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Abstract Multi-criteria decision analysis (MCDA) as an ad-
vantageous tool has been applied by various researchers to
improve their management ability. Management of ground-
water resource, especially under data-scarce and arid areas,
encountered a lot of problems and issues which drives the
planers to use of MCDA. In this research, a standard method-
ology has been applied to delineate groundwater resource
potential zonation based on integrated analytical hierarchy
process (AHP), geographic information system (GIS), and
remote sensing (RS) techniques in Kurdistan plain, Iran. At
first, the effective thematic layers on the groundwater potential
such as rainfall, lithology, drainage density, lineament density,
and slope percent were derived from the spatial geodatabase.
Then, the assigned weights of thematic layers based on expert
knowledge were normalized by eigenvector technique of
AHP. To prepare the groundwater potential index, the weight-
ed linear combination (WLC) method was applied in GIS.
Finally, the receiver operating characteristic (ROC) curve was

drawn for groundwater potential map, and the area under
curve (AUC) was computed. Results indicated that the rainfall
and slope percent factors have taken the highest and lowest
weights, respectively. Validation of results showed that the
AHP method (AUC=73.66 %) performed fairly good predi-
cation accuracy. Such findings revealed that in the regions
suffering from data scarcity through the MCDM methodolo-
gy, the planners would be able to having accurate knowledge
on groundwater resources based on geospatial data analysis.
Therefore, the developing scenario for future planning of
groundwater exploration can be achieved in an efficient
manner.
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Introduction

Groundwater is considered as the main portion of the water
supply in arid and semi-arid regions. In these environments,
complexity of the groundwater management is increased
when these regions face scarcity of data (Bastani et al.
2010).Moreover, their groundwater resources can hardlymeet
an increasing demand driven by population growth, improved
living conditions, and economic development (Vaux 2011;
Mukherjee et al. 2012; Page et al. 2012).

Two thirds of Iran’s landmass is considered a desert land
devoid of forests and green pastures. Such a harsh environ-
mental condition and water scarcity have mostly led Iranian
people to rely on groundwater resources instead of surface
water (Baghvand et al. 2010; Bastani et al. 2010; Nosrati and
Eeckhaut 2012). However, having knowledge on groundwater
resources and potential mapping always need sophisticated
costly instruments as well as methodology. Groundwater po-
tential prediction using a standard method is necessary for
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groundwater resource management, especially in data-scarce
areas. From a groundwater exploration viewpoint, the term
‘groundwater potential’ can be defined as the possibility of
groundwater occurrence in an area (Jha et al. 2010). The
traditional approaches of groundwater exploration through
drilling, hydro-geological, geological, and geophysical
methods are extremely costly, are time-consuming, and re-
quire skilled manpower (Todd and Mays 1980; Roscoe, Moss
Co 1990; Israil et al. 2006; Jha et al. 2010).

The advent of geographic information system (GIS) and
remote sensing (RS) has also provided another cost and time
effective means of groundwater potential mapping (Godebo
2005; Jha and Peiffer 2006; Prasad et al. 2008; Pradhan 2009;
Arkoprovo et al. 2012; Davoodi Moghaddam et al. 2013;
Manap et al. 2013; Nampak et al. 2014). GIS is an excellent
and useful tool to handle huge amount of spatial data and can
be used in the decision making process in a number of fields
such as hydrology and environmental management (Gogu
et al. 2001; Brunner et al. 2004; Bandyopadhyay et al. 2007;
Jha et al. 2007; Jha and Chowdary 2007; Chowdhury et al.
2009; Gaur et al. 2011; Magesh et al. 2012). It is because of
the quick access to data obtained through global positioning
systems and RS techniques (Ganapuram et al. 2009; Zare et al.
2013). Although satellite imagery cannot directly detect
groundwater, the surface features prepared from such imagery
(e.g., landforms and fractures) act as indicators of groundwa-
ter potential prediction (Vittala et al. 2005; Jha and Peiffer
2006; Adiat et al. 2012; Hammouri et al. 2012).

Several studies have been applied using index-based
methods for assessing groundwater potential mapping (Solo-
mon and Quiel 2006; Prasad et al. 2008; Dar et al. 2010;
Elewa and Qaddah 2011; Manap et al. 2012). In some studies,
probabilistic models such as frequency ratio (FR) (Oh et al.
2011; Davoodi Moghaddam et al. 2013), weight of evidence
(WofE) (Corsini et al. 2009; Lee et al. 2012a), evidential belief
function (EBF) (Mogaji et al. 2014), logistic regression (LR)
(Ozdemir 2011), Shannon’s entropy (Naghibi et al. 2014), and
analytical hierarchy process (AHP) (Machiwal et al. 2011;
Adiat et al. 2012; Shekhar and Pandey 2014) have been used
for groundwater potential mapping.

Over the past decades, many researchers have found that
methods of multi-criteria decision analysis (MCDA) are ef-
fective tools for providing a framework for groundwater re-
source management (Pietersen 2006; Madrucci et al. 2008;
Jha et al. 2010). The AHP method is one of the most widely
used MCDA models, which has also been employed for the
environmental management purpose (Pourghasemi et al.
2012a, b; Chandio et al. 2013; Althuwaynee et al. 2014).
Interestingly, in using the AHP method, experts can remark
on relative importance of thematic layers for assessment of
groundwater potential (Hajkowicz and Higgins 2008; Murthy
and Mamo 2009; Chowdhury et al. 2010; Kaliraj et al. 2014).
Hajkowicz and Collins (2007) reviewed the application of the

MCDAmethods in water resource management and indicated
that the AHP is widespread and growing. Chenini et al. (2010)
showed that GIS-based multi-criteria analysis has a good
functionality for mapping groundwater recharge zone. As it
can be seen in the aforementioned literature, the GIS and AHP
methods have been widely used in groundwater potential
assessment.

In Iran, more than 70 % of the rural and nearly 50 % of the
urban populations depend on groundwater resources for meet-
ing their drinking and domestic requirements (Rahmati 2013).
Unfortunately, water scarcity is common in several parts of
Iran that will be exacerbated by human activities and global
climate change (Ghayoumian et al. 2007; Abbaspour et al.
2009; Ayazi et al. 2010; Zarghami et al. 2011; Hosseini et al.
2012; Neshat et al. 2013). It seems that such conditions are to
some extent similar around the arid and semi-arid areas of the
world.

The main aim of this study is examine the capability of
AHP, GIS, and RS techniques for groundwater potential map-
ping, and for this purpose, Ghorve–Dehgolan plain of Kurdi-
stan province in western Iran was selected. Assessing the
groundwater potential will be helpful to the decision makers
in groundwater management and identifying suitable loca-
tions for drilling production wells. Because no such studies
have been reported in the study area till now, therefore, the
current study is the pioneer work in this subject which is
crucial for rapid assessing of ground water potential. Also,
inadequate public water supply has led to increased demand
for groundwater in Kurdistan province during the past decade.
Therefore, to understand the groundwater potential, a quick
and low expense methodology is needed for preventing the
undesirable effects of water resource development.

Description of study area

The aquifer of Ghorve–Dehgolan plain in Kurdistan Province,
west of Iran, is located between 47° 10′ E to 48° 8′ E longi-
tudes and 34° 55′ N to 35° 25′ N latitudes (Fig. 1). The total
area is 890.3 km2 inhabited by population number of 300,000.
The sources of water supply are surface (river water) and
mostly groundwater. Surface water is primarily used for irri-
gation, while groundwater is used for both irrigation and
drinking water purposes via dug wells and pumping wells.
From the groundwater availability viewpoint, the inhabitants
of the study area have been facing declining groundwater
levels for the past few years. In this region, the people’s living
costs depend on dry farming and irrigated agriculture produc-
tion. The most common land uses within the study area are
residential area, rangelands, and irrigated and dry farming
agriculture, accounting for proportions of the total area of
1.2, 3.5, 66.6, and 28.7 %, respectively. Unfortunately, limited
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studies have been conducted in the study area related to water
resource management.

The study area is considered to have a semi-arid climate
with an average annual rainfall of 345 mm and an irregular
yearly distribution (more than 75% of the rainfall occurs from

December to April). The average daily minimum temperature
is 5.5 °C in the winter, and average daily maximum temper-
ature is 36 °C in the summer. The study area is located in
Sanandaj–Sirjan structural zone of Iran. The Sanandaj–Sirjan
is identified as a region of polyphase deformation, the latest

Fig. 1 Location of the study area
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reflecting the collision of Arabia and Eurasia and the subse-
quent southward propagation of the fold–thrust belt (Alavi
1994). Therefore, the geology of the study area is character-
ized by geologic structures and fracture systems, which play a
role in increasing the permeability of rocks.

Methodology

Selecting thematic layers influencing groundwater potential

The number of thematic layers used depends on the data
availability in the study area. In order to assess groundwater
potential zones, five thematic layers, viz. rainfall, lithology,
drainage density, lineament density, and slope percent, were
chosen as the effective factors. Hydrology conditions are
largely dependent on these thematic layers and hence
influencing the occurrence of groundwater. These thematic
layers provide a reliable base for an effective prediction of the
groundwater potential of an area. The complete process of the
groundwater potential prediction is shown in Fig. 2.

Geospatial database generation

A database was built for managing the used thematic layers in
GIS framework. Then, the layers were converted to grid
format with grid size of 10 km2 for the study area using
ArcGIS 10.2 software.

Rainfall (Rf)

The rainfall availability was considered as a major source of
recharge (Musa et al. 2000; Magesh et al. 2012; Shekhar and
Pandey 2014). The rainfall has a significant effect on the
groundwater potential and the efficiency of MCDA (Adiat
et al. 2012). Monthly rainfall data of ten meteorological sta-
tions within the study area for a period of 15 years (i.e., 1996–
2010) were obtained from the Iranian Meteorological Organi-
zation. The resulting map was classified into five major clas-
ses: 266–293, 293–320, 320–347, 347–374, and 374–
400 mm/year (Fig. 3a). Based on this map, the average annual
rainfall in the elevated areas is relatively more than the area
with low elevation.

Fig. 2 Flowchart showing the methodology adopted in this study
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Lithology (Lt)

The lithology influences on both the porosity and permeability
of aquifer rocks (Ayazi et al. 2010; Chowdhury et al. 2010).
The occurrence of groundwater is common in quaternary
alluvial sediments in the study area. The lithology layer was
prepared by digitizing the geological map (Geological Survey
Department of Iran, Ghorve sheet at 1:100,000 scale)
(Fig. 3b). The lithology of the study area consists mainly of
quaternary alluvial, diorite, and diorite–gabbro rocks. The
most common quaternary formation includes travertine
(Qtr), alluvial fan deposits (Qf), alluvial terraces (Qt2),
alluvial-plain deposits (Qt3), and calcareous sandstone with
marl sediments. Due to hardness and low fractures, the
groundwater movement in diorite and diorite–gabbro rocks
is difficult and therefore assumed as a poor groundwater
potential (Thakur and Raghuwanshi 2008;Manap et al. 2013).

Drainage density (Dd)

The drainage system of an area is determined by the nature
and structure of the bedrock, kind of vegetation, rainfall
absorption capacity of soils, infiltration, and slope gradient
(Manap et al. 2013). A low-drainage-density region causes
more infiltration and decreased surface runoff. It means that
areas having low drainage density are suitable for groundwa-
ter development (Dinesh Kumar et al. 2007; Magesh et al.
2012).

The drainage system of the study area is shown in Fig. 1.
The drainage pattern was extracted directly from ASTER
DEM (28*28 m). The surface drainage density is the ratio of
the sum of lengths of streams to the size of area of the grid
under consideration (Greenbaum 1989; Adiat et al. 2012;
Mogaji et al. 2014). Hence, a mesh network (with cell size
of 10 km2) was designed on the study area, and the drainage
density index was calculated through Eq. (1).

Dd ¼
X i¼n

i¼1

Di

A
km−1� � ð1Þ

where ΣDi is the total length of all streams in the mesh i (km)
and A is the area of the grid (km2).

The values calculated for each grid was plotted at the center
of the grid using ArcGIS 10.2 software. Then, the coordinates
of the center of each grid were used to prepare the surface
drainage density map by Kriging interpolation technique.
Based on the surface drainage density, the study area can be
grouped into five classes: 0–0.15 (very low), 0.15–0.3 (low),
0.3–0.45 (moderate), 0.45–0.6 (high), and 0.6–0.77 (very
high) km/km2, as shown in Fig. 3c. The very high drainage

density is scattered in the northern part of the study area. The
low and very low drainage densities cover majority of the
study area.

Lineament density (Ld)

The lineaments are linear features on the Earth’s surface that
reflect a general surface expression of underground fractures
(Pradhan et al. 2006; Pradhan and Youssef 2010). They are
categorized as the secondary porosity and visible on satellite
images as tonal differences compared to other terrain features.
A lineament may represent a fault, fracture, and master joint; a
long and linear geological formation; topographic linearity; or
straight course of streams (Pradhan 2009). They effect on the
infiltration of surface runoff into subsurface and are of great
relevance to the storage and movement of groundwater
(Subba Rao et al. 2001). Furthermore, Sree Devi et al.
(2001) commented that lineaments have more significance
in the groundwater studies. Lineaments of the area were
extracted from the Landsat ETM+ image using Sobel direc-
tional filtering and high-pass directional filtering (Pradhan and
Pirasteh 2010) (Fig. 3d). The concentration of lineaments is
more in the western part of the study area. In a similar manner
to the drainage density, the lineament density (Ld) was calcu-
lated based on the mesh network method (Fig. 3e). The Ld
was defined as the total length of all recorded lineaments
divided by the area under consideration (Edet et al. 1998).
This is shown in the following equation:

Ld ¼
X i¼n

i¼1

Li
A

km−1� � ð2Þ

whereΣLi is the total length of all lineaments (km) and A is the
area of the grid (km2). In this study, the lineament density was
classified into five classes: <0.02 km/km2 (very low), 0.02–
0.06 km/km2 (low), 0.06–0.1 km/km2 (moderate), 0.1–
0.17 km/km2 (high), and 0.17–0.25 km/km2 (very high).

Slope percent (S)

The slope percent can be considered as a surface indicator for
identification of groundwater conditions (Al Saud 2010;
Ettazarini 2007). In other words, these thematic layers can
be considered as the surrogate of surface runoff velocity and
vertical percolation (i.e., infiltration is inversely related to the
slope) and thus affecting recharge processes (Adiat et al.
2012). The slope percent map for the study area (Fig. 3f)
was generated from the ASTER DEM image of the area using
ArcGIS 10.2 software.
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Normalized weights for thematic layers

AHP was used to determine the weights of the thematic layers
(Saaty 1980). Saaty’s AHP is a widely usedMCDM technique
in the field of natural resources and environmental

management. Interestingly, the GIS-based AHP method has
been advanced by the international scientific community as a
powerful tool for analyzing complex spatial decision prob-
lems. The comparison ratings are on Saaty’s 1–9 scale (Saaty
1980). In order to determine the weight of each thematic layer,

Fig. 3 Thematic layers: a annual rainfall, b lithology units, c drainage density, d spatially distribution of lineaments, e lineament density, and f slope
percent map of the study area
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questionnaires of comparison ratings on the Saaty’s scale were
prepared and filled by experts (hydrogeologists, geologists
etc.) within Iran. Consequently, all the thematic layers are
compared against each other in a pairwise comparison matrix
(Table 1). The Expert Choice software package (E.C. Inc.
1995) based on the AHP method has been used to estimate
weights of the importance of the thematic layers and to test for
consistency ratio (CR). In the AHP method, the pairwise
comparisons of all the thematic layers were taken as the
inputs, while the relative weights of the thematic layers were
the outputs. The final weightings for the thematic layers are
the normalized values of the eigenvectors that are associated
with the maximum eigenvalues of the ratio matrix (Jha et al.
2010; Adiat et al. 2012) (Table 2). The following equation is
used to calculate the CR:

CR ¼ CI=RI ð3Þ

where RI is the random index whose value depends on the
order of the matrix and CI is the consistency index which can
be expressed as follows:

CI ¼ λmax
−n

n−1
ð4Þ

where λ is the largest eigenvalue of the matrix and can be
easily calculated from the matrix and n is the number of
thematic layers. Saaty (1980) and Malczewski (1999) sug-
gested that the CR must be less than 0.1.

Normalized weights of different features of thematic layers

The map of each thematic layer was classified. Ranks
assigned to different features of the individual themes and
their normalized weights are presented in Table 3 (Machiwal
et al. 2011; Chowdary et al. 2013).

Definition of the GWPI

The groundwater potential index (GWPI) is a dimensionless
quantity that helps to predict the groundwater potential zones
in an area. The weighted linear combination method was used
to estimate the groundwater potential index (GWPI) as fol-
lows (Malczewski 1999; Shekhar and Pandey 2014):

GWPI ¼
X m

w¼1

X n

i¼1
Wi � X j

� � ð5Þ

whereWj is the normalized weight of the j thematic layer, Xi is
the rank value of each class with respect to the j layer,m is the
total number of thematic layers, and n is the total number of
classes in a thematic layer. The GWPI for each grid was
calculated using Eq. (6) below:

GWPI ¼ LtWLtW f þ LdWLdW f þ DdWDdW f þ SWSW f

þ RfWRfW f ð6Þ

where Lt is the lithology, Ld is the lineament density, Dd is the
drainage density, S is the slope, and Rf is the rainfall. While,
the subscripts ‘W’ and ‘Wf’ indicate the normalized weight of
a theme obtained through AHP and the normalized weight of
the individual features of a theme, respectively.

GWPI values were grouped into five classes of very poor
(<0.134), poor (0.134–0.171), moderate (0.171–0.210), good
(0.210–0.249), and very good (>0.249) using the quantile
classification method. In the quantile classification approach,
each class contains the same number of features. This ap-
proach was used by several researchers due to its efficiency
in classification (Papadopoulou-Vrynioti et al. 2013; Tehrany
et al. 2013; Nampak et al. 2014; Tehrany et al. 2014; Umar
et al. 2014). The igneous rocks are primarily hard and compact

Table 1 Pairwise comparison matrix for the AHP process

Theme Theme

Rf Lt Ld Dd S

Rainfall (Rf) 1.00 3.00 3.00 5.00 9.00

Lithology (Lt) 0.33 1.00 5.00 5.00 5.00

Lineament density (Ld) 0.33 0.20 1.00 3.00 3.00

Drainage density (Dd) 0.20 0.20 0.33 1.00 2.00

Slope (S) 0.11 0.20 0.33 0.50 1.00

Column total 1.97 4.6 9.66 14.5 20

Table 2 Determining the normalized weights for thematic layers

Theme Theme Normalized weights (W)

Rf Lt Ld Dd S

Rf 1/1.97=0.51 3/4.6=0.65 3/9.66=0.31 5/14.5=0.34 9/20=0.45 2.27/5=0.45

Lt 0.17 0.22 0.52 0.34 0.25 0.3

Ld 0.17 0.04 0.10 0.21 0.15 0.14

Dd 0.10 0.04 0.03 0.07 0.10 0.07

S 0.06 0.04 0.03 0.03 0.05 0.04

Consistency ratio (CR)=0.07<0.1
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in nature and lack of primary porosity (Dar et al. 2011). This
rock type is considered as poor groundwater potential (Thakur
and Raghuwanshi 2008;Manap et al. 2013), while assumed as
non-potential due to difficulty in terms of groundwater storage
and movement.

Preparation of the groundwater potential map

The GWPI was calculated for each grid and then was plotted
at the center of the grids (Table 4). The groundwater potential
index map was prepared based on Kriging interpolation tech-
nique and grids’ center coordinates. The geostatistical analysis
was carried out using Geostatistical Analyst extension of
ArcGIS 10.2 software.

Verifying groundwater potential map

The receiver operating characteristic (ROC) was used to de-
termine the accuracy of groundwater potential map
(Mohammady et al. 2012; Davoodi Moghaddam et al. 2013;
Pradhan 2013). The groundwater potential map delineated in
the present study was verified using the available well yield
data of 50 pumping wells (Pradhan 2009; Shekhar and Pandey
2014). Based on the well yield data acquired from the Iranian
Department of Water Resources Management, the accuracy
assessment of the GWPI map was made. The ROC curve is
considered as a graphical representation of the trade-off be-
tween the false-negative (X-axis) and false-positive (Y-axis)
rates for every possible cutoff value (Negnevitsky 2002;
Pourghasemi et al. 2013). In the ROC curve analysis, the area
under curve (AUC) demonstrates the accuracy of a prediction
system by describing the system’s ability to expect the correct
occurrence or non-occurrence of pre-defined “events”
(Bui et al. 2011; Jaafari et al. 2014). According to Yesilnacar
(2005), the quantitative–qualitative relationship between the
AUC and prediction accuracy can be classified as follows:
0.5–0.6 (poor), 0.6–0.7 (average), 0.7–0.8 (good), 0.8–0.9
(very good), and 0.9–1 (excellent).

Results and discussion

Groundwater potential map

The groundwater potential map was prepared based on the
GIS-based AHP and grid techniques (Fig. 4). According to the
quantile method, the GWPI values were classified into six
groundwater potential zones: non-potential, very poor, poor,
moderate, good, and very good classes. The results also
showed that 3.5, 19.75, 18.65, 18.7, 19.4, and 20 % of the
area represent non-potential, very poor, poor, moderate, good,
and very good, respectively. Based on Fig. 4, the very good
groundwater potential zones are located at the west and east of
the plain. Moreover, the northern parts of the plain because of
high slope, high drainage density, and lithology with low
permeability fall under very poor groundwater potential
zones.

Validation of groundwater potential map

Validation is the most important process of modeling in that
without validation, the models will have no scientific signif-
icance (ChungJ and Fabbri 2003). For validation, receiver
operating characteristic (ROC) analysis by comparing the
existing well yield data with the groundwater potential map
obtained by AHP model was used (Pradhan 2009;
Mohammady et al. 2012; Pourghasemi et al. 2012b; Davoodi

Table 3 Assigned and normalized weights of different features of five
thematic layers for groundwater potential zoning

Theme Feature/class Assigned
rank

Feature normalized
weight (Wf)

Lithology (Lt) Calcareous
sandstone and
marl

1 1/14=0.071

Low-level terraces 2 2/14=0.142

Alluvial fan deposit 3 3/14=0.214

Lowest alluvial
plain deposit

3 3/14=0.214

Travertine 5 5/14=0.357

Diorite and diorite–
gabbro

– –

Total 14

Rainfall (Rf) 260–290 1 0.067

290–320 2 0.133

320–350 3 0.200

350–380 4 0.267

380–400 5 0.333

Drainage
density (Dd)

0–0.15 5 0.333

0.15–0.3 4 0.267

0.3–0.45 3 0.200

0.45–0.6 2 0.133

0.6–0.77 1 0.067

Lineament
density (Ld)

0–0.02 1 0.067

0.02–0.06 2 0.133

0.06–0.1 3 0.200

0.1–0.17 4 0.267

0.17–0.25 5 0.333

Slope (S) 0–3 5 0.333

3–6 4 0.267

6–10 3 0.200

10–15 2 0.133

>15 1 0.067
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Fig. 4 Spatially distributed groundwater potential zones and well locations

Table 4 Rating of grids and calculations of GWPI

Grid number Grid center coordinate Dd (W=0.07) LD (W=0.14) Lt (W=0.3) Rf (W=0.45) S (W=0.04) GWPI ΣW*Wf

Easting Northing Wf W*Wf Wf W*Wf Wf W*Wf Wf W*Wf Wf W*Wf

1 704995.6 3921593.4 0.33 0.023 0.067 0.009 0.357 0.107 0.20 0.090 0.200 0.008 0.237

2 708106.6 3921593.4 0.33 0.023 0.067 0.009 0.286 0.086 0.20 0.090 0.200 0.008 0.216

3 711217.5 3921593.4 0.33 0.023 0.067 0.009 0.071 0.021 0.20 0.090 0.200 0.008 0.151

4 701827.1 3918511.3 0.13 0.009 0.067 0.009 0.143 0.043 0.20 0.090 0.200 0.008 0.159

5 704966.8 3918453.7 0.20 0.014 0.067 0.009 0.071 0.021 0.20 0.090 0.200 0.008 0.142

6 708135.4 3918482.5 0.20 0.014 0.067 0.009 0.143 0.043 0.20 0.090 0.200 0.008 0.164

7 711217.5 3918511.3 0.27 0.019 0.067 0.009 0.143 0.043 0.20 0.090 0.200 0.008 0.169

8 714357.3 3918453.7 0.27 0.019 0.067 0.009 0.143 0.043 0.20 0.090 0.200 0.008 0.169

9 717381.8 3918396.1 0.27 0.019 0.067 0.009 0.071 0.021 0.13 0.060 0.200 0.008 0.117

10 720435.1 3918367.3 0.33 0.023 0.067 0.009 0.214 0.064 0.13 0.060 0.200 0.008 0.164

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

195 779315.0 3875059.0 0.33 0.023 0.067 0.009 0.357 0.107 0.20 0.090 0.267 0.011 0.240

196 769737.3 3872070.4 0.33 0.023 0.067 0.009 0.357 0.107 0.33 0.150 0.267 0.011 0.300

197 773085.9 3872034.4 0.33 0.023 0.067 0.009 0.286 0.086 0.33 0.150 0.200 0.008 0.276

198 776074.4 3872070.4 0.33 0.023 0.067 0.009 0.286 0.086 0.20 0.090 0.267 0.011 0.219

199 779279.0 3872070.4 0.33 0.023 0.067 0.009 0.286 0.086 0.20 0.090 0.267 0.011 0.219

200 773013.9 3869045.9 0.33 0.023 0.067 0.009 0.286 0.086 0.20 0.090 0.133 0.005 0.213

201 776110.4 3868937.9 0.33 0.023 0.067 0.009 0.286 0.086 0.20 0.090 0.133 0.005 0.213
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Moghaddam et al. 2013; Pradhan 2013; Regmi et al. 2013;
Pourtaghi and Pourghasemi 2014). The prediction curves are
shown in Fig. 5. ROC plot assessment results (Fig. 5) show
that in the groundwater potential map using AHP, the AUC
was 0.7366, which corresponds to the prediction accuracy of
73.66%. Therefore, it can be implied that the model utilized in
this study showed reasonably good accuracy in predicting the
groundwater potential.Moreover, it is concluded that the AHP
model can be used as a simple tool for the assessment of
groundwater potential. Yalcin (2008) and Pourghasemi et al.
(2013) stated that AHP as an expert knowledge-based model
is very useful for solving complex problems. Srivastava and
Bhattacharya (2006) and Jha et al. (2010) demonstrated that
the RS, GIS, and MCDA techniques provide a useful
integrated tool for evaluating the groundwater conditions at
a basin or subbasin scale. Jankowski (1995) stated that the
main purpose of the AHP method is to support the decision
makers in selecting the best alternative from the various
possible choice alternatives under the presence of multiple
priorities.

The verification of the groundwater potential map using
yield data shows that this prediction method is effective and
reliable. This result is in line with the results of Lee et al.
(2012b) that applied an artificial neural network (ANN)model
and a geographic information system (GIS) to the mapping of
regional groundwater productivity potential (GPP) for the area
around Pohang City, Republic of Korea. The validation
showed prediction accuracies between 73.54 and 80.09 %.
They used the weighted overlay modeling technique to devel-
op a groundwater potential model with eight different

effective weighted thematic layers, including annual rainfall,
lithology, lineament density, topography, slope, and drainage
density. The groundwater potential map can be prepared based
on surface thematic layers (e.g., drainage density and slope)
which are easily accessible and hence are widely used (Jha
et al. 2007; Adiat et al. 2012), especially in developing and
low-income countries.

Conclusion

In this study, a GIS-based AHP approach over a variety of
MCDA techniques was chosen to obtain spatially distributed
groundwater potential zones of the area. The aquifer of
Ghorve–Dehgolan plain in western of Iran was selected as
the study area and five thematic layers, viz. rainfall, lithology,
drainage density, lineament density, and slope percent, were
included for assessing groundwater potential zones. The re-
sults indicated that the groundwater potential mapping is
controlled mostly by rainfall, lithology, and lineament density
factors. Finally, for testing the accuracy of the AHPmodel, the
ROC curve was prepared (Fig. 5). The validation of results
demonstrated that the AHP has fairly good predication accu-
racy of 73.66 %. Hence, based on the results of this research
and the accuracy of the derived groundwater potential predic-
tion map, it can be concluded that the applied methodology,
together with the used indices, is a useful framework for the
rapid assessment of groundwater potential and can be

Fig. 5 ROC curve for the
groundwater potential map
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recommended to be applied in other areas especially in data-
scarce areas.

In summary, the results of this study proved that GIS-based
AHP approach could be successfully applied for the ground-
water potential mapping. Hence, the result of groundwater
potential map can be useful for planners in the water resource
management and comprehensive evaluation of groundwater
exploration development for future planning.
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