
ORIGINAL PAPER
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on visible and near-infrared reflectance spectroscopy: a case study
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Abstract Soil salinization is a progressive soil degradation
process that reduces soil quality and decreases crop yields and
agricultural production. This study investigated a method that
provides improved estimations of soil salinity by using visible
and near-infrared reflectance spectroscopy as a fast and inex-
pensive approach to the characterisation of soil salinity. Soil
samples were collected from the El-Tina Plain on the north-
western Sinai Peninsula in Egypt and measured for electrical
conductivity (ECe) using a saturated soil-paste extract. Subse-
quently, the samples were scanned with an Analytical Spectral
Devices spectrometer (350–2,500 nm). Three spectral formats
were used in the calibration models derived from the spectra
and ECe: (1) raw spectra (R), (2) first-derivative spectra
smoothened using the Savitzky–Golay technique (FD-SG) and
(3) continuum-removed reflectance (CR). The spectral indices
(difference index (DI), normalised difference index (NDI) and
ratio index (RI)) of all of the band–pair combinations of the three
types of spectra were applied in linear regression analyses with
the ECe. A ratio index that was constructed from the first-
derivative spectra at 1,483 and 1,918 nm with an SG filter
produced the best predictions of the ECe for all of the band–pair
indices (R2=0.65). Partial least-squares regression models
using the CR of the 400–2,500 nm spectral region resulted in
R2=0.77. The multivariate adaptive regression splines calibra-
tion model with CR spectra resulted in an improved perfor-
mance (R2=0.81) for estimating the ECe. The results obtained
in this study have potential value in the field of soil

spectroscopy because they can be applied directly to the
mapping of soil salinity using remote sensing imagery in arid
regions.
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Introduction

Soil salinization is a universal problem, especially in exten-
sively irrigated areas that are poorly drained. Current estima-
tions of the proportion of salt-affected soils in irrigated lands
for several countries are 20 % for Australia, 27 % for India,
28 % for Pakistan, 50 % for Iraq and 30 % for Egypt (Stockle
2013). The accumulation of soluble salts in the root zone
greatly affects plant growth, resulting in lower crop yields
and adversely affecting the soil fertility (Qadir et al. 2007;
Matinfar et al. 2011; Li et al. 2013). Therefore, reliable infor-
mation on the nature and spatial extent of soil salinity is a
prerequisite for restoring fertility and preventing further
degradation.

Soil salinity is typically assessed by measuring the soil
electrical conductivity (ECe) in saturated paste extracts or by
using extracts with different soil-to-water ratios (Amezketa
2006; Sonmez et al. 2008). Because conventional laboratory
methods are time-consuming and relatively costly and soils
have high spatial variability, particularly in terms of soil
salinity (Akramkhanov et al. 2011), numerous remote sensing
data have been used to identify and monitor salt-affected soils
(Metternicht and Zinck 2003; Farifteh et al. 2007; Mulder
et al. 2011), and several studies have been conducted in Egypt
(Goossens et al. 1994; Ghabour 1997; Masoud and Koike
2006; Ibrahim and El Falaky 2013). Soil salinity is related to
different parameters that have been derived frommultispectral
images using several soil and vegetation-based indices (Khan
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et al. 2005; Fernández-Buces et al. 2006; Eldeiry and Garcia
2008; Badreldin et al. 2013; Othman et al. 2013). The effi-
ciency of these methods has been restricted by various factors,
such as the spectral and spatial resolution of the images and
vegetation coverage (Farifteh et al. 2006; Metternicht and
Zinck 2008). Because of the contiguous nature of
hyperspectral signatures, hyperspectral remote sensing may
overcome several shortcomings of multispectral remote sens-
ing and enable the discrimination of fine differences between
materials (Chang 2003; Campbell 2011). Therefore,
hyperspectral remote sensing has been commonly used to
study soil salinity (Dehaan and Taylor 2002; Tamas and
Lenart 2006; Farifteh et al. 2007; Weng et al. 2008; Bilgili
et al. 2011; Mashimbye et al. 2012).

Hyperspectral visible and near-infrared reflectance spec-
troscopy (VNIRRS) displays promise as a result of its perfor-
mance, accuracy and cost effectiveness in the determination of
most soil properties in laboratories (Shepherd and Walsh
2002; Waiser et al. 2007; Bilgili et al. 2010). Once the cali-
bration models between soil reflectance spectra and soil var-
iables have been established, they can be used to predict
unidentified parameters. With the development of imaging
spectrometry, reflectance spectroscopy has recently been ap-
plied at larger scales to map various soil properties, such as
texture, clay content (Brown et al. 2006; Stenberg et al. 2010;
Divya et al. 2013), mineralogy (Balasubramanian et al. 2012;
Tiwari et al. 2013), organic carbon (Patzold et al. 2008;
Stevens et al. 2010) and salinity (Dehaan and Taylor 2002;
Farifteh et al. 2007; Weng et al. 2008).

The performance of the models is usually high and
explains more than 81 % of the variability (Farifteh et al.
2007; Weng et al. 2008). Several regression methods
based on VNIRRS have been used to estimate soil salinity,
and partial least-squares regression (PLSR) is the most
common (Farifteh et al. 2007; Weng et al. 2008; Bilgili
et al. 2011). The PLSR approach has inference capabilities
that are useful for modelling a probable linear relationship
between the measured reflectance spectra and salt content
in soils (Farifteh et al. 2007). The multivariate adaptive
regression splines (MARS) method is considered a non-
parametric method that estimates complex nonlinear rela-
tionships among independent and dependent variables
(Friedman 1991), and it has been effectively applied in
different fields (Luoto and Hjort 2005; Bilgili et al. 2010;
Felicísimo et al. 2012; Samui 2012) and generally exhibits
high performance results compared with other linear and
non-parametric regression models, such as principal com-
ponent regressions, classification and regression trees and
artificial neural networks. Bilgili et al. (2010, 2011) used
MARS to model soil salinity and reported that it provided
better estimations for the ECe of air-dried soils compared
with the more frequently used PLSR method. Importantly,
the choice of spectral pre-processing method (Rinnan et al.

2009) was found to be essential for the performance of
multivariate calibration (Buddenbaum and Steffens 2012).

Because the correct method can enhance the predictive
capability of the models (Bilgili et al. 2010, 2011; Mashimbye
et al. 2012), this research aims to advance the use of reflec-
tance spectroscopy for assessments of soil salinity based on a
case study in the selected area. The objectives of the present
study were as follows: (1) develop a soil salinity index based
on various types of spectra pre-processing, (2) model and
estimate soil salinity using linear (PLSR) and nonlinear
(MARS) modelling methods based on soil spectra and (3)
compare the accuracy of selected indices and models for
estimating soil salinity.

Materials and methods

Study area

The study area is the El-Tina Plain, which is located on the north-
western Sinai Peninsula in Egypt between longitudes 32°20′35″
and 32°33′10″ E and latitudes 30°57′25″ and 31°04′28″ N and
has an area of approximately 175 km2 (Fig. 1). The El-Tina Plain
is characterised by arid conditions, with annual rainfall ranging
from 33.4 to 70.3 mm. The mean air temperatures range from
7.5 to 23.3 °C in winter and between 16.3 and 35.6 °C in
summer. The mean evaporation is high and ranges from 3.6 to
7.3 mm/day. The land surface is nearly flat and ranges in
elevation from below sea level to 5 m above sea level. The soil
texture varies from loamy sand to clay, and the soil salinity varies
from non-saline to highly saline. Nawar et al. (2011) classified
the soils of the El-Tina Plain into the two orders Entisols and
Aridisols, which include the eight subgroups Typic Aquisalids,
Typic Haplosalids, Aquic Torriorthents, Typic Torriorthents,
Aquic Torripsamments, Typic Torripsamments, Gypsic
Aquisalids and Gypsic Haplosalids.

Soil sampling and analysis

Ninety-four soil samples (0–20 cm) were collected from the
study area based on a previous soil salinity mapping (Nawar
et al. 2011). Satellite navigation measurements with a Garmin
12XL were used to obtain the geographic locations of the soil
samples. The collected soil samples were air-dried, crushed
and passed through a 2-mm sieve.

The resulting fine earth (>2 mm) was retained for analysis,
and the particle size distributionwas measuredwith the pipette
method (Kilmer and Alexander 1949). The soil reaction (pH)
was measured in a 1:2.5 soil–water suspension, and the EC
was measured in a soil paste extract according to the method
of Jackson (1973). The soluble salts in the soil paste extract
were determined using the gravimetric method. The cation
exchange capacity and exchangeable sodium percentage
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(ESP) were determined according to the method of Richards
(1954). Organic matter content was determined using the
modified Walkley and Black method (Page et al. 1982).

Spectral measurements

Soil reflectance spectra were collected using a portable
spectroradiometer (FieldSpec-FR, Analytical Spectral De-
vices), which measures reflectance over a range from 350 to
2,500 nm with a resolution of approximately 10 nm and
sampling interval of 3 nm in the short-wave infrared domain.
The measurements were conducted in a dark laboratory envi-
ronment. Plastic dishes were used to contain the soil samples,
which were levelled off to a thickness of 2.0 cm (Mouazen
et al. 2007). A tungsten quartz halogen lamp was set 45 cm
away from the samples, and it illuminated the dishes for the
initial measurements.

To measure each sample’s spectral reflectance, the soil sam-
plesweremeasuredwith a viewing angle of 30° from the nadir at
a distance of 15 cm. The central area of each samplewas targeted
when measuring the spectral reflectance, and three spectral
measurements were performed. The final spectra measurement
was attained by averaging each of the curves. The reflected
radiance from a white reference panel with known reflectance
was recorded before scanning each sample. To calculate the
absolute reflectance of the samples, the radiance from each
sample was divided by the radiance from the white reference
panel and multiplied by the reflectance of the reference panel.

Pre-processing transformations

Three types of spectra (Fig. 2) were used to develop the
models used to estimate the ECe: (1) the raw reflectance

spectra (R), (2) first-derivative spectra smoothened with the
SG smoothing technique (Savitzky–Golay technique (FD-
SG)) and (3) continuum removed reflectance (CR).

The FD-SG is a method that eliminates the baseline
from spectra and enhances the absorption features. The
FD-SG was calculated using a Savitzky–Golay smooth-
ing technique (Savitzky and Golay 1964). In their study,
Vasques et al. (2008) found that the Savitzky–Golay
derivative procedure consistently yielded the best trans-
formations in pre-processing. We used a second-order
polynomial, which was fit to 101-point-width spectral
windows. As noted by Ertlen et al. (2010), using deriv-
atives of the spectra may allow for relevant information
to be extracted from the near-infrared range.

To calculate the CR (Kokaly and Clark 1999), a convex
hull (which is the continuum line) is fitted to the spec-
trum, and the spectrum is then divided at each wavelength
by the hull. The wavelength regions that lie upon the
convex hull (e.g. the first and last bands) receive a value
of 1, whereas regions that lie within the absorption bands
receive values between 0 and 1. This means that the CR
will minimise any brightness differences and emphasise
the spectra’s absorption bands. The ENVI 5.0 software
(Exelis Visual Information Solutions 2012) was used to
perform the continuum removal.

Data analysis

Spectral indices

For an exploratory analysis of the relationship between the
soil ECe and corresponding reflectance spectra, 2-D
correlograms of the coefficients of determination (R2) were

Fig. 1 Study area and soil sample locations
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calculated using a linear regression of the difference
indices (DI) in Eq. (1), normalised difference indices
(NDI) in Eq. (2) and ratio indices (RI) in Eq. (3) against
the ECe, including all of the possible band–pair combi-
nations of narrow bands ranging between 400 and
2,500 nm. The index values were subsequently correlated
with the ECe from the soil samples to obtain the most

effective spectral index for estimating the ECe. The Ri

and Rj values were used as the reflectances at waveband
inm and waveband jnm, respectively. The analyses
were per formed us ing MATLAB 8.0 sof tware
(MathWorks 2011).

DI Ri ; ; R j

� � ¼ Ri−R j ð1Þ

Fig. 2 Raw reflectance spectra
(R) (a), first-derivative spectra
smoothened with SG (FD-SG) (b)
and continuum removed spectra
(CR) (c) of 70 soil samples
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NDI Ri ; ; R j

� � ¼ Ri−R j

� �

Ri þ R j

� � ð2Þ

RI Ri ; ; R j

� � ¼ Ri

R j
ð3Þ

Partial least-squares regression (PLSR)

The PLSRmethod is a popular regression method that is often
applied in chemometrics, and it was introduced and
statistically described in Geladi and Kowalski (1986) and
Wold et al. (2001). PLSR is frequently used to conduct quan-
titative spectral analyses (Bilgili et al. 2011; Farifteh et al.
2007), and the algorithm uses a linear multivariate model to
relate the predictor (X) and response (Y) variables and select
successive orthogonal (latent) factors, thereby maximising the
X and Y covariance, or the covariance between the spectra (X)
and a measured soil property (Y). Compared with multiple
linear regression, PLSR is an appropriate method for manag-
ing data with severe co-linearity in the independent variables,
particularly in cases where the sample size is small. To deter-
mine the number of latent factors when using PLSR, leave-
one-out cross-validation (LOOCV) was used (Efron and
Tibshirani 1994) to prevent over- or under-fitting the data,
which may produce models with poor performance. The root
mean squared error (RMSE) of the predictions along with the
coefficient of determination (R2) were ascertained to identify
the optimal cross-validated calibration model. Generally, the
model with the highest cross-validated R2 value and lowest
RMSE value is selected. The PLSR process was performed
using MATLAB 8.0 software.

Multivariate adaptive regression splines (MARS)

Developed by Friedman (1991), MARS is a non-
parametric regression technique used for fitting the rela-
tionship between dependent and independent variables via
the splines theory. Recently, MARS has been applied as a
regression method in several disciplines, such as estima-
tions of soil salinity (Bilgili et al. 2010, 2011), predictions
of soil pH, organic carbon and clay content (Shepherd and
Walsh 2002), simulations of pesticide transport in soils
(Yang et al. 2003) and mappings of landslide susceptibil-
ity (Felicísimo et al. 2012). This technique has been
shown to perform consistently better than traditional sta-
tistical methods. The MARS analysis uses basis functions
to model the predictor and response variables (Hastie
et al. 2001). MARS creates basis functions that can serve
as new predictor variables in modelling. The basis

functions are created by splitting the data into splines
(or sub-regions), which have varied interval ending knots,
at the points where the regression coefficients are altered.
By utilising adaptive piecewise linear regressions, this
process is also effective for the data in every sub-region.
Each of the basis functions created by MARS may include
linear combinations, nonlinear interaction factors and var-
iable interaction factors of the second or third order. The
number of basis functions and knots are defined using a
forward stepwise process to choose certain spline basis
functions. Next, backward stepwise algorithm elimination
is applied until the best set is found to a smoothing
procedure, which gives the final MARS approximation a
particular level of continuity (Friedman 1991).

The final MARS model is composed of a group of
basis functions that are defined based on the generalised
cross-validation (GCV) criterion (Vidoli 2011). Predic-
tions are improved, and over-fitting is avoided through
the use of GCV, which involves the one-at-a-time removal
of repetitious basis functions through a backward stepwise
procedure. After applying the GCV, the basis functions
that can be left out of the model and those that should be
incorporated into the model become clear. The MARS
analysis is performed using the ARESLab toolbox
(Jekabsons 2011) with selected adaptations from the
MATLAB 8.0 software.

Prediction accuracy

The R2, RMSE and ratio of performance to deviation (RPD)
values were used to assess the performance of the soil salinity
prediction models. The RPD was classified into three classes
by Chang et al. (2001): Category A (RPD>2) includes models
that accurately predict a given property; category B (1.4<
RPD<2) has limited predictive ability, and category C (RPD
<1.4) has no predictive ability.

Results

Salinity parameters

The chemical analysis results for the 94 samples (Table 1)
show that the soil salinity is high and exhibits a broad
range from 3.3 to 166.8 dS/m. The predominant anion in
the soil is Cl- (74.4 % of the total anions), and the
predominant cation is Na+ (70.5 % of the total cations).
The correlation coefficients between Cl- and Na+ and
between Cl- and Mg2+ are 0.98 and 0.91, respectively
(Table 2). Moderate correlations were also found between
ECe and Cl-, Na+ and Mg2+ (correlation coefficients of
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0.49, 0.50 and 0.45, respectively). These results indicate
that the dominant soluble salts are NaCl and MgCl2.

Spectral characteristics of salt-affected soils

The spectral reflectances of the selected 70 soil samples,
R, FD-SG and CR are plotted in Fig. 2. Based on the
saline soil classification (Nawar et al. 2011), the soil
sample spectra were divided into five classes. In each
class, an average spectrum was calculated (Fig. 3a), and
the plots show that the reflectance curves display two deep
absorption regions at 1,415 and 1,915 nm and several
weak absorption regions near 494, 673, 1,748, 2,207 and
2,385 nm. In comparison, the absorption region depth
varies with the level of soil salinity (Fig. 3b). These
features suggest that the soil moisture content increases
with increasing salinisation. Because the salts in this area
are represented primarily by highly hygroscopic salts such
as MgCl2, which can absorb water vapour, increases in the
soil moisture content can occur. These results are

consistent with those of Weng et al. (2008) and Sidike
et al. (2014).

Relationship between soil salinity and the spectral indices

A close correlation between the DI, NDI and RI and soil
salinity occurredmostly in the visible and near-infrared ranges
(Fig. 4). Although the performance of the three spectral indi-
ces as predictors of soil salinity appeared to vary with wave-
length, constant basic patterns have emerged. Wavelength
combinations in the 478–1978 nm region for R spectra
(Fig. 4a) showed a strong correlation between the RI and soil
salinity. For the DI and NDI, good wavelength combinations
were observed in the 673–1963 nm region and 523–1963 nm
region, which have R2 values of 0.59 and 0.65, respectively
(Table 3). The spectral indices that included the DI (R673,
R1963), NDI (R523, R1963) and RI (R478, R1978) showed the
best performance of the three combinations of R spectra. The
RI (R478, R1978) displayed a medium correlation with soil
salinity and had the highest R2 (0.65).

Table 1 Descriptive statistics of the soil parameters

ECe CaCO3 OM Clay Silt Sand pH Na+ Mg++ Cl- SO4
– ESP

dSm−1 % meql−1 %

Min 3.30 0.00 0.00 0.00 0.50 16.00 7.10 317.00 172.00 360.00 160.00 17.60

Max 166.80 21.90 2.30 54.30 34.60 100.00 8.50 1,460.00 450.00 1,597.00 544.00 58.00

Mean 33.06 2.97 0.83 27.22 20.81 50.68 7.86 918.27 344.31 971.60 338.41 39.31

SD 31.31 3.07 0.52 16.77 10.21 26.63 0.29 336.72 62.07 339.65 78.09 11.61

CV (100)a 94.72 103.26 63.03 61.62 49.04 52.55 3.7 36.67 18.03 23.07 29.55 29.55

a CV=SD×100/mean

Table 2 Pearson's correlation coefficients between measured soil variables

pH ECe CaCO3 OM Clay Silt Sand Na+ Mg++ Cl- SO4
– ESP

pH 1.00

ECe –0.44a 1.00

CaCO3 –0.35 a 0.00 1.00

OM –0.66a 0.38a 0.40a 1.00

Clay –0.58a 0.55a 0.40a 0.61a 1.00

Silt –0.54a 0.49a 0.20b 0.55a 0.88a 1.00

Sand 0.59a –0.53a –0.32a –0.59a –0.97a –0.95a 1.00

Na+ –0.40a 0.50a 0.25b 0.48a .079a 0.84a –0.82a 1.00

Mg++ –0.40a 0.45a 0.26b 0.52a 0.80a 0.87a –0.85a 0.89a 1.00

Cl- –0.39a 0.49a 0.23b 0.48a 0.78a 0.85a –0.83a 0.91a 0.98a 1.00

SO4
– –0.51a 0.41a 0.40a 0.55a 0.70a 0.71a –0.72a 0.75a 0.75a 0.67a 1.00

ESP –0.51a 0.49a 0.29a 0.54a 0.84a 0.90a –0.88a 0.85a 0.95a 0.92a 0.78a 1.00

a Significant at the 0.01 probability level
b Significant at the 0.05 probability level
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An additional analysis was performed for the relationship
between the ECe and indices constructed from two FD-SG
and CR spectra in all of the possible band combinations in
the 400–2,500 nm range (Fig. 4b and c). The results indi-
cated a good correlation between the ECe and band–pair
combinations of first derivative spectra located in the
1,483–1,918 nm region. The results based on the CR spectra
did not perform, as well as those based on the FD-SG.
Among the FD-SG wavelength combinations for the RI,
NDI, and DI, those that performed the best were from
1,483 to 1,918, 1,498–1,918, and 1,378–1,933 nm, respec-
tively. The RI (FD-SG1,483, FD-SG1918), NDI (FD-SG1498,
FD-SG1918) and DI (FD-SG1378, FS-DG1978) were the best
indices for FD-SG. RI (CR572, CR2222), DI (CR554, CR1398)
and NDI (CR638, CR786) were the best indices for the CR
spectra. The RI (FD-SR1483, FD-SR1918) showed strong
correlations with the soil salinity, with R2 values of 0.80
for the first derivative spectra with an SG filter (Table 3).

Performance of PLSR

Table 4 shows the calibration models derived from applying
the PLSR model to various pre-processing methods. By
analysing the R2 and RMSE values that were derived from
the calibration models, it was possible to estimate the
ECe after identifying the optimal number of latent fac-
tors. It is apparent from Table 4 that the PLSR models
based on different spectral pre-processing methods
yielded significant differences without the use of any
auxiliary variables (Fig. 5). The soil clay contents that
showed significant correlations with the ECe were com-
bined with the soil reflectance as an auxiliary predictor
to improve the cross-validation predictions for the
modelled ECe (Fig. 6). Estimations of the ECe were
improved by up to 8.7 %, producing higher R2 and
RPD values (0.75 and 2.02, respectively) than with the
use of soil spectra alone (R2=0.69 and RPD=1.80). The
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improvement was small, however, and reflects the mod-
erate degree of correlation between the clay content and
ECe (Table 2).

Performance of MARS

TheMARSmodels based on the three types of spectra (R, FD-
SG and CR) displayed significant differences (Fig. 7). The
MARS model provided good correlations between the soil
spectra and the soil ECe. Table 5 summarises the MARS
cross-validation statistics for the ECe indicators. The best

estimation was achieved using the CR spectra, and the results
showed that 16 basis functions gave the best performance for
predicting the soil ECe.

Testing of the soil salinity estimation models

The results of the spectral indices showed that indices based
on the FD-SG spectra performed better than those composed
of R and CR spectra. Consequently, a difference index based
on the band pair of first-derivative spectra at 1,483 and
1,918 nm with the FD-SG method yielded the best results of

a

b

c

Fig. 4 The 2-D correlogram of R2 between ECe and spectral indices DI (left), NDI (middle) and RI (right) based on R (a), FD-SG (b) and CR (c) spectra
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all spectral indices, with R2 of 0.80, RMSE of 6.20 and RPD
of 2.06. The RMSE and RPD values proved a better fit for the
models that were based on the application of PLSR and
MARS techniques. Using the CR spectra yielded the best
calibration models with respect to estimates of the ECe, which
generated R2 values of 0.77, 0.81 and 0.81; RMSE values of
7.20, 6.50 and 6.55; and RPD values of 2.07, 2.29 and 2.30 for
PLSR without auxiliary variables, PLSR with clay content as
the auxiliary predictor and MARS, respectively.

Discussion

Numerous studies have examined the relationship between
sensitive spectral wavebands and soil salinity content (Farifteh
et al. 2007; Weng et al. 2008; Bilgili et al. 2011; Mashimbye
et al. 2012). For example, Farifteh et al. (2007) reported that
the best-performing bands for different scales ranging from
the field, experiment and image datasets were found in the
NIR and SWIR spectral regions. Using a linear regression
model with an unprocessed spectral band found at 2,257 nm
demonstrates the possibilities for estimating the ECa. The

reflectance spectra within the NIR and SWIR regions were
viewed as the best spectral region for estimating the ECa

(Farifteh et al. 2007; Weng et al. 2008; Mashimbye et al.
2012). It was found that certain spectral indices correlated
well with the ECe, including the first-derivative spectral re-
gions at 1,483–1,918, 1,498–1,918 and 1,378–1,933 nm and
spectral indices that were composed of wavebands in the 523–
1,963 nm spectral range. This suggests that for ECe evalua-
tions in arid and semi-arid environments, the raw spectral
reflectance in the 478–1,978 nm waveband and first-
derivative spectra in the 1,483–1,918 nm waveband should
provide adequate sensitivity.

The results of this study show that compared with the
difference and normalised indices, the ratio index might be
the optimal spectral index type for estimating the soil ECe.
Furthermore, the ratio indices composed of FD-SG spectra
may further improve the estimation of soil salinity because the
RI (FD-SG1,483, FD-SG1918) provided the best estimation
results, which might be attributable to the effective removal
of specific interfering factors, such as soil particle size, in the
spectra pre-treatment. Moreover, in the RI spectral index (FD-
SG1483, FD-SG1918) for the soil ECe, the bands at 1,483 and
1,918 nm are found in the NIR reflectance region where the
reflectance is primarily affected by the water content. The
strong co-variation between the ECe and NIR reflectance of
the soil samples can easily be visualised in the form of
numerous peaks of the PLSR coefficients (Figs. 5 and 6).
The NIR band appears to be a good indicator of soil salinity,
and this is especially true for the first-derivative and
continuum-removed spectral forms. This result is largely con-
sistent with the findings of earlier studies (Farifteh et al. 2007;
Weng et al. 2008; Bilgili et al. 2011; Mashimbye et al. 2012).
However, the applicability of the RI (FD-SG1483, FD-SG1918)
in estimating the ECe must be assessed in future
investigations.

The PLSR and MARS methods were also used to estimate
the ECe in the present study. However, the accuracy of the
PLSR and MARS models is generally affected by variations
in the soil texture and moisture content (Farifteh et al. 2007),
and a successful pre-processing method for the spectral data
may improve the performance of such models (Vasques et al.
2008; Rinnan et al. 2009). Compared with published results
that used PLSR (R2=0.80, 0.74 and 0.74, which was reported
by Farifteh et al. 2007; Bilgili et al. 2011 andMashimbye et al.
2012, respectively) andMARS (R2=0.39 and 0.77, whichwas
reported by Bilgili et al. 2010 and 2011, respectively), the ECe

calibration models used in the present study may be more
reliable and precise in modelling the ECe. The estimation
quality of the ECe was dependent on the different pre-
treatment and calibration methods. For instance, the MARS
model without spectral pre-treatment produced better results
than did the PLSR (Table 5). Similarly, averaging the spectra
consistently optimised the calibrations built using PLSR.

Table 3 Quantitative relationship of ECe (y) with different spectral
indices (x)

Spectral index Regression equation R2

DI (R673, R1963) y=−315.49x+34.209 0.59

NDI (R523, R1963) y=113.49x+51.754 0.65

RI (R478, R1978) y=93.044x−24.099 0.65

DI (FD-SG1378, FD-SG1933) y=99.842x+41.806 0.74

NDI (FD-SG1498, FD-SG1918) y=155.6x−41.407 0.77

RI (FD-SG1483, FD-SG1918) y=135.05x+72.657 0.80

DI (CR572, CR 2,222) y=1596.2x−5.9836 0.53

NDI (CR572, CR2222) y=−3133.9x−5.7996 0.53

RI (CR572, CR2222) y=1540.8x−1546.4 0.53

Table 4 Cross-validation results of PLSR models of ECe with different
spectra

Pre-processing Number of factors R2 RMSE

R 6 0.69 8.30

PLSR FD-SG 6 0.75 7.40

CR 6 0.77 7.20

R 6 0.75 7.40

PLSR+AP FD-SG 6 0.77 7.20

CR 6 0.81 6.50

RRaw reflectance spectra,FD-SG first-derivative spectra smoothing with
a Savitzky–Golay filter, CR continuum removed spectra, AP auxiliary
predictor (clay content)
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Averaging smooths the spectra, removes noise and may
eliminate factors that lead to nonlinearities (Bilgili et al.
2010). The MARS method typically yields better results
in a nonlinear relationship, whereas the PLSR model fits
linear relationships only (Brown et al. 2006).

The MARS method provided better estimation results de-
pending on the different pre-treatment method that was used.
The best model performance (RPD=2.30) was obtained using
MARS for continuum-removed spectra (CR). Continuum re-
moval generally emphasises the spectral absorption features
(Clark and Roush 1984) and may improve the estimations.
Weng et al. (2008) recorded improvements in the estimation
of the soil salinity content using reflectance spectroscopy after
implementing CR pre-processing on the soil spectra.

This study found that CR generally improved these esti-
mations compared with estimations from the raw spectra.

Overall, using any of the pre-treatment methods produced
better results compared with the results from using the raw
spectra (Figs. 5 and 6). A significant correlation was found
between the soil clay content and ECe (r=0.55), which is
shown in Table 2. The clay content combined with the soil
reflectance spectra improved the estimations of the ECe

(Fig. 6) by up to 8.7 % and produced higher R2 and RMSE
values (0.75 and 7.45, respectively) compared with esti-
mations from only the raw spectra (R2=0.69, RMSE=
8.29). This improvement was small, however, and
reflected the moderate degree of correlation between the
clay content parameter and soil ECe (Table 2). Bilgili et al.
(2011) and Brown et al. (2006) also used auxiliary predic-
tors in addition to the soil reflectance for estimations of
different soil properties. For example, including the soil
salinity produced better results than when the soil spectra

Fig. 5 PLSR models for R (a),
FD-SG (b) and CR (c) spectra
(left) with regression coefficients
for PLSR (right)
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was used alone. Bilgili et al. (2011) combined topograph-
ical variables that showed significant correlations with the
ECe, such as elevation, and included soil reflectance to
increase the model performance. The performance accura-
cy was improved by up to 12 % and yielded higher R2 and
RPD values (0.74 and 1.89, respectively) than were found
using only the spectra or topographical indicators (R2=
0.21, RMSE=5.4 dSm-1).

The predictions from the MARS and PLSR models were
more accurate than those of the RI (FD-SG1483, FD-
SG1918) in estimating the ECe in this study. Still, the ECe

estimation model based on the RI (FD-SG1483, FD-SG1918)
was simple and effective because it only required informa-
tion from two derivative spectral bands. Thus, the PLSR
and MARS models provide higher prediction accuracy if
the full spectrum is available, but the RI (FD-SG1483, FD-
SG1918) model offers a potentially fast and reliable spectral

index that accurately estimates the soil salinity. In addition,
the spectral pre-processing techniques such as FD-SG and
CR successfully removed the spectral noise and were ap-
plicable for modelling in this study. Considerably more
work is required to develop these models to evaluate soils
from different arid and semi-arid regions.

Conclusions

The results suggest that spectral indices, PLSR and
MARS provide opportunities for estimating soil salinity.
The analysis of the relationship between the ECe and
corresponding reflectance spectra in the soil samples pro-
vided the basis for a spectral index to estimate the soil
salinity and construct ECe estimation models using the
PLSR and MARS techniques. The RI (FD-SG1483, FD-

Fig. 6 PLSR models for R (a),
FD-SG (b) and CR (c) spectra
including the auxiliary predictor
(clay content) (left) with
regression coefficients for PLSR
(right)
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SG1918), which produced R2, RMSE and RPD values of
0.80, 6.20 and 2.06, respectively, is recommended for
reliable estimations of the soil ECe. The MARS calibra-
tion model estimated the ECe better than the frequently

used PLSR model, yielding optimal cross-validation R2,
RMSE and RPD values of 0.81, 6.55 and 2.30, respec-
tively. In summary, the visible and near-infrared spectra
offer the potential to efficiently estimate soil salinity, but
factors such as the soil texture and mineral composition
may complicate these estimations.

These estimation models should be subjected to further
examination and optimisation before broad application in
soil salinity modelling and mapping. The soil salinity
predictive models used in the current study may become
more accurate through the selection of optimal waveband
regions for the model calibration rather than the full spec-
tral range (400–2,500 nm). Our models were constructed
based on soil spectra measured in the laboratory. Future
research should focus on possible integration between
spectra obtained in the field and laboratory and derived
from satellite imagery. This integration could be more
useful for accurate soil salinity mapping that employs
PLSR and MARS models. Moreover, sufficient atmo-
spheric correction and elimination of spectral noise and
vegetation influences might enable these models to be
used with spectral data collected from airborne or satellite
platforms for more efficient modelling and mapping of
soil salinity.
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