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Thermal infrared satellite observations of the Earth's surface are widely used to retrieve Land Surface Tempera-
ture (LST) andmonitor LST changes around the world. Since January 2012, the Visible Infrared Imaging Radiom-
eter Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership (S-NPP) has provided daily
observations of LST with a spatial resolution of 750 m at nadir. Comparison of the standard VIIRS LST product
with the equivalent daily standard product from the Moderate Resolution Imaging Spectroradiometer
(MODIS) collection-5 and with ground-based measurements over vegetated and inland water surfaces showed
good agreement. Analysis indicated the accuracy and precision of the VIIRS product over these cover types was
0.2 K and 2.0 K respectively provided the analyses included appropriate compensation for any spatial heteroge-
neity in LST within the validation site. However, comparisons between in situ LST and the VIIRS and MODIS LST
over arid and semi-arid regions indicate both satellite products significantly underestimate the LST, and the VIIRS
algorithm can have large errors in the retrieved LST over areas of high atmospheric water vapor. Errors of up to
4 Kwere observed over semi-arid and arid areas due to incorrect characterization of emissivity, and differences of
up to 15 K were observed over areas with high atmospheric water content between the VIIRS LST and matching
MODIS LST.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Land Surface Temperature (LST) is a key variable for surface water
and energy budget calculations that can be obtained globally and oper-
ationally from satellite observations. The Visible Infrared Imaging Radi-
ometer Suite (VIIRS) instrument was launched in October 2011 on the
Suomi National Polar-Orbiting Partnership (S-NPP) satellite. VIIRS was
designed to improve upon the capabilities of the Advanced Very
High Resolution Radiometer (AVHRR) onboard NOAA's operational
polar-orbiting satellites and provide observational overlap and continu-
ity with both the AVHRR and the Moderate Resolution Imaging
Spectroradiometer (MODIS) instruments on the NASA Terra and Aqua
platforms of the NASA Earth Observing System (Justice et al., 2013).
lifornia Institute of Technology,
54 5034.
illevic).
High temporal and spatial resolution LST products known as Environ-
mental Data Records (EDR) have been derived from VIIRS data since
processing began January 18th, 2012. These products provide a new
source of LST for many applications, including weather forecasting
(Meng, Li, Zhan, Shi, & Liu, 2009; Zheng et al., 2012), short-term climate
prediction (Reichle et al., 2009; Reichle, Kumar, Mahanama, Koster, &
Liu, 2010), extreme weather monitoring (Anderson, Hain, Wardlow,
Mecikalski, & Kustas, 2011), and irrigation and water resourcemanage-
ment including agricultural drought forecasting (Anderson, Allen,
Morse, & Kustas, 2012; Kerr, Lagouarde, Nerry, & Ottlé, 2004). LST is par-
ticularly useful for agricultural drought forecasting since it is very sensi-
tive to plant water stress and a strong indicator of changes in root zone
soil moisture (Anderson et al., 1997, 2012; Anderson, Norman, Diak,
Kustas, & Mecikalski, 1997; Guillevic & Koster, 2002; Guillevic et al.,
2002; Moran et al., 2009).

The VIIRS thermal bands measure the spectral radiance emitted by
the land surface and the atmosphere. The surface-emitted radiance is
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attenuated by atmospheric constituents such as clouds, haze and
absorbing gases (mainly water vapor, carbon dioxide, ozone and
methane). Under clear sky conditions, the spectral radiance at the top
of the atmosphere is the sum of three components: (1) the radiance
emitted by the land surface and attenuated by the atmosphere, (2) the
atmospheric radiance reflected by the land surface and attenuated by
the atmosphere, and (3) the radiance emitted by the atmospheric con-
stituents in the direction of the sensor. In order to retrieve LST from the
thermal infrared radiance measured by VIIRS, the effect of the atmo-
sphere must be removed and surface radiance has to be corrected for
emissivity effects, which can otherwise introduce large uncertainties es-
pecially for split-window based algorithms (Jacob et al., 2008, Chap. 10;
Kerr et al., 2004). Preliminary VIIRS LST EDR datasets became available
publicly on October 22, 2012, and are currently being evaluated by
scientists from NASA and NOAA, among others.

This study presents validation results for the VIIRS LST EDR obtained
from comparisons with ground-based measurements and operational
LST products from Aqua MODIS (1:30 am/pm satellite orbit). The limi-
tations of the VIIRS LST algorithm are discussed, and guidance onmeth-
odologies and recommended good practice for validating moderate
resolution satellite-based LST products is provided. Section 2 presents
a short review of the different methods commonly used to validate sat-
ellite LST products and enumerates the sources of errors associatedwith
eachmethod. Section 3 describes the specific protocols used to evaluate
the VIIRS LST EDR against ground based measurements and Aqua
MODIS LST products, and discusses the challenges in retrieving the
LST from satellite measurements. The different satellite products and
the associated retrieval algorithms used in the study are presented in
Section 3, and the in situ reference datasets are presented in Section 4.
Section 5 presents the VIIRS LST validation results, while Section 6 sug-
gests future algorithm refinements and provides general guidance on
retrieving LST from remotely sensed data.

2. Satellite LST validation approaches

In order tomaximize the usefulness of LST for research and studies it is
necessary to know the uncertainty in the LSTmeasurement. TheVIIRS LST
was designed tomeet the quality specifications of operational users, such
as Numerical Weather Prediction modelers. Multiple validation methods
and activities are necessary to assess LST compliance with the specifica-
tions. A detailed presentation of previous satellite-based LST validation ef-
forts is available in review studies by Li et al. (2013), Merchant et al.
(2013) and Schneider, Ghent, Corlett, Prata, and Remedios (2012). Four
different methods have been widely used to validate and determine the
uncertainties in LST products derived from satellite measurements:

– Temperature based validation. This approach involves comparisons
with ground-based measurements of LST, and has been frequently
used to validate LST products retrieved from MODIS (Bosilovich,
2006; Coll et al., 2005, Coll, Galve, Sanchez, & Caselles, 2010;
Guillevic et al., 2012, 2013; Hook, Vaughan, Tonooka, & Schladow,
2007; Trigo, Monteiro, Olesen, & Kabsch, 2008; Wan, 2008; Wang
& Liang, 2009; Wang, Liang, & Meyers, 2008), from the Spinning En-
hanced Visible and Infrared Imager onboard Meteosat Second Gen-
eration (MSG/SEVIRI) (Göttsche et al., 2013; Kabsch, Olesen, &
Prata, 2008; Trigo et al., 2008), from AVHRR (Prata, 1994), from
the Advance Spaceborne Thermal Emission and Reflection (ASTER)
radiometer onboard Terra (Sobrino et al., 2007), from the Along
Track Scanning Radiometer (ATSR) (Prata, 1994), or from VIIRS
(Li et al., 2014). This approach allows the uncertainties in LST
products to be determined, however, a large number of in situ mea-
surements are needed if the validation site is spatially heteroge-
neous in order to characterize it correctly (Guillevic et al., 2012).
Furthermore, most field radiometers collect observations at nadir
angles, whereas wide field-of-view satellite scanners like VIIRS
collect most observations off-nadir. These limitations provide
significant uncertainty that is very difficult to eliminate. Therefore,
the method is particularly suited for studies over inland water bod-
ies which provide large spatially homogenous temperature targets
and can be used to both validate and refine the retrieval algorithm
(Coll, Hook, & Galve, 2009; Hook et al., 2007; Hulley, Hook, &
Schneider, 2011). Unfortunately, validation over water does not
assess the LST algorithm correction for surface emissivity.

– Scene-based comparisons. This approach involves comparing a new
satellite LST product with a heritage LST product (Guillevic et al.,
2013; Hulley & Hook, 2009a; Jacob et al., 2004; Trigo et al., 2008).
Themethod can be particularly valuable for finding spatial disagree-
ments between LST products for a wide range in cover types.
However, this is not an absolute validation and satellite LST inter-
comparisons alone do not provide an independent validation
measurement unless one of the satellite products has been indepen-
dently validated. Different retrieval algorithms based on similar
assumptions and formulations (e.g. split-window) can be highly
consistentwith each other but biasedwhen compared to ground ref-
erence measurements. Also, this approach requires accounting for
differences in spatial resolution, view angle and overpass time be-
tween the two different satellite datasets.

– Radiance-based validation (Coll,Wan, & Galve, 2009; Hulley &Hook,
2012; Niclòs, Galve, Valiente, Estrela, & Coll, 2011; Wan, 2014; Wan
& Li, 2008). This approach requires precise estimates of channel spe-
cific surface emissivity values and atmospheric temperature, and
water vapor profiles coincident with the satellite overpass. LST
values are then derived by inverting a radiative transfer model.
Radiance-based validation has the advantage that temperaturemea-
surements are not required at the timeof the overpass. Instead emis-
sivity measurements made at a different time can be used with
model-based atmospheric information. The method is best for
large-scale validation efforts on a global scale or for products with
coarse spatial resolution.

– Time series comparisons (Hook et al., 2007; Merchant et al., 2013).
This method is used to detect problems that can occur during the
instrument's life, e.g. calibration drift (Hook et al., 2007), or unrealis-
tic outliers due to cloud coverage (Schneider et al., 2012). However,
the approach requires relatively long time series of observations
over very stable targets over time. The VIIRS standard LST has only
been available for 1.5 year and a longer record is required before
the data lend themselves to this approach.

The four different approaches are complementary and provide dif-
ferent levels of information about the quality of the retrieved LST.
These four methods are part of the validation plan for the ATSR LST
products (Schneider et al., 2012), for example, and are usually required
to achieve Stage-3 validation status as defined by the MODIS land vali-
dation protocol (http://landval.gsfc.nasa.gov).

3. Validation methodology for VIIRS LST

Under clear sky conditions, the top of atmosphere radiance mea-
sured by a spaceborne sensor (Lsat,λ) includes contributions from the
surface emission, the atmospheric upwelling radiance (L↑sky,λ) and
atmospheric downwelling radiance (L↓sky,λ) reflected by the Earth's sur-
face and attenuated by the atmosphere (Eq. 1). Retrieval algorithms rely
on one or more top-of-atmosphere spectral measurements to account
for atmospheric effects and estimate LST.

Lsat;λ ¼ ελ Bλ LSTð Þ þ 1− ελð Þ L↓sky;λ
h i

τλ þ L↑sky;λ ð1Þ

where ελ is the spectral emissivity at wavelength λ or associated with a
specific (relatively narrow) domain [λ1, λ2] centered on wavelength λ,
Bλ(T) is the Planck function describing the radiance of a black body at
temperature T, and τλ is the atmospheric attenuation.

http://landval.gsfc.nasa.gov
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The approaches presented for validating VIIRS LST EDR are based on
comparisons with ground-based measurements and LST products from
other instruments, e.g. AquaMODIS LST products. The study is designed
to quantify the spatial variability and atmospheric effects on LST derived
from space-borne thermal infrared instruments. This section presents
the validation approaches, their relative complexity, and the accuracy
that can be achieved by them.

3.1. Validation with ground-based measurements

Validationwith ground-basedmeasurements involves a comparison
of satellite-derived LST with collocated and simultaneously acquired
LST retrievals from in situ radiometers, which also require accurate
knowledge of surface emissivity, ελ, over their smaller surface targets.
Ground-based LST (LSTground) is retrieved from in situ measurements
of radiance emitted from the surface (Lground,λ) and downwelling
radiance from the sky (L↓sky,λ) (Eq. 2).

LSTground ¼ B−1
λ

1
ελ

Lground;λ− 1−ελð ÞL↓sky; λ
� �� �

ð2Þ

where all remaining symbols have the same meaning as in Eq. (1).
The primary uncertainties in ground-based LST retrieval are

associated with the accuracy of surface emissivity and down-welling
radiance (Hook et al., 2007). Generally, neither spectral nor directional
measurement of downwelling thermal radiation from the atmo-
sphere is routinely sampled in the field. When derived from models
(Brutsaert, 1975; Idso, 1981; MODTRAN) or directional measurements
(Kondratyev, 1969), estimates of atmospheric radiation can have signif-
icant uncertainties, especially for warm and humid atmospheres.

3.1.1. Spatial representativeness of ground-based LST
Depending on the experimental design, i.e. the sensor's field of view,

and the height and angle at which the sensor is mounted, the footprint
of a ground-based infrared instrument is typically from 1 to 10 m on a
side for spectral radiometers and 10 to 100m for pyrgeometers. For ex-
ample, the spatial representativeness of ground-based LST derived from
SURFRAD's pyrgeometer measurements is around 70 m × 70 m. Most
vegetated landscapes contain various land cover types or soils, and
therefore, the LST measured by a station at one specific location usually
does not represent the surrounding area that is included in the lower
resolution satellite sensor footprint (e.g. around 1 km).

To address this issue an up-scaling model can be used to help inter-
pret validation results over heterogeneous land surfaces (Guillevic et al.,
2012). A summary description is repeated here for completeness. The
approach uses a physically based land surface model driven by in situ
atmospheric forcing measurements and high-resolution imagery to de-
scribe satellite LST footprints over ground stations. To represent the spa-
tial variability within a satellite pixel, it is assumed that the sub-pixel
temperature variability is mainly due to land cover heterogeneity and
variability in surface biophysical parameters, such as vegetation density,
emissivity or albedo. Because the canopy evapotranspiration is usually
greater than the bare soil evaporation, the temperature of vegetated
areas under low soil water stress conditions is typically lower than the
temperature of barren surfaces. The method estimates the temperature
of each land cover class inside a mixed pixel using a land surface model
driven by the measured atmospheric forcing and observed surface bio-
physical properties from a nearby tower/site. The atmospheric forcing is
assumed to be uniform over the satellite footprint, which is approxi-
mately 1 km × 1 km for VIIRS. Depending on the canopy structure,
sun illumination and viewing directional configurations, satellites mea-
sure different surface radiometric temperatures, particularly over
sparsely vegetated regions and open canopies (Guillevic et al., 2013;
Lagouarde, Ballans, Moreau, Guyon, & Coraboeuf, 2000). The selected
validation sites represent short vegetation areas (i.e. grassland,
cropland), inland waters or bare soils associated with small directional
effects that have not been represented in the approach.

3.1.2. The up-scaling model
The SEtHyS land surfacemodel (Coudert, Ottlé, Boudevillain, Demarty,

& Guillevic, 2006) was used to quantify differences in subpixel tempera-
ture between classes of surface biophysical properties (i.e. different
surface types or different vegetation densities) with respect to the LST
measured by the station. This reduces the impact of model systematic er-
rors anduncertainties in the atmospheric forcing on the assessment of the
satellite pixel LST. The SEtHyS land surface model is a two-source energy
balance model that simulates the energy and water transfer between the
surface and the atmosphere, and describes the evolution of surface state
variables such as LST and soil moisture. In addition to LST estimates, the
selected ground stations also provide accuratemeasurements of local en-
vironmental information, in particular the atmospheric forcing required
by the SEtHySmodel. Thesemeasurements include air temperature, rela-
tive humidity and wind speed at the surface, and incoming shortwave
and longwave radiation.

The steps of the scaling methodology are as follows:

1. Calibration of the SEtHySmodel using ground observations. This task
determines the optimal set of internal model parameters that allows
the model to describe the observed in situ LST (see Guillevic et al.,
2012, for a detailed description of the model calibration method).

2. Characterization of the satellite footprint, which depends on pixel
geolocation, viewing zenith angle, satellite altitude (824 km for
S-NPP, and 705 km for Terra and Aqua satellites) and the instanta-
neous field of view (911 μrad for VIIRS, and 1315 μrad for MODIS at
moderate resolution).

3. Representation of the LST of each surface end-member using the
SEtHyS model forced by the observed biophysical properties at
high-resolution. We used the leaf area index (LAI) derived from
MODIS Normalized Difference Vegetation Index (NDVI) standard
products at 250m spatial resolution to describe the spatial variability
of vegetation density around the station (see Section 4.3: MODIS
ancillary products).

4. Calculation of LST at satellite resolution from a weighted mean of n
radiative contributions from each land cover class (Guillevic et al.,
2012) (Eq. 3).

LST ¼ 1
ε

Xn
i¼1

f i εi T
4
i

" #1
4

with ε ¼
Xn
i¼1

f i εi and
Xn
i¼1

f i ¼ 1 ð3Þ

where fi is the cover fraction of land cover class i at temperature Ti
and with broadband emissivity εi. ε is the broadband surface
r-emissivity as defined by Norman and Becker (1995).

The scaling methodology requires high-resolution information
about vegetation density. The NDVI is an indicator of green biomass,
and an indicator of the photosynthetic efficiency of the plants. Greener
areas are usually associated with higher evapotranspiration and, conse-
quently, characterized by lower LST. We use a logarithmic relationship
between NDVI and LAI to estimate the LAI at 250 m resolution
(Guillevic et al., 2012). The relationship is calibrated using NDVI and
LAI values derived fromMODIS data at 1 km. Then, LAI at 250 m resolu-
tion is estimated by applying the determined relationship to MODIS
NDVI at 250 m spatial resolution.

3.2. Comparison with heritage satellite LST data

Themethod provides useful quality informationwith respect to spa-
tial patterns in LST product differences. However, product inter-
comparisons do not represent a comprehensive validation and cannot
substitute validation efforts with ground-based reference data. For
example, two different products can be highly consistent with each
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other while at the same time significant discrepancies are observed be-
tween the products and the ground reference data. This is especially
true if the LST retrieval algorithms are based on similar assumptions,
e.g. VIIRS and MODIS standard LST products are both based on the
split window technique. When comparing multiple satellite LST
products, the three main sources of discrepancies that can affect the
quality of algorithm performance evaluations are differences in spatial
resolution, overpass times, view angles, and cloud cover. The impact
of directional effects on satellite LST products has been described by
Guillevic, Gastellu-Etchegorry, Demarty, and Prevot (2003, 2013),
Lagouarde et al. (2000), Pinheiro, Privette, and Guillevic (2006),
Sobrino, Jiménez-Munoz, and Verhoef (2005) and Trigo et al. (2008).
VIIRS and MODIS observations are never strictly simultaneous and dif-
ferences in sensor footprint increase with differences in view zenith
angle. To reduce the effect of cloud contamination on validation results,
only cloud free data are used during different periods of the year to an-
alyze possible seasonal effects on the observed discrepancies. However,
the decision on whether a pixel is cloud-free is typically based on char-
acteristics of the data themselves and there may be some ambiguity in
the cloud assessment.

3.2.1. Match-up tool
In this study we used a match-up tool to select coincident VIIRS and

MODIS granules with respect to the satellite overpass times and view
angles. Given a date range, satellite angular separation limit and satellite
time separation limit, the application retrieves time spans inwhich both
MODIS and VIIRS on their two different platforms observe the same
place on the Earth within those limits. The application uses orbit histo-
ries for the two satellites to select time spans within the date range
where the position of one satellite passes within the angular separation
limit of a position held by the other satellite at a previous time that is
within the time separation limit. These “near miss” time spans are re-
ferred to as Simultaneous Nadir Overpasses (SNOs). Once the list of
SNOs has been produced, the times are used to search for processed
LST products from the two satellites. The results can be filtered by
date/time, geolocation, angular separation distance, or time separation
interval. For the purposes of this study, the maximum time separation
and angular separation between the two satellites are set to 10 minutes
and 2°, respectively. The results were also filtered to select granules
with ground tracks intersecting the boundaries of the contiguous
United States.

4. Satellite data

4.1. VIIRS LST EDR

Since August 11, 2012, the VIIRS EDR has been operationally pro-
duced using a single split window algorithm that is effectively insensi-
tive to solar radiation (Yu, Privette, & Pinheiro, 2005). The algorithm
uses brightness temperaturesmeasured in channelM15 (T15) and chan-
nel M16 (T16) centered on 10.76 μm and 12.01 μm, respectively (Eq. 4).

LST ¼ a0 þ a1 T15 þ a2 T15− T16ð Þ þ a3 secθv−1ð Þ þ a4 T15− T16ð Þ2
ð4Þ

where ak (with k = 0 to 4) are the algorithm coefficients and θv is the
sensor zenith angle. Daytime and nighttime sets of coefficients were
derived for 17 different surface types from regression analysis of
MODTRAN radiative transfer simulations for globally representative at-
mospheric and surface conditions. The International Geosphere-
Biosphere Programme (IGBP) global classification map is used to
identify the surface type associated with each pixel. The algorithm re-
gression coefficients were generated from an ensemble of MODTRAN
radiative transfer simulations using a comprehensive set of geophysical
parameters (VIIRS LST ATBD, 2011). Surface temperatures and coherent
atmospheric temperature and water vapor profiles were derived from
National Center for Environmental Prediction (NCEP) global simulations
at 2.5° × 2.5° spatial resolution. LST values were sampled from 196 K to
327 K. Distribution of band-averaged spectral emissivity values for each
surface type (Table 1) was derived from the MOSART database (VIIRS
LST ATBD, 2011). Thesewere used to produce a total of 268,128 samples
representing 12 days and nights (1 day and night per month) over a
global grid, and provided an ensemble of training data covering global,
diurnal and seasonal features (VIIRS LST ATBD, 2011). The regression
coefficients used in the algorithm since August 11, 2012 (Interface
Data Processing Segment (IDPS) versionMx7.3)were trained for sensor
zenith angles less than 40°, and are presented in Tables 2 and 3.

The spatial resolution of VIIRS raw radiometric measurements at
moderate resolution is around 750 m at nadir and around 1.5 km at
the edge of the swath. VIIRS detectors are rectangular, with the smaller
dimension projecting along the scan. At nadir, three detector footprints
are aggregated to form a single VIIRS pixel. Moving along the scan away
from nadir, the detector footprints become larger both along track and
along scan, due to geometric effects and the curvature of the Earth
(Wolfe et al., 2013). The pixel aggregation scheme is changed from
three to two detectors at a scan angle of around 32°, and from two to
one detector at around 48°, which provides a more uniform pixel size
over the scan.

The accuracy and precision requirements specified by NOAA's Joint
Polar Satellite System (JPSS) program for the VIIRS LST EDR are 1.5 K
and 2.5 K, respectively, for clear conditions. These requirements were
driven primarily by the Numerical Weather Prediction community.
VIIRS granules are archived and distributed by NOAA's National data
centers (http://www.class.ncdc.noaa.gov). The NASA's Land Product
Evaluation and Analysis Tool Element (LPEATE) routinely provides
50 km×50kmsubsets of VIIRS granules centered on selected validation
sites for calibration and validation purposes (http://viirsland.gsfc.nasa.
gov/Subsets.html). We used data from both CLASS and LPEATE in this
study.

4.2. MODIS LST product

The daily daytime and nighttime Collection-V5 MODIS LST level-2
products are derived from the MODIS instrument onboard the Terra
and Aqua satellites: the two products are referred to as MOD11_L2
and MYD11_L2, respectively. Satellite overpass times at the equator
are around 10:30 am/pm (solar local time) for Terra and 1:30 am/pm
for Aqua, and the spatial resolution of MODIS at nadir is 927 m. Along
each scan, MODIS's off-nadir scan angle increases to values up to 65°,
which causes the sensor's spatial resolution to degrade to about 6 km
in the along-scan direction. The generalized split-window algorithm
(Wan & Dozier, 1996) is used to derive LST values from brightness tem-
peraturemeasurements in MODIS band 31 (T31) and band 32 (T32) cen-
tered on 11.03 μm and 12.02 μm, respectively (Eq. 5).

LST ¼ b0 þ b1 þ b2
1−ε
ε

þ b3
Δε
ε2

� �
T31 þ T32

2

þ b4 þ b5
1−ε
ε

þ b6
Δε
ε2

� �
T31−T32

2
ð5Þ

where ε and Δε are the mean and the difference of the emissivities in
bands 31 and 32. The algorithm coefficients bk (with k = 0–6) depend
on viewing zenith angle, surface air temperature (Tair) and atmospheric
water vapor content. The coefficients were derived for daytime and
nighttime from regression analysis of radiative transfer simulation
data for a comprehensive set of LST values varying from Tair − 16 K
to Tair + 16 K (Wan & Dozier, 1996). In the standard LST product,
information about surface air temperature and total column water
vapor is taken from the MODIS atmospheric profile product (MOD07)

http://www.class.ncdc.noaa.gov
http://viirsland.gsfc.nasa.gov/Subsets.html
http://viirsland.gsfc.nasa.gov/Subsets.html


Table 1
Spectral emissivity values associatedwith the 17 IGBP surface types used by the VIIRS andMODIS LST algorithms, respectively. For each surface type, theVIIRS algorithmuses distributions
of spectral emissivity, while theMODIS algorithm (MYD11) estimates the surface emissivity values using prescribed green and senescent components (dry/fine or coarse components for
snow).

Id Surface type VIIRS emissivity MODIS emissivity

10.76 μm (M15) 12.01 μm (M16) 11.03 μm (band 31) 12.02 μm (band 32)

Mean STD Mean STD Green Senescent Green Senescent

1 Evergreen needleleaf forest 0.985 1.5e−3 0.986 9.5e−4 0.987 0.987 0.989 0.989
2 Evergreen broadleaf forest 0.982 1.1e−3 0.985 9.6e−4 0.981 0.981 0.984 0.984
3 Deciduous needleleaf forest 0.981 3.1e−3 0.982 2.6e−3 0.987 0.986 0.989 0.988
4 Deciduous broadleaf forest 0.974 1.4e−5 0.975 4.9e−4 0.981 0.968 0.984 0.971
5 Mixed forest 0.979 9.4e−4 0.980 2.4e−4 0.981 0.968 0.984 0.971
6 Closed shrublands 0.974 4.0e−3 0.977 3.2e−3 0.983 0.973 0.987 0.975
7 Open shrublands 0.974 2.2e−3 0.977 1.4e−3 0.972 0.970 0.973 0.975
8 Woody savannas 0.981 3.8e−3 0.982 2.1e−3 0.982 0.975 0.985 0.978
9 Savannas 0.977 2.3e−3 0.980 7.3e−4 0.983 0.973 0.987 0.975
10 Grasslands 0.970 6.3e−3 0.974 6.9e−3 0.983 0.973 0.987 0.975
11 Permanent wetlands 0.984 3.5e−3 0.979 2.8e−3 0.992 0.992 0.988 0.988
12 Croplands 0.978 5.0e−3 0.982 3.5e−3 0.983 0.977 0.987 0.982
13 Urban and built-up 0.972 7.2e−3 0.977 7.6e−3 0.970 0.966 0.976 0.972
14 Cropland/natural vegetation 0.976 3.0e−3 0.980 2.8e−3 0.983 0.973 0.987 0.975
15 Snow and ice 0.994 1.6e−3 0.987 2.1e−3 0.993 0.984 0.990 0.971
16 Barren/sparsely vegetated 0.973 7.7e−3 0.972 6.0e−3 0.965 0.965 0.972 0.972
17 Inland water 0.990 6.5e−4 0.987 1.9e−3 0.992 0.992 0.988 0.988
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(Wan, 2008). For each surface type, the spectral emissivity values in
bands 31 and 32 (Table 1) are defined as a combination of green and se-
nescent components (Snyder, Wan, Zhang, & Feng, 1998).
4.3. MODIS ancillary products

Additional products derived from the MODIS Terra alone (with the
name prefix “MOD”), the MODIS Aqua instrument alone (prefix
“MYD”) or from both instruments (prefix “MCD”) were used to describe
the spatial variability of surface biophysical parameters around the field
stations. These were the vegetation index at 250 m (MOD13Q1, and
MYD13Q1) and 1 km (MOD13A2) spatial resolution and vegetation
density, i.e. leaf area index, at 1 km spatial resolution (MCD15A2). The
temporal resolution of NDVI products derived from both MODIS instru-
ments at 250 m is 8 days. A full description of the products is given by
Justice et al. (1998), and updated information is available at the NASA
Land Processes Distributed Active Archive Center (LPDAAC) website
(https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/).
Table 2
Daytime regression coefficients (ai, with i from 0 to 4) used in the VIIRS LST split window
algorithm (Eq. 4) since August 11, 2012 (IDPS version Mx7.3). The description of the 17
IGBP surface types is provided in Table 1.

Surface type Daytime algorithm coefficients

a0 a1 a2 a3 a4

1 −6.33485 1.028104 1.310552 1.063013 0.441287
2 −5.47409 1.024861 1.660752 2.42386 0.327702
3 −4.58919 1.022091 1.103522 0.813863 0.571229
4 −5.45372 1.033022 1.811434 −2.70106 0.298936
5 −7.51475 1.033524 1.201031 1.246776 0.438322
6 −2.44143 1.016145 1.566102 0.370878 0.193816
7 −7.09271 1.033233 1.350841 1.213785 0.367221
8 −9.81976 1.041334 0.970194 1.372316 0.55345
9 −10.6068 1.04433 1.158848 1.021086 0.463121
10 −6.44958 1.031742 1.303886 0.059388 0.394892
11 −7.78559 1.033159 0.558588 1.036486 0.740771
12 −11.9967 1.049311 1.160366 2.728394 0.434421
13 −7.32977 1.034073 1.576136 0.978909 0.268421
14 −9.31956 1.04016 1.069135 2.379238 0.469663
15 −4.9299 1.01913 1.683574 0.352144 −0.26357
16 −12.7833 1.052898 0.944545 0.889798 0.506456
17 −8.92885 1.033913 1.870167 1.479963 0.354069
4.4. ASTER ancillary data

The ASTER sensor was launched together with theMODIS sensor on
the Terra satellite in December 1999. ASTER has five channels in the
thermal infrared domain (between 8.1 μm and 11.6 μm) used to derive
LST and emissivity products at a spatial resolution of 90 m at nadir and
at a temporal resolution of 16 days. View zenith angles are less than 9°
for normal ASTER viewing conditions. ASTER LST and emissivity prod-
ucts (referred to as AST08 and AST05 respectively) are generated in a
swath format using the Temperature Emissivity Separation (TES) algo-
rithm (Gillespie et al., 1998) during daytime and nighttime. ASTER
data were used in this study to evaluate the spatial variability of LST
around field stations and to evaluate the spatial representativeness of
ground-based measurements.

5. Validation sites

Nine in situ validation sites were selected to evaluate the VIIRS LST
EDR over various land cover types: cropland, grassland, sparsely vege-
tated arid area, desert, and inland waters (Table 4). Two of the sites,
Table 3
Nighttime regression coefficients (ai, with i from0 to 4) used in theVIIRS LST splitwindow
algorithm (Eq. 4) since August 11, 2012 (IDPS version Mx7.3). The description of the 17
IGBP surface types is provided in Table 1.

Surface type Nighttime algorithm coefficients

a0 a1 a2 a3 a4

1 −2.44023 1.013721 1.597063 0.397226 0.243329
2 −10.9737 1.043302 1.337757 1.192763 0.433421
3 −2.81076 1.015627 1.253511 0.782135 0.474349
4 −0.67262 1.008506 1.782233 1.031163 0.193119
5 −1.58225 1.011321 1.569283 0.874003 0.341845
6 −2.86866 1.017388 1.169604 0.40632 0.470555
7 −3.67031 1.020234 1.367489 0.974629 0.383254
8 −6.1826 1.027303 1.131303 0.819621 0.519747
9 −7.93398 1.034157 1.219383 1.250769 0.450993
10 −2.19848 1.015395 1.473563 1.304318 0.286378
11 −4.76334 1.021443 1.198395 0.313569 0.606909
12 −0.98175 1.010598 1.322288 −0.39396 0.397286
13 0.269089 1.006037 1.40562 0.363574 0.370285
14 −3.08412 1.016865 1.563887 0.810411 0.296177
15 −3.29337 1.013452 1.323036 0.251886 −0.22787
16 −8.63783 1.037961 1.034632 0.83134 0.478393
17 −8.89917 1.033886 1.848356 1.511793 0.354354

https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/


Table 4
List of validation sites including geolocation, elevation, surface emissivity and basic description of the surface type at station location and around the station within VIIRS footprints.

Site location Id Latitude Longitude Elevation Surface type at station Surface type around station Surface emissivity

Lake Tahoe, CA/NV LTO 39.153°N 120.000°W 1897 m Inland water Inland water 0.990
Table Mountain, CO TBL 40.126°N 105.238°W 1692 m Sparse grassland Grassland/crop 0.973
Bondville, IL BON 40.051°N 88.373°W 213 m Grassland Cropland 0.976
Goodwin Creek, MS GWN 34.255°N 89.873°W 96 m Grassland Grassland 0.975
Fort Peck, MT FPK 48.308°N 105.102°W 636 m Grassland Grassland 0.979
Desert Rock, NV DRA 36.623°N 116.020°W 1004 m Arid shrubland Arid shrubland 0.966
Penn State U., PA PSU 40.720°N 77.931°W 373 m Cropland Cropland/forest 0.972
Sioux Falls, SD SXF 43.734°N 96.623°W 483 m Grassland Grassland/urban 0.978
Gobabeb, Namibia GOB 23.551° S 15.051° E 425 m Desert area Desert area 0.950
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located at Lake Tahoe, CA/NV, and Gobabeb, Namibia have been operat-
ed continuously for several years for LST validation. The others are part
of NOAA's Surface Radiation (SURFRAD) operational network initially
developed to characterize surface radiation. Around half of the sites
are representative of homogeneous areas at scales appropriate for vali-
dating VIIRS products, i.e. a large lake, desert or grassland. The remain-
ing sites are located over relatively heterogeneous areas in terms of land
cover types and surface biophysical parameters.
5.1. Inland water site: Lake Tahoe, CA/NV

Since 1999, NASA's Jet Propulsion Laboratory (JPL) has been
maintaining four continuous LST monitoring stations on Lake Tahoe,
CA/NV, a 35 km long and 15 kmwide lake on the California–Nevada bor-
der. Each station has a JPL-built self-calibrating thermal infrared radi-
ometer that measures surface brightness temperature in the 8–14 μm
atmosphericwindow froma height of 1mand several bulk temperature
sensors, placed ~2 cmbeneath the surface (Fig. 1). The temporal resolu-
tion of the in situ measurements is 2 minutes (onemeasurement of the
target's radiance and self-calibration process every 2 minutes). The ra-
diometers are typically exchanged at 6-month intervals for mainte-
nance. Validation at JPL's NIST-traceable calibration facility indicates
that changes during deployments are small and less than 0.05 K
Fig. 1. Images of four differentfield stations used in the study: JPL's instrumented buoys over Lak
stations from NOAA's SURFRAD network—Bondville, IL (bottom left) and Desert Rock, NV (bot
(Hook et al., 2003). A full meteorological station (wind speed, wind di-
rection, air temperature, relative humidity and net radiation) is also de-
ployed at each station. Channel-specific (8–14 μm) incoming
atmospheric radiation required for atmospheric correction (Eq. 2) are
derived fromMODTRAN 5.2 simulations using atmospheric profiles ob-
tained from local sounding balloon launches and model data generated
by the National Centers for Environmental Prediction (NCEP). NCEP
produces global model values on a 1° × 1° grid at 6 h intervals. The at-
mospheric profiles at the satellite overpass times are derived from
NCEP data using linear interpolation between the two successive inter-
vals bracketing the observation time. Lake Tahoe is on a model grid
point and no spatial interpolation is required. More information on
the measurements is available at http://laketahoe.jpl.nasa.gov.
5.2. Desert site: Gobabeb, Namibia

Gobabeb is located in theNamibDesert inNamibia, and is oneof four
permanent validation stations operated by Karlsruhe Institute of Tech-
nology (KIT) within the framework of the Satellite Application Facility
on Land Surface Analysis (LSA SAF, http://landsaf.meteo.pt/). The main
purpose of the station is to validate andmonitor LST products retrieved
from thermal infrared satellitemeasurements, and it is supported by the
European Organization for the Exploitation of Meteorological Satellites
e Tahoe (upper left), KIT's 30m tower located at Gobabeb, Namibia (upper right), and two
tom right).

http://laketahoe.jpl.nasa.gov
http://landsaf.meteo.pt/
image of Fig.�1
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(EUMETSAT) (Göttsche et al., 2013). The Gobabeb station was specifi-
cally developed to validate LST products derived from the Spinning
Enhanced Visible and Infrared Imager onboardMeteosat SecondGener-
ation (MSG/SEVIRI). The site represents a large and homogeneous grav-
el plain sparsely covered by dry grass. The core instruments are KT-
15.85 IIP infrared self-calibrating radiometers, commercialized by
Heitronics Infrarot Messtechnik GmbH in Wiesbaden, Germany.
The KT-15.85 IIP measures thermal infrared radiance in the 9.6–
11.5 μm domain and obtains brightness temperatures with an absolute
accuracy of ±0.3 K (Theocharous, Usadi, & Fox, 2010). Two KT-15 sen-
sors with a field of view (FOV) of 8.5° aremounted next to each other at
25 m height (Fig. 1) and observe an area of about 14 m2 each. An
additional KT-15 faces the sky at 53° with respect to zenith and mea-
sures the spectral downwelling longwave radiance, which is used to
correct for the reflected atmospheric component (Eq. 2). All station
measurements are collected once per minute. The surface emissivity
of the gravel plain is considered constant and is assumed by LSA SAF
to be 0.95 for MSG/SEVIRI at 10.8 μm, which is in close agreement
with ASTER andMOD21 emissivities; this emissivity value has been val-
idated with additional field measurements (Göttsche & Hulley, 2012).

5.3. The Surface Radiation Budget Network (SURFRAD)

The Surface Radiation Budget Network (SURFRAD) was established
in 1993 with a primary objective of supporting climate research
with accurate, continuous, long-termmeasurements of the surface radi-
ation budget over the United States in support of the global Baseline
Surface Radiation Network (BSRN) (Augustine, DeLuisi, & Long, 2000,
Augustine, Hodges, Cornwall, Michalsky, & Medina, 2005). The seven
SURFRAD stations used in the study operate in climatologically diverse
regions and are representative of various land cover types (Table 4).
Quality-controlled measurements of all relevant radiative components
(upwelling anddownwelling, solar and infrared, solar direct and diffuse,
photosynthetically active radiation, solar ultraviolet-B radiation), and
meteorological parameters are measured. SURFRAD stations are pro-
grammed to sample at 15-second intervals and to provide 1-minute av-
erages of each parameter. SURFRAD instruments are meticulously
maintained, and all instruments are replaced on an annual basis with
freshly calibrated instruments. The primary measurements used in
this study to derive ground-based LST are the upwelling and
downwelling thermal infrared radiances, which are measured by two
pyrgeometers (Eppley Precision Infrared Radiometer, spectral range
3.5–50.0 μm). The accuracy of the Eppley pyrgeometer is about 4.2 W
m−2, and the precision of the instrument is less than 1Wm−2 for night-
time measurements and around 2 W m−2 for daytime measurements
(Philipona et al., 2001). The spatial representativeness of the
pyrgeometer measurements is around 70 × 70m2. The surface emissiv-
ity of each site used to derive in situ LST (Eq. 2) is estimated from a
spectral-to-broadband relationship (Eq. 6) from Ogawa, Schmugge,
and Rokugawa (2008) using ASTER spectral emissivity products
(Hulley & Hook, 2009b) (Table 4):

ε8−13:5μm ¼ 0:026ε11 þ 0:269ε12 þ 0:357ε13 þ 0:359 ð6Þ

where ε11, ε12, ε13 are the ASTER-derived spectral emissivity values in
bands 11, 12 and 13 centered on 8.65 μm, 9.1 μm and 10.6 μm. The emis-
sivity integrated between 8 and 13.5 μmfromEq. (7) is assumed to be the
best estimate of the broadband emissivity (Cheng, Liang, Yao, & Zhang,
2013), and is used here to represent the pyrgeometer spectral domain.
The instrumental error alone gives rise to an uncertainty in retrieved
LST of less than 1 K (Guillevic et al., 2012). Measurements from
SURFRAD have already been used by Guillevic et al. (2012), Heidinger,
Laszlo, Molling, and Dan Tarpley (2013), Wang et al. (2008) and Wang
and Liang (2009) for evaluating ASTER, GOES and MODIS LST products,
for example.
6. Results

6.1. Comparisons with satellite heritage data

To evaluate the relative agreement between VIIRS and MODIS LST
products, the matchup tool described in Section 2 was used to select
44 Simultaneous Nadir Overpasses (SNOs) (37 daytime and 7 nighttime
SNOs) of VIIRS and AquaMODIS granules acquired from August 2012 to
July 2013,which iswithin theVIIRS LST beta version release period, over
the contiguous United States. Based on similar assumptions to describe
the atmospheric effects, i.e. split window methods, VIIRS and MODIS
(MYD11) LST products are generally in relatively good agreement, espe-
cially at nighttime (Fig. 2). The observed bias, standard deviation (STD)
and root mean square (RMS) of the differences between the two LST
products (VIIRSminusMYD11) are around 2.2 K, 2.3 K and 3.2 K respec-
tively for daytime observations and 0.3 K, 1.1 K and 1.1 K for nighttime
observationswhen accounting for all SNOs identified in the selected pe-
riod of time (see Figs. 3 and 4, and Table 5 for detailed statistics depend-
ing on surface type). Regardless of surface type, better agreement
between the satellite products is seen at night with the bias and STD
being lower than 0.8 K and 1.7 K, respectively. During the daytime,
significant discrepancies are observed over sparsely vegetated areas
(open shrublands, savannah) and barren soils, for which the RMS of
the difference is up to 5 K. Large biases of around 3.2 K are observed
for broadleaf deciduous forest where the vegetation density varies
with seasons. However, with non-systematic occurrence, differences
in LST products are significantly high, up to 15 K, over barren surfaces
or open shrublands for specific dates. This effect is clearly shown
when analyzing geographical features in maps of differences (VIIRS
minusMODIS LST) calculated for four dates associatedwith different at-
mospheric conditions over the southwestern USA and northwestern
Mexico: hot and wet in August 2012, cool and dry in October 2012,
hot and dry in June 2013 and cool and wet at nighttime in August
2012 (Fig. 2). On August 11, 2012, differences in LST up to 15 K are ob-
served over barren surface and open shrublands (Figs. 2 and 3).

Results obtained for barren surfaces show evidence of two distinct
trends between the VIIRS and MODIS LST and the agreement between
the products is strongly degraded for LST values higher than 330 K.
However, over the same region but for different dates, discrepancies
in the products are significantly reduced and negligible at nighttime
(Fig. 4). The observed differences were not present in the VIIRS Sensor
Data Record (SDR) (equivalent to MODIS level-1b products). On the
August 11, 2012, the date on which maximum discrepancies were ob-
served, the at-sensor radiances measured in the 11 μm and 12 μm
bands of VIIRS and MODIS (VIIRS bands M15 and M16 and MODIS
bands 31 and 32) were in good agreement (Fig. 5). The bias and stan-
dard deviation calculated between VIIRS and MODIS at-sensor bright-
ness temperatures differ by 0.45 K and 1.8 K and cannot explain the
differences observed when comparing the level-2 (swath-based) LST
products. The higher bias obtained between VIIRS channel M15 and
MODIS band 31may be partly explained by slight differences in spectral
domains. Since our use of SNOs minimizes the impact of directional ef-
fects and spatial resolution on the differences between VIIRS andMODIS
at-sensor radiances, the discrepancies in LST are mainly introduced by
the retrieval algorithms. As such, either one or both split-window algo-
rithms do not accurately represent the wide range of natural surface
variability and atmospheric conditions.

The effect of emissivity is also not predominant, or it would have
been present in all granules since both algorithms are using classifica-
tion of constant emissivity values for each surface type. However, we
note on August 11, 2012 that differences in LST products are well corre-
lated with the spatial distribution of atmospheric total column water
vapor contents derived from MODIS (MYD07) (Fig. 6, upper panel).
Differences in LST higher than 10 K and up to 15 K were observed
over the Sonoran Desert, which covers large parts of the southwestern
United States and of northwestern Mexico, where the MOD07 water



Fig. 2. Differences between VIIRS andMODIS (MYD11) LST products observed over thewestern USA on four different dates associatedwith different atmospheric conditions: hot andwet
in August 11, 2012, cool and dry in October 14, 2012, hot and dry in June 11, 2013 and cool and wet at nighttime in August 6, 2012. The white areas over land are regions where good-
quality retrievals were not available (clouds, etc.).
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vapor content was higher than 4 cm and the LST was higher than 340 K
(Fig. 6, bottompanel). As expected, the difference betweenVIIRS bright-
ness temperatures (M15 minus M16) increases when the atmospheric
water content increases (Fig. 7) due to higher absorption in band M16
than M15, and the split window methods exploit such a relationship
to remove the atmospheric effects fromat-sensor radiances and retrieve
the LST. Ideally, the atmosphere should have a very small influence on
validation results. However, on August 11, 2012, the differences be-
tween VIIRS and MODIS LST strongly increased from 5 to 15 K when
the atmospheric total column water vapor content increased from 3 to
5 cm over regions with very warm surface temperatures (Fig. 8).

For very humid atmospheric conditions, the differences between the
VIIRS brightness temperatures were around 6 K (Fig. 7). Such values
strongly enhance the contribution of the quadratic term in the VIIRS
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Fig. 3. VIIRS vs. MODIS (MYD11) LST products observed over the western USA on August 12, 2014 at 20:32 UTC (daytime). Results obtained for all 17 IGBP surface types (upper left) and
selected surface types are represented. Large differences are observed over barren soils.
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algorithm formulation (Eq. 4). The above results provide evidence that
the coefficient a4 in the split window formulation used for VIIRS must
be carefully defined. In the current VIIRS algorithm this is attempted
with a single set of coefficients which, therefore, must incorporate the
algorithm's entire knowledge about all globally possible daytime atmo-
spheric conditions. This study indicates that a single set of coefficients is
insufficient to achieve the required product accuracy. Moreover, the
current set of VIIRS coefficients is derived from regressions over an
ensemble of radiative transfer simulations that accounts for LST values
up to 327 K maximum, but simulations associated with LST values
above 300 K are not statistically represented. Results suggest that the
performance of the VIIRS algorithm is significantly degraded for very
humid atmospheres, and over warm arid regions for which surface air
temperature and LST may differ considerably, e.g. by more than 20 K.

The poor performance of VIIRS LST for arid surface conditions
and high water vapor atmospheres has been verified with a third
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Fig. 4. VIIRS vs. MODIS (MYD11) LST products observed over barren areas in the western USA for different dates at 9:06 UTC (night) and around 20:30 UTC (daytime) associated with
different atmospheric water vapor content.

Table 5
Comparisons of coincident VIIRS and MODIS LST products acquired from August 2012 to
July 2013over contiguousUnited States duringdaytime (37VIIRS granules) and nighttime
(7 VIIRS granules). Bias, standard deviation (STD) and root mean square (RMS) of the dif-
ferences (VIIRSminusMODIS LST) are represented. No statistics were calculated for num-
ber of coincident pixels (N) lower than 100. The description of the 17 IGBP surface types is
provided in Table 1.

Surface type Daytime Nighttime

N Bias STD RMS N Bias STD RMS

1 1207066 1.23 2.12 2.45 106924 0.07 1.31 1.31
2 636 1.31 1.49 1.98 – – – –

3 – – – – – – – –

4 260829 3.23 1.08 3.41 1523 0.50 0.88 1.01
5 422628 1.28 1.33 1.84 41372 0.09 1.12 1.12
6 32933 1.06 2.01 2.27 5637 0.22 0.86 0.89
7 3072468 2.64 2.74 3.80 268565 −0.08 1.10 1.10
8 235621 2.16 2.31 3.17 11416 0.01 0.94 0.94
9 21248 4.54 3.02 5.45 – – – –

10 4789463 2.57 2.11 3.33 905205 0.39 0.95 1.03
11 871 1.28 2.35 2.68 – – – –

12 2033586 1.97 2.12 2.89 148459 0.37 0.90 0.97
13 126656 2.07 2.02 2.89 4771 −0.35 1.12 1.18
14 542517 1.49 1.59 2.18 9377 0.04 1.07 1.07
15 – – – – – – – –

16 446044 3.06 3.83 4.90 24071 0.72 0.95 1.19
17 417660 0.56 1.05 1.19 81904 0.76 1.65 1.82
All 13610262 2.25 2.36 3.26 1609259 0.30 1.07 1.12
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independent dataset: the MYD21 LST products (Hulley & Hook, 2010)
that will be released by NASA in 2014. MYD21 LST products are derived
using the Temperature and Emissivity Separation (TES) algorithm
(Gillespie et al., 1998) modified for MODIS bands 29 (8.55 μm), 31
(11 μm), and 32 (12 μm). Initially developed for ASTER, the TES algo-
rithm is now used to derive LST from MODIS (Hulley & Hook, 2010),
and SEVIRI (Jimenez-Munoz, Sobrino, Mattar, Hulley, & Gottsche,
2014). TES is a physically based algorithm and retrieves coherent LST
and spectral surface emissivity products using observations of atmo-
spheric profiles, i.e. total water vapor content and temperature, and a
full radiative transfer model (MODTRAN). Both VIIRS and MYD11 LST
for August and October 2012 were compared with MYD21 LST (Fig. 9).
The split window methods, using fixed emissivity values, generally
underestimate the LST over very warm arid regions. The observed dis-
crepancies significantly increase under warm conditions when the dif-
ference between the thermal infrared radiance from the surface and
the atmosphere increases. This behavior is clearly observed between
MYD11 andMYD21 products for most atmospheric conditions. Howev-
er, it is not observed for VIIRS LST under humid atmospheric conditions
where the effect of the atmosphere is predominant. When the differ-
ence between the thermal infrared radiance from the Earth's surface
and from the atmosphere is small (e.g., at nighttime and during cool
weather), the emissivity effect is partially compensated by the reflected
downward atmospheric radiation. Comparisons between VIIRS and
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Fig. 5. VIIRS vs. MODIS brightness temperatures (Tb) centered around 11 μm (left: VIIRS band M15 vs. MODIS band 31) and 12 μm (right: VIIRS band M16 vs. MODIS band 32) measured
over the western USA on August 11, 2012.
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MODIS products showed that the VIIRS LST is systematically under-
estimated over barren surfaces and significantly overestimated for
warm surfaces and wet atmospheres.

6.2. Comparisons with ground-based measurements

6.2.1. Characterization of the spatial representativeness of ground-based
LST using ASTER

LST and emissivity products from ASTER with a spatial resolution of
90 m were used to quantify the spatial variability of LST around the
SURFRAD stations. The stations located at Lake Tahoe (inland water)
and Gobabeb, Namibia (desert) are very homogeneous in terms of
land cover type and surface biophysical properties and are, therefore,
not considered here. The coarser spatial resolution of the VIIRS and
MODIS pixels was estimated by aggregating 90 m ASTER pixels to
form 1 km pixels centered on each SURFRAD station. We used LST and
surface emissivity standard deviation calculated for subsets of 11 × 11
ASTER pixels to assess the spatial representativeness of the stationmea-
surements (Table 6). All available clear-sky ASTER granuleswere select-
ed to calculate the statistics. With the exception of the Sioux Falls site,
which represents a patchwork of land cover types (grassland, lake,
urban), the sites are characterized by relatively small emissivity differ-
ences (standard deviation around 0.01). Two sites, Fort Peck, MT and
Desert Rock, NV, appeared more spatially homogeneous than the
other sites, with median and maximum values of LST STD around 1.3
K and 2.3 K respectively. The sites located near Sioux Falls, SD,
Table Mountain, CO and Bondville, IL, are more heterogeneous and
exhibit a higher spatial variability of both LST and surface emissivity.
Daytime and nighttime ASTER data were used, with a higher variability
usually measured during daytime. These results clearly suggest
that over heterogeneous areas the quality of validation results based
on comparisons with ground-based LST strongly depends on the
geolocation accuracy, the satellite sensor's footprint, and point spread
function. A very limited number of ASTER cloud free scenes were avail-
able for each site after August 2012, and ASTER data were not directly
used in the validation process. The surface emissivity used in the up-
scaling model was derived from model optimization to account for
seasonal variations, as described by Guillevic et al. (2012).

6.2.2. VIIRS LST EDR vs. ground-based LST
To evaluate the performance of theVIIRS algorithm, the LST standard

EDR, retrieved with the single split window method (the baseline
algorithm for VIIRS since August 11, 2012), was compared with
ground-based LST obtained at nine different stations. If necessary, the
ground-based LST was scaled up to account for LST spatial variability
around the stations. Since the sites located in Gobabeb, Namibia and
Lake Tahoe, California are homogeneous at the scale of MODIS and
VIIRS, the ground-based LST did not need to be adjusted for site inho-
mogeneity. All data used in the analysis are publicly available and in-
clude quality assurance metrics.

The comparisons of LST data were undertaken from August 2012 to
October 2013 using VIIRS, NOAA's SURFRAD and JPL network ground
stations, with the exception of the Gobabeb station for which only 5
months of data were available. Satellite overpasses with no obvious
clouds and quality flags provided with the VIIRS LST EDR were used to
selectmatchups during clear days. The upscalingmodel was specifically
developed for VIIRS LST validation by Guillevic et al. (2012). The first
step of the scaling represents the calibration/optimization of the SEtHyS
land surface model using in situ measurements. This was performed for
each site over 10-day periods in spring or summer with very low cloud
coverage. The scaling is performed by simulating the LST spatial distri-
bution around the station due to surface spatial variability. The calibra-
tion methodology and the relationship between MODIS-based NDVI
and LAI at 250 m spatial resolution around the stations are also de-
scribed in Guillevic et al. (2012). The scaling model accounts for the
view angle dependency of the VIIRS footprint, which varies discontinu-
ously from 0.75 km at nadir to around 1.5 km at the edge of the scan.

Validation results with in situ measurements show that the VIIRS
algorithm performswell overmost vegetated and inlandwater surfaces
(Fig. 10 and Table 7). The accuracy (bias between satellite and ground-
based LST) and precision (standard deviation of the differences) of the
VIIRS LST EDR required by the JPSS program are 1.5 K and 2.5 K, respec-
tively (Justice et al., 2013). With the exception of the desert site in
Gobabeb, where VIIRS does not meet the requirements, the absolute
value of the bias between VIIRS LST and in situ LST calculated for day-
time and nighttime data varies from 0.16 K to 0.61 K when accounting
for scaling effects. The standard deviation of the differences between
VIIRS and in situ LST varies from 1.80 K to 2.65 K over land sites, with
values slightly above the requirements for Bondville, IL (where the
STD of the differences is 2.65 K). Over the vegetated SURFRAD sites,
VIIRS systematically overestimated the LST.

Differences between VIIRS and ground-based LST products can
mainly be attributed to low spatial representativeness of in situ mea-
surements due to surface heterogeneities, insufficient stratification in
VIIRS algorithm coefficients as needed to represent a wide range of
global surface conditions, large errors in surface emissivity values for
bands M15 and M16 estimated from land-cover types, or due to the
presence of clouds. Maximizing the data quality by using strong cloud
filtering significantly reduces the number of observations available but
minimizes the effect of cloud contamination in validation results.
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Fig. 6.Total columnwater vapor content (TCWV)products derived fromMODIS (MYD07) (upper), andVIIRS LSTproducts (bottom)onAugust 11, 2012 (left) andOctober 14, 2012 (right).
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The effect of spatial variability is usuallymore significant during day-
time than nighttime (Table 7), since effects of structural shading, evap-
orative cooling and surface-air temperature differences are greater
during the day than at night. For example, over vegetated areas not sub-
ject to water stress, the transpiration of plants amplifies thermal gradi-
ents between areas with different vegetation types and densities. Over
croplands near Bondville, IL or sparsely distributed grassland near
Table Mountain, CO, the scaling model is able to account for the high
bias observed between VIIRS and in situ LST at daytime—a bias of
around 2.7 K at Table Mountain and 1.9 K at Bondville without scaling
(see Table 6 for the results achieved with and without scaling). The
Bondville station is located on a 250 m × 250 m patch of grass
surrounded by crops. The effect of the crops on validation results direct-
ly depends on the season, soil wetness (and resulting transpiration) and
the maturity of the crops, which explains why the VIIRS LST is much
lower than the station LST when the plants (corn and soybeans) are
well developed and why the VIIRS LST is significantly higher after the
harvest. This scaling trend has been shown by Wang et al. (2014)
when validating other surface radiation products. Even if the Bondville
site is well instrumented and maintained, the measurement is only
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Fig. 7. Difference between VIIRS band M15 and M16 brightness temperatures (Tb) vs. MODIS-derived total column water vapor content (TCWV) observed on different dates associated
with different atmospheric conditions: hot and wet in August 11, 2012 (left), and hot and dry in June 11, 2013 (right).
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representative of about one tenth of the VIIRS footprint, whichmakes it
not well suited for quantitatively estimating the quality of satellite
products at moderate resolution due to seasonal spatial variability
effects.

The best validation results were at Lake Tahoe (Table 7) where the
bias and STD of the differences between VIIRS LST and LST measured
over Lake Tahoe are lower than 0.15 K and 0.4 K, respectively. The vali-
dation was performed using day and night in situ data collected by four
different buoy stations over 15 months. The results are highly consis-
tent both spatially (between the stations) and temporally (seasons,
day or night) and clearly suggest that in situ measurements over
water bodies provide the level of accuracy needed for sensor calibration
and temporal drift detection. However, validation overwater cannot es-
timate the errors in the surface emissivity assumptions or modeling in-
herent in an LST algorithm.

In the previous section, we showed that VIIRS and MODIS MYD11
LST products are quite consistent over contiguous United States for rel-
atively cool and low atmospheric water vapor content conditions.
Fig. 8. Differences between VIIRS and MODIS (MYD11) LST products vs. MODIS-derived total c
atmospheric conditions: hot and wet in August 11, 2012 (left), and hot and dry in June 11, 201
Similar results have been found at Gobabeb in Namibia where the
bias between the VIIRS and MODIS LST is lower than 0.5 K (Fig. 11).
However, both VIIRS and MODIS products significantly underestimate
the LST of the Namibian desert by more than 4 K when compared
with ground-based reference measurements (Fig. 11 and Table 7).
Previous studies over arid and semi-arid validation sites (Justice et al.,
2013; Li et al., 2014) have also shown a systematic underestimation of
VIIRS LST by up to 5 K due to overestimation of spectral emissivity
values used in the VIIRS algorithm for barren surfaces. At Gobabeb,
VIIRS andMYD11 emissivities are up to 3% higher than in situ measure-
ments (Göttsche & Hulley, 2012), which already explains a large part of
the observed biases. The LST underestimation by MODIS (MOD11 and
MYD11 products) was first described by Wan (2008) and Hulley and
Hook (2010), and the MODIS algorithm in collection 6 has been modi-
fied to reduce this effect (Wan, 2014). In contrast, the VIIRS LST errors
under such conditions have not yet been resolved. These results illus-
trate that validation should not be based on comparisons with existing
satellite data alone.
olumn water vapor content (TCWV) observed on different dates associated with different
3 (right) at 20:32 UTC.
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Fig. 9. VIIRS vs. MODIS (MYD21) LST products (upper) and MYD11 vs. MYD21 LST products (bottom) observed over barren areas on August 11, 2012 (left) and October 14, 2012 (right).
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7. Discussion

Results have shown that the two validation methods used in the
study, namely the comparisons with ground-based and between differ-
ent satellite products complement each other and are both useful for
characterizing the performance and limitations of theVIIRS LST retrieval
algorithm. Comparisons with ground-based LST measurements are the
most traditional and well-used approaches, and inmost cases they pro-
vide suitable validation results for well-defined and dedicated sites.
However, because of the limited number of high quality sites with
Table 6
Spatial representativeness of SURFRAD ground-based measurements for comparisons
with VIIRS LST products at moderate resolution. Subsets of 11 × 11 ASTER pixels at
90 m centered on station locations are used to calculate the standard deviations (STD)
of LST and surface emissivity around the stations. N represents the number of clear-sky
ASTER granules used to assess the median, minimum (Min) and maximum (Max) values
of STD.

Site location N STD of LST (K) STD of emissivity (−)

Min Median Max Min Median Max

Table Mountain, CO 28 0.43 2.46 4.81 0.006 0.010 0.016
Bondville, IL 52 0.28 0.76 4.02 0.006 0.013 0.023
Goodwin Creek, MS 26 0.62 2.06 4.27 0.007 0.009 0.016
Fort Peck, MT 9 0.40 1.26 2.18 0.007 0.010 0.014
Desert Rock, NV 69 0.36 1.01 2.38 0.004 0.005 0.012
Penn State U., PA 23 0.49 1.38 2.57 0.007 0.010 0.018
Sioux Falls, SD 9 0.92 2.90 4.82 0.014 0.018 0.024
spatially homogeneous surface temperatures, additional methods
must be employed to characterize algorithm performance over the full
range of surface types and conditions. In our study, for example, in
situ validation was not able to detect the strong degradation of the
VIIRS algorithm performance under high atmospheric water vapor
content.

Such discrepancies were only successfully diagnosed by comparing
VIIRS andMODIS swaths. However, the characterization of uncertainties
on existing LST satellite products would not have been possible without
independent and traceable sites, or from rigorous simulations (Hulley,
Hughes, & Hook, 2012). Satellite product inter-comparisons provide
useful information about spatial patterns in LST deviations and can be
used to monitor the performance of a product and detect significant
quality issues. However, they cannot provide rigorous and quantitative
validation results. The use of theMYD21 LST product, which is based on
other assumptions than the split window methods, showed that VIIRS
was underperforming with large cold biases over arid regions far
exceeded VIIRS accuracy requirements. Moreover, comparisons with
in situ measurements at Gobabeb showed that coincident VIIRS and
MODIS LST split-window products can be very consistent in a relative
manner but nonetheless may both be biased with respect to an inde-
pendent ground reference data.

Accurate in situ observations of LST at dedicated validation sites pro-
vide themost reliable validation results. However, due to their high cost
and logistical barriers, there are only a few sites around the world that
are dedicated to LST validation. Two of these sites were used in this
study—one located in a desert area in Namibia operated by KIT and
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Fig. 10. VIIRS LST EDR vs. ground-based LST measurements at eight validation sites representative of various land surface types over the contiguous United States.
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Table 7
Bias, standard deviation (STD) and root mean square error (RMSE) of the differences cal-
culated between VIIRS LST EDR and ground-based LST with and without scaling. Results
over the validation datatset, daytime periods and nighttime periods are represented. Sta-
tistics account for all clear-sky data from August 11, 2012 to October 16, 2013. No scaling
was carried out over Lake Tahoe and Gobabeb sites.

Period N Satellite vs. non
scaled LST

Satellite vs. scaled-up
LST

Bias STD RMSE Bias STD RMSE

Lake Tahoe All 1073 −0.14 0.40 0.42 – – –

Daytime 524 −0.12 0.43 0.45 – – –

Nighttime 549 −0.16 0.36 0.39 – – –

Table Mountain All 210 0.59 2.99 3.04 −0.57 2.16 2.23
Daytime 89 2.69 3.34 4.27 −0.10 2.81 2.80
Nighttime 121 −0.99 1.23 1.58 −0.92 1.42 1.69

Bondville All 195 1.00 3.03 3.18 0.41 2.65 2.67
Daytime 96 1.87 3.93 4.34 0.60 3.52 3.55
Nighttime 99 0.16 1.30 1.31 0.22 1.33 1.34

Goodwin Creek All 199 0.31 1.17 1.72 0.16 1.80 1.80
Daytime 98 −0.40 1.76 1.80 −0.69 1.84 1.96
Nighttime 101 1.00 1.30 1.64 1.00 1.30 1.65

Fort Peck All 174 2.65 3.19 4.14 0.61 2.44 2.51
Daytime 94 4.66 2.86 5.46 0.97 3.00 3.13
Nighttime 80 0.29 1.50 1.52 0.19 1.48 1.48

Desert Rock All 309 −0.55 2.21 2.27 −0.55 2.21 2.27
Daytime 134 1.41 1.89 2.35 1.41 1.89 2.35
Nighttime 175 −2.05 0.81 2.20 −2.05 0.81 2.20

Penn State U. All 162 0.86 2.55 2.69 0.34 2.41 2.43
Daytime 62 2.06 2.78 3.45 0.90 2.77 2.89
Nighttime 100 0.11 2.09 2.08 0.00 2.10 2.08

Sioux Falls All 172 1.28 2.06 2.41 0.41 1.96 1.99
Daytime 81 2.27 2.02 3.03 0.50 2.31 2.35
Nighttime 91 0.41 1.66 1.70 0.31 1.59 1.61

Gobabeb All 252 −4.56 2.54 5.21 – – –

Daytime 124 −5.53 2.93 6.25 – – –

Nighttime 128 −3.62 1.63 3.96 – – –
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one on Lake Tahoe operated by JPL. Both sites have provided the most
reliable quantitative validation results. The Gobabeb desert site, in par-
ticular, was useful for assessing the negative bias of VIIRS LST over arid
areas due to an overestimation of emissivity. Comparisons at the inland
water sites also provide evidence of good overall quality of the VIIRS ra-
diometric measurements. Validation results at Lake Tahoe are consider-
ably less impacted by the cumulated and diffused effects of spatial
variability, atmospheric effects, sun illumination, viewing angles and
surface emissivity uncertainties. In situ LST retrieved over water is asso-
ciatedwith low experimental uncertainties, and is very stable over time.
Inland water measurements provide the necessary quality to perform
Fig. 11. VIIRS (left) and MODIS MYD11 (right) LST products vs. ground-based LST measuremen
algorithms, both VIIRS and MODIS products significantly underestimate the LST of the Namibia
long-term LST product validation and radiometric calibration drift
monitoring.

Although the SURFRAD network was not initially designed for LST
validation, SURFRAD measurements are useful for validating satellite
LST products (Guillevic et al., 2012; Heidinger et al., 2013; Wang &
Liang, 2009; Wang et al., 2008). According to results obtained for
VIIRS in this study, or for MODIS by Guillevic et al. (2012), we strongly
recommend that ground-based LST validation only be performed over
sites that are highly homogeneous in surface temperature. High-
resolution LST or NDVI datasets can be used to select appropriate valida-
tion sites. In this study, we used simple statistics to analyze the spatial
representativeness of in situ LSTmeasurements, butmore sophisticated
approaches exist. For example, Roman et al. (2009) has introduced the
use of geostatistical metrics (e.g., empirical variograms) to estimate
the spatial variability of satellite-derived surface albedo around loca-
tions of interest. Note that currently no operational satellite LST algo-
rithms correct for view angle (e.g. normalization to nadir angle).
Therefore, some systematic errors are typically unavoidable when com-
paring satellite data to nadir-pointing field instruments.

Validation based on comparisons with existing satellite products re-
quires careful identification of appropriate matchups between the dif-
ferent datasets. Previous multi-sensor comparison studies (Guillevic
et al., 2012; Trigo et al., 2008) found differences up to 12 K between
MODIS and SEVIRI-derived LST over sparsely vegetated woodlands
due to directional effects. Pinheiro et al. (2006) found similar differences
in directional field radiometer measurements over African woodlands.
Appropriate matchups significantly reduce the discrepancies induced
by directional effects such as shadows and variable footprint size. How-
ever, the impact of differences in spatial resolutions, spatial weighting
and spectral responses on validation results is difficult to assess and can-
not be completely reducedwithmatchups. For example, a systematical-
ly higher VIIRS LST product (relative to MODIS LST) may reflect a
possible issue in VIIRS, MODIS or both retrieval algorithms. However,
the global RMSE of the differences is around 3.2 K during daytime and
1.1 K during nighttime, and may reflect intrinsic differences in sensor
characteristics and experimental/matchup design.

8. Conclusions

Through comparisons with Aqua/MODIS LST products and ground-
based measurements, two problems were identified in the VIIRS LST
EDR:

A systematic underestimation of LST over barren surfaces due to in-
accurate spectral emissivity values used in the VIIRS algorithm. Surface
emissivity ancillary data used in the algorithm are derived from fixed
ts at Gobabeb, Namibia. Due to an overestimation of surface emissivity values used in the
n desert by more than 4 K on average.
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values depending on a limited number of surface types and do not fully
encompass the natural variation in surface emissivity. This represents a
well-known intrinsic problem associated with split window techniques
over land that cannot be easily corrected for the current LST VIIRS
algorithm. A possible solution for splitwindowmethodswould be to ex-
plicitly account for surface emissivity values as parameters of the split
window formulation (Wan and Dozier, 1997), and to use maps of re-
trieved dynamic surface emissivities (like those from ASTER-TES,
MODIS MOD11B1 or MOD21 products) as algorithm inputs.

A strong overestimation of LST over arid and semi-arid regions under
hot and very humid conditions due to the use of a non-representative
sampling of environmental conditions, i.e., atmospheric conditions and
surface temperatures, when determining the VIIRS algorithm coefficients.
A better representation of extremeatmosphericwater vapor conditions in
the training dataset should improve the algorithmperformance, especial-
ly over arid regions (bare surfaces and open shrubland according to the
IGBP classification) when surface air temperature and LST have very
large differences. Both effects are much greater in day than at night.

Results have shown that comparisons with existing satellite data
and ground-based measurements are complementary for identifying
and characterizing the limitations of the VIIRS—or any other—LST algo-
rithm. For some of the cases investigated in this study, two different
satellite LST products can be in very good agreement since they use a
similar algorithm, however theymay differ considerably from the corre-
sponding ground-based reference measurements. Furthermore, it was
shown that except for slight discrepancies due to differences in
sensor-specific spectral functions, there is excellent agreement between
at-sensor radiances measured by VIIRS (channels M15 and M16) and
MODIS (bands 31 and 32), which demonstrates the high quality of the
VIIRS thermal infrared level-1 product.

Because spatial representativeness and directional effects are quite
difficult to compensate for, quantitative assessment of algorithm uncer-
tainties requires dedicated and high quality in situ LST measurements
over sites that are homogeneous at the spatial scale of the satellite ob-
serving system. Ground-based LST measurements over water bodies
provide the most stable and reliable validation dataset for monitoring
calibration drift. However, in order to evaluate LST algorithms over a
representative range of land surface temperatures (e.g. from 223 K to
343 K) and for situations with strong surface overheating, validation
over sites representing solid land surface types is indispensable.

Long-term and routine validation efforts require additional compar-
isonswith other satellite-derived products, such as the physically-based
MODIS MYD21, which provides consistent LST and surface emissivity
(LST&E) accuracy over all land cover types. Continued validation of
VIIRS LST EDRs using the radiance-based methods following the meth-
odology defined by Wan and Li (2008) will provide validation over a
more diverse set of conditions on a global scale. This is because in gen-
eral it is easier to find sites that are homogeneous in emissivity than ho-
mogeneous in temperature at km-scale resolutions. Emissivities at
these sites can be defined using either in situ measurements or from
the ASTER Global Emissivity Database (ASTER-GED) developed by
Hulley and Hook (2009b) for example. The VIIRS algorithm is currently
unable to accommodate spatial and temporally-adjusted emissivity
values since it does not produce a dynamically retrieved land surface
emissivity product. Consequently, the performance of the algorithm is
strongly reduced over arid and sparsely vegetated regions. However,
the generation of a dynamic emissivity productwould ensure continuity
with existing LST&E products such as from the current MODIS
MOD11B1 and MOD21 products, and would enable the development
of merged products using both split-window and dynamic emissivity
retrieval such as from the TES algorithm.
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