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Abstract Kula Region (Manisa, Turkey), with its 80 volcanic
cones, lava flows, basalt plateaus and basalt columns, fairy
chimney formations in canyons carved by the Gediz River,
shelter cities hidden in volcanic lava, footprint fossils belong-
ing to the first humans, and geological uniqueness, has a great
importance in terms of geotourism potential as it is being a
natural heritage in the Aegean region of Anatolia. In this
study, some remote sensing image processing techniques such
as band combination, band rationing, and principal compo-
nent analyses were used to depict the cultural and natural
geosite known as Kula basalts in Turkey. Satellite images
utilized here in this study were Landsat band images (band 1
to band 7). Principal component analyses (PCA) were per-
formed on the first ratio group with 5/4, 5/1, and 3/7 bands
and then on the second ratio group with 3/1, 4/5, and 3/2
bands. As a conclusion and outcome of this PCA, it was found
that red, green, and blue (RGB) composite with PC1 and PC3
gray-level images from the first ratio group and PC2 gray-
level image from the second group showed up the basalt areas
better than those from other techniques studied in this re-
search. After unsupervised classification of this final compos-
ite of PCA, it is computed that the basalt rocks in Kula cover
an area of 36,774 ha totally.

Keywords Remote sensing . Principle component analysis
(PCA) . Band ratio . Kula basalt . Geosite

Introduction

In general meaning, each rock type with its characteristic
rock-forming minerals has its own reflectance signature, and
thus by using the remote sensing techniques, the different rock
types in a particular area can be reasonably discriminated on
the basis of their reflectance characteristics (Hassan and
Ramadan 2014). The importance of the recognition of such
spatial patterns of rocks makes the remote sensing techniques
as one of the standard procedure in geological studies, due to
its speed and price.

This study aims to examine the subterranean pathways
used by the erupted products of the cinder cones of the Kula
Volcanic Field, Manisa, in Western Turkey (Richardson-
Bunbury 1996). The basaltic lavas which used these pathways
contain cognate nodules, thought to represent partially solidi-
fied fractions of the magma (Holness 2005; Holness and
Bunbury 2006) which were brought to the surface later in
the same eruptive period.

The Kula region (in the northwest of Turkey), as a volcanic
field and as a natural asset of Anatolia, is also hosting numer-
ous historical and archaeological sites. Therefore, the main
purpose of this study may be emphasized as that Kula basalts
as a natural world heritage in Turkey would be determined,
delineated, and computed with their total coverage in the re-
gion using the most appropriate remote sensing image analy-
sis technique found as composite image of PCs from several
PCAs of certain Landsat band ratios. To reach this purpose, a
final map representing Kula volcanic field was produced after
several remote sensing image analyses. Thus, the lithological
characteristic of the area was identified as an outcome of remote
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sensing data processing methods, and ratio images such as
3/1, 4/5, and 3/2 from Landsat Enhanced Thematic Mapper
(ETM+) bands showed up the basaltic areas better than other
ratio combinations in the region. Images from principal com-
ponents analysis (PCA), alongwith ratio images, were computed
and then combined to determine the response of minerals.
PCA image combination of 3/1, 4/5, and 3/2 ratios, in red,
green, and blue, appeared as a best outcome displaying and
mapping the boundaries of the main lava flows in the geosite.
Remote sensing is an important data source for mapping the
past volcanic activities, but can also be used as the sources of
archaeological structures and architectures in volcanic areas
such as those in the Kula volcanic field.

The Kula region

The Kula Volcano (Turkey, 38.58° N and 28.52° E) was active
in the Quaternary period and now it is inactive. The site is
located 12 km west of the Kula town and 1.5 km in the north
of Izmir-Ankara highway at the altitude of 750 m. It covers an
area of approximately 400 km2 with no vegetation in general
except some areas. It includes three basins, and the schistose
ridges separating them are covered with volcanic cones and
lava streams and fields.

As indicated in Ercan’s paper (1984), Bthe Quaternary Kula
volcanic are Na-dominant in character while all the older vol-
canic rocks of western Anatolia are generally definitive K-
dominant rocks. As a unique example in western Anatolia,
the existence of a huge amount of plateau basalts at Kula
indicates rapid uplift of mantle material, as confirmed by
new geochemical data.^ The basement rocks in the area laying
between Kula and Salihli towns in the province of Manisa
consist mainly of gneisses, schists and quartzites with Permo
Triassic marbles in the uppermost section. Mesozoic units
consists of dolomitic limestones of Jurassic and ophiolitic me-
lange of Upper Cretaceous age. Senozoic units consist of flu-
vial sediments of Pliocene age overlain by andezitic lava
flows with interfingering lacustrine limestones toward the
top. Kula volcanics of Quaternary age flowed in three main
periods; the initial products were being ejected 1.1 million
years ago. The last period of volcanism lasted until historic
times. According to petrographic and petrochemical investi-
gations, Kula lavas are alkali basalts. Most of the rock types
are trachy basalts, alkali olivine basalts, and hawaities with
minor mugearites and tephrites. Kula volcanism has a mantle
origin derived from an initial magma rise through plums, and
it is a rift volcanism (Ercan 1984).

Based on their field observations, Tokcaer et al. (2005)
indicates those in their paper; the oldest Kula volcanics are
the plateau basalts with more than one main lava flow. At the
beginning of volcanic activity (first-period plateau basalts),
this plateau was vast. Subsequently, parts of the first-period
plateau basalts were uplifted and partly eroded while other

parts were covered by younger lavas, tephra, and sediments.
The horsts, covered by plateau basalts, are well protected be-
cause of their resistance to erosion. During extensional activ-
ity, the development of cinder cones continued without hiatus.
During the last period of volcanic activity, the youngest craters
once again produced lava flows to form the second-period
plateau basalts. As a result, there are more than 80 cinder
cones with quite different erosional stages between the first
and second plateau basalt periods. The Kula basalts are the
only example of rapid uplifting of asthenospheric material in
western Anatolia and are interpreted to form due to the open-
ing of a horizontal slab window as a consequence of the more
rapid southwestward movement of the Aegean microplate
overriding Africa, with respect to the Anatolian plate
(Tokcaer et al. 2005).

Remote sensing in geological mapping and mineral
exploration studies

In early times, geological maps were produced after a field-
work like traversing, but today, remote sensing technology as
a complicated method which is cost-effective has been ap-
proved in terms of its capacity to work with classic geologic
mapping. Remote sensing has been realized as a technologi-
cally advanced data-obtaining method for geology; the tech-
nique is normally used in determination of Earth’s surface
geological structure and features such as lithology, lithological
sequences, relative age of rock strata, types of drainage, soil
type, and vegetation cover (Drury 1993; El Janati et al. 2014).
If this technique is used together with maps for ground truth,
this turns classical geological mapping into more effective and
efficient mapping process.

Remote sensing techniques have been applied for years and
new methodological perspectives are still being developed by
using this high technology. Remote sensing methods require
mapping the zone accurately. Different alteration types can be
identified by multispectral data, and the lithological bound-
aries of the basaltic rocks can also be delineated exactly by
remote sensing data analyses as suggested here in this study.

Remote sensing techniques are of valuable use in mapping
hydrothermally altered minerals that have distinct absorption
features (Hunt 1979). Multispectral remote sensing sensors
provide detailed information on the mineralogy of different
rock types of the Earth’s surface and have been used by sev-
eral scientists (Crosta and Moore 1989; Abdelsalam et al.
2000; Rokos et al. 2000; Ferrier et al. 2002; Crosta et al.
2003; Youssef et al. 2009; Qari 2011; Salem et al. 2014).
Several authors utilized the remote sensing techniques for
(1) mapping hydrothermally altered minerals (e.g.,
Abdelsalam et al. 2000; Kusky and Ramadan 2002; Liu
et al. 2007; Madani et al. 2003; Ramadan and Kontny 2004;
Ramadan et al. 2001; Sultan and Arvidson 1986) and (2)
mapping the local fractures and lineaments that controlled
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the mineralization (e.g., Madani and Bishta 2002).
Abdelsalam et al. (2000) employed the 5/7, 4/5, and 3/1 band
ratio image in red, green, and blue (RGB) for mapping the
alteration zone of Beddaho in northern Eritrea. Ramadan et al.
(2001) mapped the alteration zone associated gold-bearing
massive sulfide deposits of Allaqi suture, South Eastern
Desert of Egypt, using Landsat TM color composite ratio
images. Ramadan and Kontny (2004) utilized the Landsat
TM band ratios and detected two types of alteration zones that
are controlled byNW–SE structural trend at Shalatein District,
South Eastern Desert of Egypt. Madani et al. (2008) studied
the Landsat ETM+ data using band ratio technique for map-
ping the listwaenite exposures along the southern margin of
Jabal Al-Wask serpentinites, western Saudi Arabia.

In geological remote sensing studies, near-infrared (NIR),
mid-infrared (MIR), and shortwave infrared (SWIR) portions
of electromagnetic spectrum are generally used. One of the
remote sensing data that is available and provides such
spectral bands is Landsat data. Therefore, Moore et al.
(2007) in his Clark Area Soil Survey study utilized Landsat
7 data to determine the quantity of basaltic rock outcrops.
Moreover, remote sensing is becoming a widely applied min-
eral exploration technique day by day. There are several stud-
ies on geological exploration and determination of hydrother-
mal alteration zones in the literature using Landsat Enhanced
Thematic Mapper (ETM+) and Advanced Space borne
Thermal Emission and Reflection Radiometer (ASTER) im-
ages (Buckingham and Sommer 1983; Kaufmann 1988;
Drury and Hunt 1989; Carranza and Hale 1999; Crosta et al.
2003; Assiri et al. 2008; Warner and Farmer 2008). In remote
sensing’s geological applications and studies especially in
geological and structural data interpretation, some difficulties
are encountered such as signal deterioration because of differ-
ent surface conditions such as vegetation, agricultural activi-
ties, and weathering crust (Drury 1993). Therefore, error and
noise removing procedure became a routine process before
any interpretation of remote sensing data. In remote sensing
data analyses of geological studies, band rationing is used as a
common method to reduce haze and vegetation cover effects
(Carranza 2002). For example, Landsat ETM band 5 and band
7 and their ratio have been used successful for the discrimina-
tion of different rock types (lithological differences) and de-
termination of hydrothermal alteration zones, and a ratio is
also an image with minimized or removed errors (Crosta and
Moore 1989; Drury 1993; Carranza and Hale 1999; Ferrier
et al. 2002; Crosta et al. 2003; Moore et al. 2007; Bishta
et al. 2014).

Material and methods

Several image processing techniques can be carried out, in-
cluding image enhancement, band combination, rationing,

and feature-oriented PCA as being used in Crosta technique
(Abrams et al. 1983; Chavez 1989; Rowan and Bowers 1995;
Sabins 1999; Gupta 2003; Ranjbar et al. 2004; Rawashdeh
et al. 2006; Rajesh 2008; Pournamdari and Hashim 2014).
During the image processing, a simple to complex stepwise
path is followed. The resulting images are considered to be the
potential geological/alteration maps. If the results display any
convergence with the data from study area, then the final
(combination) map is formed for displaying the convergence.

Satellite data

Landsat 7 ETM+ scene throughout the remote sensing image
analysis to map the Kula volcanic complexes was the scene
with orbit and section numbers of 180/33. Six ETM+ spectral
bands of Landsat 7 acquired on 20th of August 2006 were
used in remote sensing analyses. The remote sensor data that
is commercially available is already systematic error removed;
however, non-systematic error remains in the image (Jensen
1996). The image data is accepted as free from geometric
errors, and ETM+ bands of 1, 2, 3, 4, 5, and 7 are used exten-
sively in most of the processes. The approach of Bidentifica-
tion of mineral assemblage for lithological mapping^ (Gupta
2003) was adapted to distinguish the different units within the
Quaternary volcanic formations. This approach depends on
the broad spectral characteristics of minerals. The use of solar
reflection of the region allows mapping of the iron and hy-
droxyl bearing surface of the basaltic rocks and, thus, to map
the lithological boundaries of the main lava flows. Several
remote sensing image processing methods were examined to
obtain the final product images and to set up the map of the
studied zone.

Band compositing

The idea behind the band combination is to make multispec-
tral information visible to the human eye. Every object in
nature has unique reflectance values at different wavelengths.
On the other hand, the colors that the human eye can see are
only the combination of the reflectance at red, green, and blue
portions in the visible wavelength region. So that, multispec-
tral images are assigned to the wavelengths (red, green, and
blue, RGB) that are sensible for human. Color composite
method is simply the decision of the order of three multiple
bands to be displayed in red, green, and blue channels. That is
why RGB composition of Landsat 7 ETM+ band 3, band 2,
and band 1 is called true color composition (TCC), as it dis-
plays the image most likely as it is seen in nature to the human
eye. All the other band compositions displayed as RGB are
called false color composition (FCC) (Vincent 1997).

The color composition, in fact, is the basis of the other
techniques, because the results can be easily interpreted in
detail with color composites by assigning the desired spectral
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band to the desired RGB channel. Therefore, there are a large
number of studies concerned on the best combination of bands
to display the maximum information about the surface lithol-
ogy and mineralogy.

With respect to the literature, it is also found that some
statistical methods used in remote sensing image processes
are defective in a way that they ignore the distinction between
geologically significant variance (color differences between or
within rock types) and non-geological factors (differences in
topography and shadow for surfaces with high and albedo,
and differences between rock, vegetation, alluvium, etc.). It
is found to better assess each band individually by eye and
choose the best three having the likely diagnostic features
(Rothery 1987).

Most of the previous studies done for the determination of
alteration rocks showed that the hydroxyl absorption band in
Landsat bands is band 7 and a general reflectance high band is
band 5. The bands 7, 4, and 5 combined in RGBwere decided
as the most informative image for lithologic features of sur-
faces and alteration areas. So, pillow basalt lavas are observed
in dark grayish magenta whereas gabbros have a green tone
(Rothery 1987) (Fig. 1a).

In addition to that, RGB color composites of TM bands
741, 541, and 531 can also be selected according to the index
of optimum band selection criteria. On the other hand, TM472
and TM475 color composite images are emphasized as the
most informative images for discriminating the clay minerals
in the literature, and the same procedure was followed in this
study as well (Fig. 1b, c). Radiometric enhancement is even
found to be very helpful for visual analysis of RGB color
composites which is performed by different methods like

linear contrast stretching, histogram equalization, and
decorrelation stretching (Chica-Olmo and Abarca 2002).

RGB display of bands 4, 7, and 2 makes the structural
elements identifiable and allows discrimination of surficial
units like sedimentary and volcanic rocks. Light reddish and
grayish brown color represents granites and grayish green
colors represent monzogranite as Abdelhamid and Rabba
(1994) stated in his work.

Based on the statistical results of average factoring, stan-
dard deviations and interband correlations of TM bands 2, 3,
4, 5, and 7, and combination of bands 4, 7, and 2, and 3, 7, and
4 are selected for color composite in RGB order of channels.
Color composite of bands 4(R), 7(G), and 2(B) displayed iron
oxides as yellowish green; 3(R), 7(G), and 4(B) composite
displayed again iron oxides as light green. Since they show
almost similar pattern of RGB image, here 3, 7, and 4 band
combination images are also given in Fig. 1b, d.

Band ratioing

Band ratioing depends on division of one spectral band by
another one in a multispectral scene. This division results in
the ratio of spectral reflectance measured in the one spectral
band to the spectral reflectance measured in another spectral
band. Thus, band ratio technique highlights the spectral dif-
ferences related to the specific materials to be mapped and
disintegrates these surface materials from each other; other-
wise, such information will not be available in any single band
(Jensen 1996). The outcome image is in gray levels, and to
improve its display quality in the whole range of 256 gray
levels, it is stretched. The best stretching method used for

Fig. 1 a RGB color composite image of Landsat bands 7, 4, and 5. b RGB color composite image of Landsat 4, 7, and 2 bands. c RGB color composite
image of Landsat 4, 7, and 5 bands. d RGB color composite image of Landsat 3, 7, and 4 bands
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these ratio images here in this study was the normalized con-
trast stretching.

As it is mentioned previously, band ratios are obtained
easily by dividing digital number of each pixel at the one
location in one band by the each pixel at the same location
in another band. Moreover, as reported by Drury (1993) and
Darning (1998), ratios like 3/1, 3/5, 3/7, 5/1, 5/4, 3/7, and 5/7
have great success on the determination of lithologies, and
with this fact in this study, some of these ratios were used to
differentiate and identify rock types. It is also found that the
combined RGB image consisted of ratio images of 5/4, 5/1,
and 3/7 represented the best result for the basalt rocks in red-
dish colors (Fig. 2a).

The RGB display in Fig. 2a shows identical results with
Abrams et al.’s (1983). The contrast in the resulting image
displayed dark-toned unaltered rocks, in shades of dark blue
and green, and hydrothermally altered rocks, displayed in
bright yellow to orange, coinciding with the preliminary
mapped phyllic-potassic zones. However, discrimination be-
tween phyllic and potassic alteration zones could not be made.
So, granite outcrops are mapped as reddish areas as well as
obtained in Abrams et al.’s work (1983).

When band ratios of 1.65/2.2 μm, 0.66/0.56 μm, and 0.83/
1.65 μm which correspond with band ratios of 5/7, 3/2, and
4/5 are assigned to the red, green, and blue channels, iron-
oxide-rich areas are displayed as green due to the presence
of ferric iron charge transfer band in the ultraviolet, and
clay-rich areas are displayed as red, due to the presence of
the hydrous minerals absorption band near 2.2 μm. Yellow
or orange areas represent the areas where both clay and iron

oxide minerals are present (Abrams et al. 1983). When the
same image processing was applied to the Landsat bands used
in this study, the combined RGB image consisting of 5/7, 3/2,
and 4/5 ratio images showed the similar results after histogram
stretching with ignored zero values in statistic process. Basalts
are displayed in greenish color as seen in Fig. 2b.

Band 4 normally highlights vegetation which is having
high reflection values in this band; contrary to this, the other
bands are better in reflections and absorptions from rock
forming minerals like oxides and hydroxyls (Carranza
2002). Especially, band ratio 4/3 therefore represents vegeta-
tion in bright tones because of the high reflectance of
mesostructure in the NIR band against the steep falloff of
reflectance in the visible TM3 band due to intense chlorophyll
absorption (Kaufmann 1988). A set of ratios are therefore
selected reflecting the spectral behavior of iron oxides, min-
erals containing OH, H2O, CO3, and SO4 molecules, and
vegetation. Additionally, due to the high rock discrimination
feature of the color composite, images like 3/1, 5/7, and 3/5,
and 4/5, 6/7, and 4/6 used and represented in red, green, and
blue by Rowan et al. (1977) and Raines et al. (1978) have also
been examined in this study.

Clay minerals containing water (bound or unbound),
micas, carbonates, sulfates, and hydrates are enhanced by
the band ratio 5/7. The ferric and ferrous iron is best enhanced
by the band ratios 7/4, 7/1 or 5/4, and 5/1, due to major elec-
tronic transition bands in NIR (at ∼0.87 μm) and the visible
and charge transfer bands in ultraviolet and the unaffected
SWIR range (Kaufmann 1988). Mostly used band ratio 3/1
often fails because the difference between bands 3 and 1 is

Fig. 2 a RGB color composite image of 5/4, 5/1, and 3/7 ratios. b RGB color composite image of 5/7, 3/2, and 4/5 ratios after histogram stretching. c
RGB color composite image of 7/4, 5/1, and 4/3 band ratio. d RGB color composite image of 5/1, 5/7, and 7/4 band ratio
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much less than those in the combinations of SWIR bands like
bands 1 or 4. Among all of those ratio images above, the best
RGB ratio image displaying Kula basalts is obtained as the
one using band ratios of 7/4, 5/1, and 4/3, and they appear as
pastel red color in the product image (Fig. 2c).

Landsat TM 5/7 band ratio is the best spectral ratio empha-
sizing iron-rich rocks and rocks with clays and hydroxyl min-
erals which show high reflectance in band 5 and low in band 7.
Therefore, clay-rich rocks as it has been reported by Darning
(1998) are clearly identified in the ratio image 5/7 using these
bands, and they appear as light pixels in gray scale colors.

A RGB color composite image was also created using band
ratios of 5/1, 5/7, and 7/4 after a histogram stretch with ig-
nored zero values (Fig. 2d). Consequently, pink color repre-
sents the minerals containing iron ions, green represents the
vegetated zones, and blue represents OH/H2O-, SO4-, or CO3-
bearing minerals (rocks and soils) (Kaufmann 1988). But,
basalts might not easily be identified in the ratio scene even
after histogram stretching (Fig. 2d).

The proportions of kaolinite, illite, and free iron increase
from the contact toward the granite intrusion, while the pro-
portions of chlorite and smectite decrease. Reflectance spectra
of soil samples from laboratory observations indicate that
brightness decreased in the band ratios 3/2, 2/5, and 2/7 while
it increased in 3/4, 4/7n and 5/7 ratios with the increase of the
proportion of kaolinite, illite, and free iron and the decrease of
chlorite (Kaufmann 1988).

TM band ratio of 5/7 is found very effective in highlighting
clay minerals; 5/4 and 3/1 enhanced the areas with iron min-
erals and ferric oxides, respectively. RGB composite image of
5/7, 4/5, and 3/1 ratios reveals the main geological features in
the studied region (Chica-Olmo and Abarca 2002).

The RGB color composite of 5/7, 3/1, and 5/4 ratio images
maps the granite and the volcanics in dark blue to blue and
violet-blue, reflecting the presence of Fe andMn oxides. Also,
the color composite of TM 3/1, 5/7, and 4/5 band ratios
assigned to RGB channels after histogram equalization clearly
displays the distribution of highly altered zones in dark blue to
violet-blue colors (Abdelhamid and Rabba 1994).

After all the ratios given above were examined, it was
found that the best RGB combination was 3/1, 4/5, and 3/2
ratio image combination for the basalts in the region, and the
basalts clearly appeared in dark blue color as seen in Fig. 3a.
In the unsupervised classification image, basalt areas are rep-
resented in red color. But, some noise spots and small areas in
the close vicinity of the main basalt areas are appeared in red
too as seen in Fig. 3b.

Principal component analysis

The principal component process is the principal component
transformation technique to reduce dimensionality of correlat-
ed multispectral data. The technique is applied to a few to

many correlated rasters to create a lesser number of images
with more number of information than those in previous each
image.

In a plot of the spectral band values that contain most of the
variability in the data set, the data delineates an ellipse, and the
original axes and origin do not fit the data distribution very
well. Moving the origin of the mean values of the two data sets
will surely give the axes a better fit to the data. Data is then
translated, that is rotated, the major axis with respect to the
new origin. The first principal component axis runs along the
major axis of the ellipse standing for most of the variability in
the data set. The minor axis as a second principal component
axis is orthogonal to the major axis, and it is aligned along the
maximum remaining variance. The variances of the principal
components are called eigenvalues. Therefore, the maximum
amount of remaining variance, which becomes smaller as the
order of the principal component increases, is removed by
each subsequent principal component, orthogonal to all the
other principal components. Consequently, the nth component
contains all of the remaining variance and separates the most
spectrally unique pixels from the rest of pixels in the image.
The total variance of all principal components sums up to
100 % of the total variance of the data, with the first three
PCs usually accounting the majority (50–95%) of the variance,
when n>3.

Principal component analysis consists the translation of
the origin and rotation of the data axes to better fit the
brightness values of the input images. Each input object is
a coordinate axis and each output object is a principal com-
ponents axis.

In other words, principal component transformation con-
sists of a two-step process. In the first step, n histograms of the
scene to be imaged are used as inputs to the principal compo-
nent algorithm. This algorithm calculates n principal compo-
nents, which are actually orthogonal vectors in n-dimensional
space that are oriented along directions of maximum remain-
ing variance. Most of the variability in the information in the
input objects is found in two or three of the objects. The other
input objects contain decreasing amounts of the variance in
the information set.

The second step consists of the transformation of the image
to principal component space. The first principal component
displays the greatest variance and highlights sunlit slopes rath-
er than shadowed areas. The nth principal component image
usually gives the homogeneous image, interrupted by a few
bright and dark pixels that are spectrally unique for that image
scene.

It is possible to create a color composite by using the de-
sired 3 of the n PCs, when n>3. As most of the variance is
represented by the first three principal components, they are
used as a color composite to observe boundaries between ter-
rain units. Color composites of the higher-order principal
component images, including the nth one, make it possible
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for the small areas on the ground that are spectrally outrageous
to be identifiable (Vincent 1997).

For Landsat six bands’ TM images, when information is
transformed to three PCA images, all of the variance from the
set of input objects are almost included in these three images.
Since interpretation of these original PCA data is not easy, a
combined RGB image can be formed from those three images
to ease the interpretation. Also, transformation makes
unseeing details in the raw data clearly be seen.

Feature-oriented PCA (Crosta technique)

Even if a great amount of information is gathered in reduced
amount of images from PCA, certain materials will not be
mapped; the likelihood that others will be mapped increases
into only one of the principal component images. One of the
successful PCA techniques used in remote sensing is sug-
gested by Crosta and Moore (1989) and thus known as
Crosta technique. In this method, there is no need to know
the spectral properties of target materials; also, no atmospheric
or radiometric correction is required. PCA must be applied on
raw and unstretched data for effective outcomes in all cases.
Final images from PCA are accurate and sufficient in delin-
eating alteration zones and also lithological differences.

Since principal component analysis (PCA) is an outcome
of non-correlated components obtained through the analysis
of all data set and axes of transferred new data with greatest
amount of variation, the eigenvectors show the direction of
each PC axis and the eigenvalues are for the variability of the
data along the orthogonal directions (Chavez 1989; Gupta
2003). Thus, the magnitude and sign of eigenvector loadings
(eigenvalues) give information about which spectral proper-
ties of vegetation, rocks, and soils are responsible for the sta-
tistical variance mapped into each PC, and this is the basis of
the Crosta technique.

Here in the study, Crosta PCA using six bands was firstly
applied to the Landsat scene of the study area. The composite
image of PC4, PC3, and PC2 from PCA of Landsat’s six
reflected bands is the outcome image showing the basalts in
the studied area (Kula) better than those appearing in the other
composite images of PCs and in light brown color and, in

some extent, separates the basalts from the neighboring areas
(Fig. 4a), but not as clearly as expected. The results show that
clearly, in any cases, it is not possible to separate mineral
classes into any single principal component image when the
method is applied to six TM bands (1, 2, 3, 4, 5, and 7).
Consequently, the number of input channels is reduced to
avoid a particular spectral contrast, and the chances of defin-
ing a unique principal component for a specific mineral class
will be increased.

Selective PCA can be used to reduce the dimensionality of
a data set. Thus, while minimizing the loss of information, the
spectral contrast can be enhanced and mapped between two
different spectral regions. The increase in the correlation be-
tween two TM bands is related to the amount of spectral
contrast between them. Higher correlation between the spec-
tral bands means less contrast and the lower correlation means
more contrast (Chavez and Kwarteng 1989). Feature-oriented
principal component selection depends on analyses of PCA
eigenvector loadings which are directly related to the theoret-
ical spectral signatures of specific targets. Thus, it can be
decided which of the principal component will extract that
information. The methodology mainly relies on selection of
only four TM bands to perform PCA. This technique uses four
selected TM bands in order to highlight the spectral response
of, for example, iron oxide minerals (showing absorption in
visible TM bands 1 and 2 and higher reflection in TM3) and
hydroxyl-bearing (clay) minerals (showing absorption in TM7
and higher reflectance in TM5).

In the principal component transformation of Landsat TM
images in the way of using two sets of four out of six reflected
input bands, the result shows the first component as PC1 hav-
ing a predictably high eigenvalue. Thus, it represents most of
the variation within the whole dataset. This PC1 also provides
information mainly on the albedo and the topography (Gupta
2003). The second, third, and fourth principal components
represent progressively less variation within the datasets. For
further knowledge of the analyses, readers are referred to
Crosta and Moore (1989); so, the use of feature-oriented
PCA technique in hydroxyl minerals and ferric minerals
discrimination has been well established by Crosta and
Moore (1989) and also by Loughlin (1991).

Fig. 3 aCombined RGB image of 3/1, 4/5, and 3/2 ratios after histogram stretching. bUnsupervised classification image of histogram stretched ratios of
3/1, 4/5, and 3/2
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In hydroxyl mapping, TM bands 1, 4, 5, and 7 are used. To
avoid mapping the iron oxides, TM bands 2 and 3 are not
considered, but instead of TM1, either of them could substi-
tute. As it is mentioned previously, the analysis showed that
the albedo (reflectance) is mapped by PC1, and the spectral
difference between shortwave infrared and visible ranges is
mapped by PC2. PC3 is found to be responsible for displaying
the vegetation as the brightest object and PC4 highlights
hydroxyl-bearing minerals as dark pixels. To map the hy-
droxyls in bright pixels, PC4 is negated (multiplied by −1)
and called Crosta hydroxyl (H) image (Loughlin 1991).

One very important property of this H image is that it has a
negative contribution from vegetation in TM4 (when negat-
ed), and therefore, vegetated areas are not highlighted and
separated (Tangestani and Moore 2002).

Similarly, the iron oxide map is obtained by using the
unstretched TM bands of 1, 3, 4, and 5. The substitution of
TM5 with TM7 results with little effect. The principal com-
ponents can be interpreted as albedo in PC1, difference be-
tween SWIR and visible spectral ranges in PC2, vegetation in
PC3, and iron oxide minerals in PC4 as bright pixels after
negation. So, PC4 of this transformation is called Crosta iron
oxide image (F). Iron oxides could also be mapped in PC2
with hydroxyls; therefore, the eigenvector loadings of the iron
oxide and hydroxyl sensitive bands (TM1, 3 and 5) should be
checked considering the vegetation band of TM4 (Tangestani
and Moore 2002).

The information in the H and F images can be combined to
produce a map displaying the pixels with anomalous concen-
trations of both hydroxyls and iron oxides as the brightest.
This new image is called H+F image. Therefore, a new
PCA is applied to these two images to achieve, for example,
the principal component having positive eigenvalues from
these two input bands.

By using the Crosta H, H+F, and F images, which are
stretched, color composites are prepared in desired combina-
tions. Display of H, H+F, and F images in RGB channels
respectively returns a dark bluish color composite image on
which alteration or alumina-riched zones are unusually bright.
White pixels within these zones are the areas both iron-stained

and argillized. Bright reddish to orange zones are more
argillized than iron-stained, and bright cyan to bluish zones
are more iron-stained than argillized (Loughlin 1991)
(Fig. 4b).

PCs from PCA providing essential statistical analysis of the
spectral bands and with large amount of possible spectra in-
formation and even in color composites support the selection
of correct ratio images in the lithological mapping. The mag-
nitude and sign (positive or negative) of eigenvector loadings
(e.g., eigenvalues) give information about which spectral
properties of rocks are responsible for the statistical variance
defined by each component (Rajesh 2008). In this case study,
the fourth component (PC4) carries a high positive contribu-
tion (0.6454668) from TM1 and a high negative contribution
(−0.5458363) from iron oxide highlighted in TM3, since iron
oxide has a strong absorption in TM1 and high reflectance in
TM3 (Table 1). On the other hand, ferric oxides were mapped
to PC4 in the 1-3-4-5 band combination, and hydroxyls were
mapped to PC4 in the other combination (using 1-4-5-7 band
combination) with a high negative contribution (−0.5924913)
from TM5 and a high positive contribution (0.7288171) from
TM7 (Table 1). Crosta suggests taking these two PC4 into
further PCA, and the product of PC2 from this final PCA is
used to form the final RGB image together with those two
previous PC4s (Fig. 4b). However, this is not a general rule
for PC4.

Fig. 4 a PCA result of Crosta technique using all Landsat bands (1 to 7 except 6). b PCA result of Crosta technique using two groups of Landsat bands
(1, 3, 4, and 5, and 1, 4, 5, and 7)

Table 1 Eigenvalues of PCA of two Landsat band sets: 1, 3, 4, and 5,
and 1, 4, 5, and 7 bands

Landsat bands PC1 PC2 PC3 PC4

TM1 0.4293 −0.6022 −0.1908 0.6454668

TM3 0.5204 −0.0059 −0.6566 −0.5458363
TM4 0.3682 −0.4431 0.6768 −0.4582597
TM5 0.6397 0.6640 0.2726 0.2746514

TM1 0.4332 0.6068 −0.6454 −0.1658332
TM4 0.3748 0.5451 0.6870 0.3004646

TM5 0.6624 −0.4033 0.2176 −0.5924913
TM7 0.4826 −0.4145 −0.2531 0.7288171
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In some other studies, it was mentioned that the inverse of
PC4 enhanced hydroxyls if the combination of bands 1, 2, 3,
4, 5, and 7 was used as input to PCA, like proposed by Gupta
(2003) and in a case study from central Mexico (Ruiz-
Armenta and Prol-Ledesma 1998). On the other hand, it has
been proposed as a general rule that the ratio image of TM5/
TM4 detects the ferrous minerals as bright signs (Rawashdeh
et al. 2006; Rajesh 2008). The PCA technique was used to
discriminate the ferrous minerals, as for the ferric mineral
enhancement. This confirms the results obtained by using ra-
tio images. Mapping the Kula volcanic field uses the color
composite of ratio images 3/1, 4/5, and 3/2 (RGB). It illus-
trates multifaceted information and provides higher contrast
between the volcanic sheets (Fig. 3a).

Although the PC images in initially stretched forms pro-
vided brighter images and distinctive lithological units, they
are found very similar to those of unstretched data, and a
disturbance of other features prevented the enhancement of
the alteration.

Results and discussions

As it became a well-known procedure using 7-5-3, 5-3-1, and
4-7-2 Landsat TM band images in lithological studies (Yazdi
et al. 2011), all those RGB band combinations were examined,
and 4-7-2 band combination was found to be the best among
them for the Kula region. Color composite display of bands 4,
7, and 2 respectively in red, green, and blue channels is shown
in Fig. 2a. The red areas are vegetated areas as the band 4 is
sensitive to vegetation. Band 7 is responsible for moderate
reflectance for clay minerals and is displayed in very light
green and greenish colors. It is easy to say that band 7 could
recognize the clay altered zones as there are various light
green areas in the image. However, light green areas in the
near vicinity of Kula volcanics are probably because of iron
oxides or iron silicate more than clay alterations.

The bands 4 and 7 in red and green channels and band 5 in
the blue channel produced a color composite image having
clay-altered areas displayed as white. Iron-oxidized areas are
displayed as green-cyan tones since iron oxides relatively
have the same amount of reflectance in bands 5 and 7. Both
vegetation and hydroxyls are reflective in band 4 interval.
Thus, red areas are the vegetated and whitish pixels are clay
dominant altered regions (Fig. 2b).

As the result shows, the color composite method is quick
but not fully enough to delineate the certain borders for ba-
salts. Only general information can be gathered. The proce-
dure of assigning the bands to the display channels is the same
in the other methods, changing the input bands to be
displayed.

No image correction procedure has been applied to the
images prior to the processes here in this study. Images

selected for the display as a composite are histogram type
contrast stretched. Histogram type contrast enhancement
gives visually better display results than linear contrast
stretching. That is because the stretching transformation is
performed varyingly according to the histogram density in
normalizing contrast enhancement.

Generally, the TM 5 and 7 bands (shortwave infrared I and
shortwave infrared II) are highly correlated TM bands.
However, the pair of TM 1 and 3 bands (blue and red) repre-
sents a lower correlation than other visible band pairs.
Similarly, the pair of TM 4 and TM5 bands (near-infrared
and shortwave infrared I) shows a lower correlation than most
other pairs. These pairs are the best for rationing image inves-
tigation. As it is given in one of the previous sections, the
rationing technique highlights the differences of the spectral
absorption effects and also reduces errors caused by illumina-
tion and topography and thus facilitates the mapping of the
lithology and the alteration zones.

The band ratio 3/1 effectively maps iron alteration min-
erals showing maximum reflectance within Landsat TM
band 3 and minimum reflectance within Landsat TM band
1. Therefore, Landsat TM band ratio 3/1 increases the dif-
ferences between the digital numbers (DNs) of iron alter-
ation zones and those of unaltered rocks respectively
(Sabins 1999). This leads to a better discrimination between
basalts and other rock types in the present area. As Gupta
(2003) also suggested in his study, to examine the existence
of ferric minerals in this research on Kula volcanic basalt
field, 3/1 ratio was computed, and results are shown in
Fig. 5a. Two zones are identified within the region.
According to ratio image, the volcanic rocks appear
brighter than those of Kula landscape.

On the other hand, by investigating ferrous minerals
using ratio 5/4 (Rawashdeh et al. 2006), the area can be
separated into four regions from broken white to black
(Fig. 5b). However, when ratio band image 5/7 is analyzed,
the clay minerals appear in bright gray colors on the image
(Sabins 1999), showing three main zones (ranging from a
light gray color to dark gray) within the Kula basalt region
(Fig. 5c). The band 5/7 ratio is sensitive to the hydroxyl
mineral content of the rocks, such that areas of high 5/7
values have relatively high hydroxyl mineral contents
(Kusky and Ramadan 2002). Band ratio of 5/7 is therefore
expected to be emphasizing the clay minerals that give high
reflectance in band 5 and relatively low in band 7. Ratio of
band 3/2 gives high values for iron oxide minerals and band
ratio of 4/5 gives very low values for iron oxides and nearly
identical for clay minerals. Assigning respectively these
ratios to the red, green, and blue channels, Fig. 4 is then
obtained. Simply, the red pixel areas are clay-rich, green
pixels are iron oxide, and blue pixels are both clay and iron
oxide dominated areas. Yellow pixels represent hydrother-
mally altered clay and FeO-rich areas.
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Basalt pattern mapping by PCA of Landsat band ratios

The boundaries between mantle and crustal lithologies are not
very sharp due to different degrees of weathering and alter-
ation. The developed band ratio is efficient in the discrimina-
tion of alteration zones and associated rock types in providing
very subtle information based on the spectral sensitivity of
different proportions of minerals contained in different rocks.
However, the zones of mineralization were not clearly dis-
criminated in the image, and thus, here an attempt is made to
use principal component analysis (PCA) which has been
widely used for mapping of zones of mineralization and alter-
ations (Amer et al. 2010; Crosta et al. 2003; Crosta andMoore
1989; Gabr et al. 2010; Gad and Kusky 2006; Jing and Panahi
2006; Loughlin 1991; Madani et al. 2008; Rokos et al. 2000;
Tangestani and Moore 2002).

Principal component analysis is also widely used for map-
ping of alteration in metallogenic provinces (Ranjbar et al.
2004). In the resultant image, all intensely hydrothermally
altered areas are shown as bright pixels. This technique is used
on four bands (bands 1, 3, 4, and 5 for enhancing iron oxides
and bands 1, 4, 5, and 7 for enhancing hydroxyls). The only
disadvantage in using this method on four bands is that the
sedimentary rocks and the areas with mild hydrothermal sig-
natures are also enhanced in the resultant image (Ranjbar et al.
2004).

On the other hand, here in this study, it was done several
attempts if these Bfour-band^ PCAs work for the basalts in
Kula region well. As already shown and mentioned previous-
ly, they worked somehow. To improve these results and to get
more reasonable and satisfying outcomes for delineating the
boundaries of the basalts in the area, not only PCAs of these

Fig. 5 a Gray tone image of 3/1 bands ratio. b Gray tone image of 5/4 bands ratio. c Gray tone image of 5/7 bands ratio. d RGB combination of PC3,
PC2, and PC1 of the first, the third, and the first group ratio images, respectively

Fig. 6 a Subsetted image for basalt area after classification. b Map of the Kula basalts
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two sets of four Landsat bands but also PCAs of some ratios
that give results for discrimination of the basalts in the area
better than other ratios were studied. Thus, here in this study,
three separate principal component analyses were also per-
formed for three groups of combined ratio images. The first
group consists of 5/4, 5/1, and 3/7 ratio images, the second is
for 7/4, 5/1, and 4/3, and final group is for the ratios of 3/1,
4/5, and 3/2. After these three PC analyses, some combination
image of PCs from the first and the third groups except the
second gave better RGB display result. Figure 5d shows that
image consisting of the third PC (PC3) of the first group
assigned to red and the second PC (PC2) of the third group
to green and the first PC (PC1) of the first group to blue. The
basalt areas appear as bright areas in the first PC (PC1) of the
first group, and the same basaltic areas are therefore clearly
highlighted as blue colors in the RGB image composed of
these three PCs. Eigenvalue table of these three PCAs shows
the maximum opposite loads from the second component
(PC2) of the third PCA group and from the first component
(PC1) of the second PCA group and from the third component
(PC3) of the first PCA group (Table 1).

As it is well known, ground sampling distance (GDS) of a
multispectral Landsat ETM+ image is 30 m by 30 m. Then,
one Landsat image cell covers a 0.09-ha area on the ground. In
the classified image in Fig. 6a, the total number of basalt
pixels is obtained as 35,968 pixels. So basalts cover totally
3228 ha in the Kula region. Ortho-rectified image map of the
Kula basalts can also be seen in Fig. 6b.

Conclusions

As a result, the color composite method is quick but not fully
enough to delineate the certain borders for basalts. Only gen-
eral information can be gathered. The procedure of assigning
the bands to the display channels is the same in the other
methods, changing the input bands to be displayed.

According to principal component analyses, these analyses
were performed on three groups, each combining three ratio
images. The first group consists of 5/4, 5/1, and 3/7 ratio
images, the second is for 7/4, 5/1, and 4/3, and final group is
for the ratios of 3/1, 4/5, and 3/2. After PC analyses of these
three groups, some combination image of PCs from the first
and the third groups except the second gave better RGB dis-
play result. RGB image composite of these three components
with maximum opposite loads does not show a fine result for
the basalt areas, but the combination image of the third PC
(PC3) of the first group and the second PC (PC2) of the third
group and then the first PC (PC1) of again the first group does.
Thus, basalt areas are seen clearly in blue colors in Fig. 5d.

Future study is going to focus on determining the changes
in the field coverage of the basalt region in Kula in time and
those caused by human activities such as those done for rural,

agricultural, or settlement purposes in the region. Satellite im-
agery and appropriate remote sensing analysis techniques are
going to be chosen to determine the changes.
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