lsen,k{La,kð Þ

E0,k cos hið Þ2
ð1Þ

where rk is the reflectance for band k, K is a factor
that takes into account the variation of the Sun-Earth
distance; Lsen,k is the radiance detected by the sensor
(computed from the digital values using the calibra-
tion coefficients included in the image); La,k is the
atmospheric radiance, computed from the minimum
(dark-object) value of that band; and E0,k is the solar
irradiance at the top of the atmosphere and the solar
zenith angle. K is computed as a function of the Julian
day (D):

K~1z0:0167 sen 2p D{93:5ð Þ=365ð Þð Þ ð2Þ

It can be seen from the formula above that the dark-
object method does not consider the situations of
atmospheric multiple scattering or multiple scattering

between objects. In addition, the dark-object method
does not consider topographic influences. Therefore,
the results of dark-object atmospheric correction can
be affected by these facts.

Geometric precision correction was applied to all
TM images. Each TM image was geo-registered to an
existing geo-referenced image using nearest-neighbor
re-sampling with 20 control points, and an average
root mean square (RMS) error of 0.5 was calculated,
which was appropriate for multi-temporal compar-
isons. In addition, the Shuttle Radar Topography
Mission (SRTM) 90 m digital elevation model (DEM)
on the track of column 56/row 6 was also acquired for
the purpose of topographic analysis in the study area.

Spectral Mixture Analysis

SMA is a technique to derive sub-pixel cover
fractions of surface materials using high-spectral-
resolution reflectance measurements collected from
airborne or space-borne spectrometers (Asner et al.,
2003). This method is ideal for use in a sub-alpine,
sub-humid rangeland eco-environments where sub-
pixel cover variation is high. The goal of SMA is to
identify primary spectral contributions within each
pixel (Adams et al., 1993). It provides a means to
determine the relative abundance of land-cover
materials present in any pixel based on the spectral
characteristics of the materials.

SMA transforms radiation or reflectance data into
fractions of a few dominant end members, which are
fundamental physical components of the scene and
not themselves a mixture of other components
(Elmore et al., 2000). Each end-member component
contributes to the pixel-level spectral reflectance,
expressed as:

Ri~
Xn

j~1

Fj
:REijzei and

Xn

j~1

Fj~1 ð3Þ

RMS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XB

i~1

eið Þ2

B

vuut ð4Þ

where Ri is the reflectance of the mixed spectrum in
band i, Fj is the fractional abundance of end-member
j, REij is the reflectance of the end-member spectrum j
in band i, n is the number of spectral end members,
and ei is the error of the fit for band i. Thus, for this
analysis with TM data, there will be six equations,
one for each spectral band (B 5 6). Equation 4 is the
total root-mean square error (RMSE), where B is the
total number of spectral bands.
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End-Member Selection

The crucial step to a successful SMA is the selection
of appropriate end members. End-member selection
techniques, which directly impact modeling perfor-
mance, vary depending on the tradeoffs among
classification accuracy, library size, and computation
time (Roth et al., 2012). End members must define
a coherent set of spectra that are representative of
physical components on the surface, but they must
also model the spectral variability inherent to the
scene (Elmore et al., 2000). End members can be
identified using (1) libraries of known spectra
collected with a spectrometer in the field or in
a laboratory, (2) libraries of known spectra from
previous SMA studies, or (3) spectrally pure or
‘‘extreme’’ pixels identified within the images being
analyzed (Schweik and Green, 1999). Although image
end members cannot be entirely pure, their degree of
pureness is more accurate because they represent the
dimensionality of the corresponding data set. Thus,
they are more suitable for multi-temporal change
detection. Aiming at monitoring land desertification,
this paper applies image endmembers that were
derived with three steps: (1) spectral reduction by
the minimum noise fraction (MNF) transform, (2)
spatial reduction with the pixel purity index (PPI)
method, and (3) manual identification of the end
members using the N-dimensional visualizer. The
MNF transform, which consists of two consecutive
data reduction operations, aims to ensure valid
dimensions of imagery data by separating noise from
it, thereby reducing the calculation amount of later
procedures (Green et al., 1988). The PPI, which has
been widely used in multi-spectral and hyper-spectral
images analysis for end-member extraction, aims to
search for a set of vertices of a convex geometry in
a given data set that are supposed to represent pure
signatures present in the data (Chaudhry et al., 2006).
The N-dimensional visualizer is an interactive tool; by
adding in PPI results (relatively pure pixels), it can
interactively assist researchers to select image end
members in N-dimensional space. In this case study,
five image end members were manually selected: bright
vegetation (BV), bright soil (BS), dark vegetation
(DV), dark soil (DS), and water. The fractions of soil
and vegetation can facilitate the analysis of land
desertification and vegetation re-growth in the studied
area.

Change Vector Analysis

CVA is a radiometric technique that examines the
corresponding pixels of two satellite images by
comparing two bands of each image to produce

images of change magnitude and change direction
(Kuzera et al., 2005). In this study, bright vegetation
(BV) and bright soil (BS) fraction images were used to
monitor the land desertification and vegetation re-
growth between 1994 and 2009. The change magni-
tude of the vector is calculated from the Euclidean
distance. The results show the difference between the
pixel values of the fraction images for bright
vegetation (BV) and bright soil (BS) cover, respec-
tively, between 1994 and 2009. It is shown as follows:

R~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(BS1{BS2)2z(BV1{BV2)2

q
ð5Þ

where R is the magnitude of vector change, and
subscripts 1 and 2 indicate the fraction covers in 1994
and 2009.

Change direction is measured as the angle (a) of the
change vector from a pixel measurement in 1994 to
the corresponding pixel in 2009 according to:

tana~
(BS1{BS2)

(BV1{BV2)
ð6Þ

Angles measured between 90 and 180 degrees
indicated an increase in sandy soil and decrease in
vegetation cover and therefore represent land de-
sertification conditions. Meanwhile, angles measured
between 270 and 360 degrees indicate a decrease in
sandy soil and an increase in vegetation cover and
therefore represent vegetation re-growth conditions
(Lorena et al., 2002). Angles measured between 0 and
90 degrees and between 180 and 270 degrees indicate
either an increase or decrease in both sandy soil
and vegetation cover, and consequently persistent
conditions.

Field Survey

The field survey was conducted in August 2011 in
order to evaluate the accuracy of SMA using ground
vegetation data as a reference. In total, 30 sampling
sites (size 60 3 60 m for each site, corresponding to
four pixels of the Landsat image) were located and
established in the study area. At each site, trees and
bushes were geo-referenced with a global positioning
system (GPS), and then the percentage of ground
vegetation cover including sub-alpine meadow, marsh-
meadow, and shrubs was estimated using the line-point
intercept sampling method. Measurements were taken
along 30 60-m-long transects oriented in a N-S
direction. Pin flags were lowered at 60 cm intervals
along the entire length of the transect. At each point,
the types of cover were recorded, and the percentage of
vegetation cover was calculated. The accuracy of SMA
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was estimated by scatter plotting correlations of the
total percentage of vegetation cover in each plot and
the vegetation fraction image.

RESULTS AND DISCUSSIONS

End-Member Spectra

The MNF transform was applied on each TM
image to complete spectra reduction. It is found that
the first four bands that are generated after transform
contain 92 percent of the variance. In the meanwhile,
spatial reduction for the MNF transform result was
performed with the PPI method. Finally, using the N-
dimensional visualizer, five end members were man-
ually selected: bright vegetation (BV), dark vegetation
(DV), bright soil (BS), dark soil (DS), and water. BV
consists of vegetation with high water content, such as
meadow, marsh-meadow, and shrubs. DV consists of
vegetation with low water content, such as senescing
meadow and senescing shrubs. BS consists of sandy
soil with high reflectance and low water content. DS
consists of bare soils with low reflectance and high
water content. The water end member consists of
rivers, lakes, and water areas in wetlands. A set of
end-member spectra extracted from one of the August
4, 1994, images is shown in Figure 2.

SMA Process

To achieve the best quality of fraction images, three
sets of end members were tested in the SMA process
for each TM image. The sets were: (1) all five end
members; (2) BV, BS, DS, and water; and (3) BV, BS,
and water. Fraction images derived from the different
sets of end members were evaluated using visual
interpretation, and error extent and distribution in

the error fraction image. The set of four end members
(BV, BS, DV, and DS) was chosen, since it provided
the best distinction of land-cover types and relatively
low errors. Proportions of BV, BS, DS, and water for
each TM image, presented as fraction images, were
determined after the SMA process. The vegetation
cover information carried by BV fraction images and
the sandy soil cover information carried by BS fraction
images separately indicate land desertification (as
shown in Figure 3) and vegetation re-growth (as
shown in Figure 4). Also, in combination, they
contribute to the analysis of wetland degradation in
wetland areas (as shown in Figure 5), because de-
tection of an increase of both vegetation cover and soil
cover near water implies the degradation of wetland.

The scatter plot correlation between the percentage
of vegetation derived from SMA on the TM image
(July 2009) and field data (August 2011) is shown in
Figure 6. As shown, the R2 of 0.8942 represents an
appropriate correlation between them. In addition,
there are possible sources of error that may have
affected the correlation result. First of all, the
imprecise registration of multi-date images is poten-
tially the largest source of error (Elmore et al., 2000),
especially in our case, as the geometric rectification
was done with 20 ground control points for each
image. In addition, the application of the line-point
intercept sampling method in the field survey contains
error. Additionally, although the average cloud
coverage percentage of images is quite low, cloud
shadow in images can possibly affect SMA results
lightly. In spite of the existing slight error, the
correlation between SMA data and field data in our
case shows an acceptable capacity to conduct the
multi-date images comparison.

Change Detection

CVA applies BV and BS fraction images to monitor
land desertification and vegetation re-growth between
1994 and 2009. The change directions that were
derived from CVA indicate both land desertification
and vegetation re-growth. The magnitude ranges
from low level to high level for both land desertifi-
cation condition and vegetation re-growth condition
(shown in Figure 7). Overall, land desertification
prevailed over vegetation re-growth. The land de-
sertification area covers 2,609.66 km2 in total in Zoige
County, including 466.57 km2 high-level area,
949.36 km2 medium-level area, and 1,193.73 km2

low-level area. The high-level areas of land desertifi-
cation are concentrated in the northwest part of Zoige
County. This is caused by long-term integrated
driving factors such as climate change and stock
over-grazing (Zhang et al., 2007; Shi and Tu, 2009),

Figure 2. End-member spectra, where BV represents bright
vegetation component, DV represents dark vegetation component,
BS represents bright soil component, and DS represents dark
soil component.
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threatening the fragile sub-alpine environment in
Zoige County. The medium-level areas of land
desertification are distributed near high-level areas
as transition zones to low-level areas of land de-

sertification. Meanwhile, the vegetation re-growth
areas cover 2,383.90 km2 in total, which consists of
299.33 km2 high-level areas, 917.09 km2 medium-level
areas, and 1,167.48 km2 low-level areas. Medium-level

Figure 3. BV and BS fraction images and differences between 15 years: (a) BV in 1994, (b) BV in 2009, (c) difference in BV, (d) BS in 1994,
(e) BS in 2009, (f) difference in BS.

Figure 4. BV fraction images and differences between 15 years: (a) BV in 1994, (b) BV in 2009, (c) difference in BV.
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and low-level vegetation re-growth conditions were
detected mainly in the southeast and northeast of
study area where alpine valleys are distributed. A high
level of vegetation re-growth conditions was detected
in national ranches located in the western part of

Zoige County, where land desertification combating
measures have been carried out for years.

ECOLOGICAL SUGGESTIONS

Categorizing Ecological Regions Based on
CVA Result

For a further understanding of the spatial-temporal
change of land desertification in Zoige County
between 1994 and 2009, a more specific and visualized
classification for land desertification conditions and
vegetation re-growth conditions is needed. Consider-
ing the concentrated distribution of similar levels for
both land desertification conditions and vegetation
re-growth conditions, we categorized Zoige County
into three regions (shown in the left part of Figure 8).
Respectively, region I represents concentrated areas
of land desertification conditions, region II represents
concentrated areas of vegetation re-growth condi-
tions, and region III represents concentrated areas of
persistent conditions.

Figure 5. BV and BS fraction images and differences between 15 years: (a) BS in 1994, (b) BS in 2009, (c) difference in BS, (d) BV in 1994,
(e) BV in 2009, (f) difference in BV.

Figure 6. Scatter plot correlation between measured and SMA
estimated vegetation fraction in 2009.
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Figure 7. Distribution map and statistical table of land desertification and vegetation re-growth areas by applying change vector analysis.
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Analysis of Driving Factors

Driving Factors of Land Desertification

Climate Change— Under the influence of global
climate change, the average annual temperature in
Zoige County has been rising significantly for decades
at an average rate of 0.28uC/10 yr (Zhang et al., 2007),
which is faster than the average rate of global
temperature rising 0.03–0.06uC/10 yr (Houghton et al.,
2001). Meanwhile, the average annual precipitation in
Zoige County has been declining with an average rate
of 211.559 mm/10 yr; the average annual evaporation
in Zoige County has been increasing with an average
rate of 7.621 mm/10 yr (Guo and Li, 2007). As a result
of the long-term effects of temperature rises,
precipitation declines, and evaporation increases,
Zoige County has been suffering from strong winds
and droughts in winter and spring (Shi and Tu, 2009).
Therefore, there has been a decrease of both the
ground vegetation cover (Wang and Zhao, 2005) and
the organic matter content of surface soil (Zhao and
He, 2000).

Stock Over-Grazing— Pastoral farming is the pillar
industry of Zoige County, contributing more than
90 percent of local husbandry income (Jiang and Li,
2012). The ideal maximum of stock capacity in
Zoige County is 1.865 3 106 sheep (Shen and Wang,

2003); however, according to the provincial survey
of rangeland resources, the actual stock capacity in
Zoige County had already reached up to 3.412 3 106

sheep by the end of 2006, overloading the capacity
by about 80.1 percent. The overloaded stock
capacity in Zoige County leads to stock over-
grazing. Long-term stock over-grazing in Zoige
County badly affects the growth of vegetation,
causing a decrease of grassland productivity and
ecological resilience; over-trampling upon grassland
by large amounts of stock causes soil hardening
and vegetation decrease in Zoige County (Wang and
Bao, 2002).

Driving Factors of Vegetation Re-Growth

Protection Measures of National Wetland Nature
Reserve— Approved by the State Council, Zoige
National Wetland Nature Reserve was established in
1998 (Wang, 2012). Since then, protection measures
towards land desertification, such as vegetation
restoration and fencing protection, have been
effectively carried out within and beyond the
boundaries of National Wetland Nature Reserve in
Zoige County. In this paper, CVA results shows a fine
vegetation re-growth condition around the National
Wetland Nature Reserve, which confirms that the
protective measures towards land desertification have
improved the ground vegetation cover percentage a lot.

Figure 8. Concentration areas of land desertification, vegetation re-growth, and persistence, categorized according to the change results
between 1994 and 2009 in Zoige County (on the left). Slope distribution map of Zoige County (on the right).
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Topographic Influences— After analyzing SRTM
90 m DEM data, it is clear that grassland and
wetland dominate the land-cover types in Zoige
County, while southeastern and northeastern Zoige
County contains large areas of alpine valley with an
altitude ranging from 2,400 m to 4,200 m. In addition,
a slope distribution map of Zoige County (shown in
the right part of Figure 8) was generated from DEM
data, classified into four types: flat area (0 to 7
degrees), gentle slope (7 to 15 degrees), medium slope
(15 to 25 degrees), and steep slope (.25 degrees). Due
to the precipitous topography, the alpine valley areas
in Zoige County, which are dominated by medium
and steep slopes, are spared from heavy human use.
Therefore, high forest cover remains there, and fine
water conservation function is preserved.

Specific Suggestions for Ecological Regions

Suggestions for Region I (Area of Concentrated Land
Desertification Conditions)

Region I, where grassland is widely distributed, has
experienced long-term stock over-grazing, which has
caused the serious problem of land desertification.
Stock capacity control measures such as rotating
grazing could alleviate rangeland pressure from stock
overloading. At the same time, sparing zones where
serious land desertification is caused by livestock
grazing and also planting wind-resistant and drought-
tolerant species of grasses or shrubs could improve
the vegetation cover percentage and rangeland eco-
environmental restoration for land desertification areas.

Suggestions for Region II (Area of Concentrated
Vegetation Re-Growth Conditions)

Region II, including alpine valley areas and well-
restored grassland or wetland areas, presented fine
vegetation re-growth conditions. Natural resources
protection is necessary for areas with high vegetation
cover, especially for alpine forests. Vegetation resto-
ration measures that have proven effective in these
areas, such as establishing barriers to protect vegeta-
tion during growth period and planting wind-resistant
and drought-tolerant vegetation, should be consis-
tently enforced. In this way, it is viable to accomplish
the sustainable development of natural resources in
region II.

Suggestions for Region III (Area of Concentrated
Persistent Conditions)

Region III covers areas where slight land desertifi-
cation conditions and slight vegetation re-growth

conditions have simultaneously been detected, result-
ing in a relatively persistent condition. For the slight
land desertification conditions that are detected
in region II, timely and efficient desertification-
combating measures should be carried out. For
instance, it is recommended to spare zones where
land desertification have shown signs because of
livestock grazing and to plant appropriate species of
grasses until vegetation restoration is completed.

CONCLUSIONS

This paper points out the spatial-temporal change
pattern of land desertification in Zoige County by
applying SMA and CVA. Between 1994 and 2009,
land desertification conditions in Zoige County were
concentrated in grassland areas where pastoral
farming dominates. Vegetation re-growth conditions
were detected in protected areas (National Wetland
Reserve and National Ranches) and alpine valley
areas, which enjoy fine forest cover. In this study,
SMA provided us with precise land-cover information
in Zoige County in both 1994 and 2009, which
ensures the accuracy of the multi-temporal compar-
ison performance along with the quality of our
monitoring results.

After analyzing the driving forces of land de-
sertification in Zoige County, specific suggestions for
each ecological region are proposed to help the
development of local environment management and
efficient measures such as stock capacity control and
vegetation restoration to combat land desertification.
Combined with long-term remote-sensing monitoring
and specific desertification-combating measures, we
believe it is possible to restore vegetation cover in
land desertification areas in a fragile sub-alpine eco-
environment, which will benefit regional eco-environ-
ment stability as well as protect land for future
generations.
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