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Monitoring the mass of herbaceous vegetation during the dry season in semi-arid areas is important for a num-
ber of domains in ecology, agronomy, or economy and remote sensing offers relevant spatial coverage and fre-
quency to that end. Existing remote sensing studies dedicated to dry herbaceous vegetation detection are
mainly motivated by the assessment of soil tillage intensity and soil residue management, risk of soil erosion,
and risk of wildfire linked to the mass of dead fuel. Few studies so far have dealt with monitoring of straw and
litter degradation during the dry season over large areas while they are important fodder for livestock sustain-
ability. MODIS band combinations (NBAR collection 5) were tested against a set of field measurements carried
out over 20 rangeland sites from 2004 to 2011 in the Sahel. The best empirical linear models were obtained
for indices using MODIS bands in the shortwave infrared domain (Band 6 centered at 1.6 μm, Band 7 centered
at 2.1 μm), in particular with the Soil Tillage Index (STI). STI explained 66% of the variance of dry masses
(Mass = 3158(STI − 1.05), r2 = 0.66, RMSE = 280 kg DM/ha, n = 232) for dry and intermediate season
data. A regression is also proposed for year-round data (Mass = 3371(STI − 1.06), r2 = 0.67, RMSE =
352 kg DM/ha, n = 536). The strong inter-site and inter-annual variabilitieswere well captured and the decay
ratewas found consistentwith grazing intensity and fire occurrence. The results imply that the STI can be applied
to monitor the mass of dry tissues in the Sahel and potentially in many semi-arid areas.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Semi-arid areas are characterized by a long dry season, during
which annual plants die and perennial herbaceous plants often suffer
drought by letting above-ground tissues dry while the below-ground
parts survive. During the dry season, many physical and ecological
processes, as well as some economical activities, interact with the
amount and distribution of these above-ground dry tissues. Live-
stock sustainability for instance, depends on available fodder,
which mostly consists of dry herbaceous plants. This resource varies
throughout the year and from year to year. In the Sahel, for example,
the extreme drought of 1984 resulted in very low plant production
and extremely low dry-season fodder, which had severe impact on
livestock survival and thus on pastoral population. In this context,
assessing dry-season forage resources is a major concern and remote
sensing offers relevant spatial coverage and frequency to that end.
Frequent and accurate assessment of dry tissues is also very useful
to studies of soil erosion, fire emissions biogeochemical cycles and
surface energy budget (Barbosa, Stroppiana, Grégoire, & Cardoso
cques).
Pereira, 1999; Samain et al., 2008; Shinoda, Gillies, Mikami, & Shao,
2011) in West Africa, but more generally in most arid and semi-
arid areas worldwide (e.g. (Dregne, 2011)).

During the last decade, a number of remote sensing studies have ad-
dressed the detection of dry vegetation, pursuing different objectives:
derivation of soil tillage intensity, soil conservation (Daughtry & Hunt,
2008; Daughtry, Hunt, Doraiswamy, & McMurtrey, 2005; Daughtry
et al., 2006), evaluation of soil erosion risk and runoff (Arsenault &
Bonn, 2005; Bannari, Chevrier, Staenz, & McNairn, 2007; Bergeron,
2000; Biard & Baret, 1997), evaluation of the risk of wildfire in relation
to dead fuel proportion (Cao, Chen, Matsushita, & Imura, 2010;
Elmore, Asner, & Hughes, 2005; Roberts et al., 2003) and improvement
in land cover mapping (Guerschman et al., 2009; Peña-Barragán, Ngugi,
Plant, & Six, 2011). The spectral signature of dry canopies and its appli-
cation in thefield has been extensively discussed by Nagler, Daughtry, &
Goward(2000); Nagler, Inoue, Glenn, Russ, & Daughtry(2003) and
Daughtry, Gallo, Goward, Prince, & Kustas(1992) among others. Few
studies focused on dry season forage estimation, in terms ofmass for in-
stance (Ren& Zhou, 2012), and even fewer studies have testedmonitor-
ing methods efficient at large scale, since field or airborne spectroscopy
or high resolution data from Landsat (Marsett et al., 2006; Serbin, Hunt,
Daughtry, McCarty, & Doraiswamy, 2009; Zheng, Campbell, & de Beurs,
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Fig. 1. Spectral signatures of areal mixtures of dry long grass collected early August and
lawn grass picked on June, from the USGS digital spectral library (Clark et al., 2007) and
the absorption coefficient of water (data from (Bertie & Lan, 1996)). Relative spectral re-
sponses of bands from MODIS, Landsat 8 and ASTER are also represented. Note that the
MODIS band 7 (2.061–2.167 μm) falls into the absorption feature characteristic of dry veg-
etation at 2.1 μm. Other absorption features at 1.7 and 2.35 μm can be also observed on
spectral signature of scene dominated by dry vegetation (red curve). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 1
Dry vegetation indices from literature. ρx is the reflectance of the wavelength in the
band x. TM, A, M correspond to Landsat TM, ASTER, MODIS bands respectively. a and
b are the slope and the intercept of the soil line in the corresponding spectral band
domain. L = 1 − 2a. NDSVI. (ρTM5 − aρTM5). δ is the angle between the soil and
the residue lines. ζ is the angle between the point to estimateand the soil line (see details
in Biard & Baret (1997)).

Formula References

Tested in the analysis
NDI5 ¼ ρTM4−ρTM5

ρTM4þρTM5
McNairn and Protz (1993)

NDI7 ¼ ρTM4−ρTM7
ρTM4þρTM7

McNairn and Protz (1993)
NDTI ¼ ρTM5−ρTM7

ρTM5þρTM7
Van Deventer et al. (1997)

NDSVI ¼ ρTM5−ρTM3
ρTM5þρTM3

Marsett et al. (2006); Qi et al. (2002)
Ratio ¼ ρM7

ρM6
Guerschman et al. (2009)

STI ¼ ρM6
ρM7

Van Deventer et al. (1997)

Not tested in the analysis
SACRI ¼ a ρTM4−aρTM5−bð Þ

ρTM5þaρTM4−abð Þ Biard et al. (1995)

MSACRI ¼ Cste a ρETM5−aρETM7−bð Þ
ρETM7þaρETM5−abð Þ

h i
Bannari et al. (2000)

SATVI ¼ ρTM5−ρTM3
ρTM5þρTM3þLð Þ 1þ Lð Þ−ρTM7

2 Marsett et al. (2006)

DFI ¼ 100 1−ρM7
ρM6

� �
ρM1
ρM2

Cao et al. (2010)

CRIM ¼ tan δð Þ
tan ζð Þ ¼ cos ζð Þ

cos δð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−cos2 δð Þ
1−cos2 ζð Þ

q
Biard and Baret (1997)

CAI = 0, 5(ρ2031 + ρ2211) − ρ2101 Daughtry (2001)
LCA = 100[(ρA6 − ρA5) + (ρA6 − ρA8)] Daughtry et al. (2005)

SINDRI ¼ 100 ρA6−ρA7
ρA6þρA7

h i
Serbin, Hunt, Daughtry, McCarty, and
Doraiswamy (2009)
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2012) or Hyperion (Daughtry et al., 2006; Guerschman et al., 2009;
Monty, Daughtry, & Crawford, 2008; Roberts et al., 2003) were used in
most cases.

Different factors potentially impair the detection of dry vegetation
masses.

1. The similarity between soil and dry vegetation spectral signatures
(Gausman, Wiegand, Leamer, Rodriguez, & Noriega, 1975) as well
as the diversity of the soil spectral signature, which depends on fac-
tors such as mineralogy, structure, texture, and moisture (Aase &
Tanaka, 1991; Baret, Jacquemoud, & Hanocq, 1993; Serbin,
Daughtry, Hunt, Brown, & McCarty, 2009).

2. The structure of the vegetation, depending on the species and on the
canopy architecture (standing grasses or litter for instance)
(Daughtry, Serbin, Reeves, Doraiswamy, & Hunt, 2010; Kokaly &
Clark, 1999; Wanjura & Bilbro, 1986).

3. The biochemical composition and state (C/N ratio, water content, tis-
sue aging, photosynthesis activity) (Daughtry & Hunt, 2008).

4. The impact of wild or controlled fires on spectral properties (Lewis
et al., 2010).

Ideally, a dry-season forage index allowing the retrieval of the mass
of plant tissues should copewith all these effects. Furthermore, it should
be derived on a week-to-week basis to capture forage dynamics along
the season.

The objective of the present study is to investigate the relationship
that exists between several reflectances and indices and masses of
standing straws and litter usingMODIS data from TERRA and AQUA sat-
ellites. For that purpose, radiometric indices are evaluated, through em-
pirical linear models, against a set of field measurements collected over
8 years for a network of sites in the Sahel. Furthermore, the sensitivity
of mass retrieval to the structure of the vegetation (proportion of stand-
ing straws and litter), the season and thus the water content, the pres-
ence of photosynthetic vegetation, the soil background, and the burn
scars are analyzed to determine the robustness of the method.

2. Background

2.1. Spectral characteristics of dry vegetation

The spectral regions mostly used to assess crop residue cover, litter
or more generally dry or non-photosynthetic vegetation on the ground
are the visible (VIS, 0.4–0.7 μm), near infrared (NIR, 0.7–1.2 Im)
and shortwave infra-red (SWIR, 1.2–2.5 μm) domains. The use of the
VIS–NIRdomain is debated because of difficulties to distinguish dry veg-
etation from the underlying ground. Indeed, in this spectral region, soil
and dry vegetation both display a wide range of spectral signatures,
with soil reflectance being lower or higher than the dry vegetation is
(Aase & Tanaka, 1991; Nagler et al., 2000; Nagler et al., 2003). The
SWIR domain contains absorption features of dry vegetation at 1.7, 2.1
and 2.35 μm (Fig. 1). Elvidge(1990) has observed absorption features
at 2.1 and 2.3 μm using Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) data over dry shrubs. Absorption in the SWIR has been associ-
ated with structural compounds as cellulose, hemicellulose and lignin
since non-structural compounds as sugars and starches are already de-
graded by microorganisms in dry material (Elvidge, 1990; Roberts,
Smith, & Adams, 1993; Roberts et al., 1990). As leaf water content in-
creases, these absorption features are impacted by spectral properties
of water (Kokaly, Asner, Ollinger, Martin, & Wessman, 2009; Kokaly &
Clark, 1999; Serbin, Daughtry, Hunt, Brown, & McCarty, 2009).

2.2. Dry vegetation indices

The signature of drymatter compounds in the SWIR domain has fos-
tered the emergence of various indices, most often for discriminating
dry vegetation from green vegetation and soil background. Table 1 pre-
sents the formula of the indices described hereafter.
Based on the spectral absorption feature at 2.1 μm, the Cellulose Ab-
sorption Index (CAI) was defined by Daughtry(2001). This index has
been demonstrated many times to be suitable to detect dry vegetation
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(Daughtry et al., 2010; Nagler et al., 2003; Serbin, Daughtry, Hunt,
Brown, & McCarty, 2009; Serbin, Hunt, Daughtry, McCarty, &
Doraiswamy, 2009). Some studies have nuanced these results by show-
ing that CAI was less accurate for crop residues cover less than 50% and
for specific soil background (Bannari, Haboudane, & Bonn, 1999;
Bannari et al., 2007; Chevrier, 2002). Nevertheless, CAI is a physical-
based efficient index. Its major drawback is the need to obtain reflec-
tance in very narrow bands in specific wavelengths. To date, only the
EO-1 Hyperion sensor allows calculating CAI from space. Otherwise, air-
borne sensors as AVIRIS or field spectroradiometers have to be used,
which are not suitable for large area monitoring.

In an attempt to use the spectral properties near the CAI signature,
other indices, using the narrow SWIR bands from ASTER onboard
TERRA (Fig. 1), have been designed: the Lignin Cellulose Absorption
(LCA) (Daughtry et al., 2005) and the Shortwave Infrared Normalized
Difference Residue Index (SINDRI) (Serbin, Hunt, Daughtry, McCarty,
& Doraiswamy, 2009). ASTER however is not adapted for regional mon-
itoring because of a low temporal frequency (16-day revisit) and a rela-
tively small scene size. Furthermore it has to be tasked and the SWIR
detector has been offline since April 2008 due to failure (JPL, 2012).

Guerschman et al.(2009) developed a linear unmixing approach for
bare soil, photosynthetic and non-photosynthetic vegetation reflec-
tance using the NDVI and the CAI, as proposed by Daughtry
et al.(2005). They selected the MODIS bands the most closely related
to CAI, using spectral libraries from field campaigns. The best result
was shown to be the simple ratio between bands 7 (2.061–2.167 μm)
and 6 (1.599–1.659 μm) in the SWIR domain. Other indices have been
derived from MODIS data to detect dry tissues, most often relying on
the SWIR bands. For instance, the Dead Fuel Index (DFI) developed by
Cao et al.(2010) to discriminate dead fuel for fire prevention is in part
built on the B7/B6 ratio. The Normalized Difference Indices 5 and 7
(NDI5, NDI7, (McNairn & Protz, 1993)), Normalized Difference Tillage
Index (NDTI, (Van Deventer, Ward, Gowda, & Lyon, 1997), (Zheng,
Campbell, Serbin, & Daughtry, 2013), (Zheng et al., 2012)), Normalized
Difference Senescent Vegetation Index (NDSVI, citeqi2002ranges,
marsett2006remote), and Soil Tillage Index (STI, (Van Deventer et al.,
1997)) are empirical indices built with different Landsat TM bands,
adaptable to MODIS bands. Daughtry et al.(2010) have shown that
most of these empirical indices are sensitive to the soil background.
The soil line concept, a linear relationship between bare soil reflectance
observed in two different wavebands (Baret et al., 1993), often used by
‘green vegetation indices’, has been also applied to ‘dry vegetation indi-
ces’with the Soil Adjusted Crop Residue Index (SACRI) (Biard, Bannari,
& Bonn, 1995), Modified Soil Adjusted Crop Residue Index (MSACRI,
(Bannari, Haboudane, McNairn, & Bonn, 2000)) and Soil Adjusted
Total Vegetation Index (SATVI, (Marsett et al., 2006)). Finally, Biard &
Baret(1997) further developed the concept by initiating a residue line
in the Crop Residue Index Multiband (CRIM). Since most of the MODIS
based indices are relatively recent, and also because suitable ground
data datasets are not easily gathered, the ability of these indices for
large scalemonitoring of dry season forage is not known. The sensitivity
of the spectral signature in the SWIR domain to dry matter has been
clearly demonstrated, the best results were obtained using space-
borne hyperspectral (Hyperion) sensor or with ASTER that had specific
bands in the SWIR, no longer functional. Finding a method suitable to
sensors allowing high frequency observations (e.g. MODIS) is really of
interest because they are those usually needed for monitoring over
large areas.

3. Material and methods

3.1. Study site and field data

The network of sites extends from14,5N to 17,5N and 2W to 1W in
the Gourma region, which covers 90,000 km2 south of the River Niger
(Fig. 2). 22 permanent sites (Fig. 2) have been established to sample
the diversity of precipitation regime, soil type, woody plant cover, and
grazing pressure along a large latitude gradient (Hiernaux & Justice,
1986; Hiernaux et al., 2009; Mougin et al., 2009).

Dry season vegetation measurements were collected during an 8-
year period (2004 to 2011), in addition to the measurements routinely
collected in rainy season. Among these 22 sites, two sites with a tree
cover exceeding15% have been discarded (20, 21) as they are seasonally
flooded forests (site numbers are from Hiernaux et al. (2009)). Four
other sites are considered separately (8, 16, 22, 40) since they have a
very shallow soil, being rocky outcrops or iron-pans with extremely
low plant cover, which is itself largely dominated by trees and bushes.
These sites are considered here to test the sensitivity of dry vegetation
retrieval to the soil mineralogy. This leaves a fairly large dataset of 536
observations collected over 8 years and 16 different sites with sandy
or loamy soil and a tree cover of less than 15%, spanning 2° of latitude.

Mass measurements (expressed in kilograms of dry matter per hect-
are) in the dry season follow the protocol used for green vegetation for
the long term ecological survey (Hiernaux et al., 2009). Originally, these
sites were selected to be homogeneous over 1 km2. For each site, a
1 km line is sampled using a stratified random sampling. It combines 12
measurements of mass of straw and litter (dry weight) collected over
12 × 1 m2. These samples represent three classes of vegetation density:
3 samples in the low and high class, 6 for the medium class. A sample in
the bare soil class (mass = 0) is also added. The relative fractions of the
four classes (high, medium, low and bare) are determined visually by
careful inspection of every 1 m2 segment along the 1 km line. The 1 km
average mass is the sum of the class averaged masses weighted by the
class relative fractions. This protocol has proven to be efficient for long-
term monitoring of a large network of rangeland sites in the Sahel, for
which inter-site variability and inter-annual variability can be very large
(Dardel et al., 2014a,b; Hiernaux, 1996). The relative contribution of
standing straw and litter to the total mass has been estimated visually.

Pastoral Sahel is dominated by annual grasses and dicotyledons. In
the Gourma area, the dry season usually starts around the September
15 and ceases near June 15 (Frappart et al., 2009), with significant
inter-annual variability in rain distribution within the wet season. This
period has been separated in two parts for analysis purpose: the inter-
mediate period, between the September 15 and the October 15 (re-
ferred to as intermediate season in figures), during which the
vegetation can be found dry as well as green depending on rainfall
and floristic composition, and the rest of the dry season between the
October 15 and the June 15 (referred to as dry season infigures). Thepe-
riod from June 15 to September 15 is referred asthe wet season.

3.2. Remote-sensing data

The MODerate resolution Imaging Spectroradiometer (MODIS) on-
board TERRA andAQUA satellites has a large spatial coverage, a high fre-
quency of revisit time and data free access making it suitable for an
application to the Sahelian context. TheMODISNadir BRDF-adjusted re-
flectance (NBAR) product (MCD43A4, collection 5) provides every
8 days a normalized reflectance corrected for bidirectional and atmo-
spheric effects, based on reflectance data collected over a 16-day period
(Schaaf et al., 2002). The spatial resolution is 500m. For each 1 km field
site, the pixel which is the closest to the site center is extracted (http://
daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_
global_col5.pl). NBAR data are interpolated through time to match the
exact day of the field measurement.

3.3. Data analysis

Several indices have been tested, specifically NDI5, NDI7, NDTI, STI,
and NDSVI, using equivalent MODIS bands. Indices using the soil line
concept (SACRI, MSACRI, SATVI, CRIM) are not considered because the
aim of the study is to find amethod as simple as possible and applicable
easily to large area. Using soil line requires a specific calculation for each
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Fig. 2. The 22 field measurement sites in the Gourma region (Mali) displayed over a MODIS composite. Site numbers are from (Hiernaux et al., 2009).

Table 2
Parameters of linear regressions between indices andmass data (RMSE expressed in kg of
DM/ha) combining dry season and intermediate period measurements (September 15 to
June 15, n = 232).

Literature Index r2 RMSE

– B5/B7 0.67 277
STI B6/B7 0.66 280
– (B5 − B7)/(B5 + B7) 0.66 280
NDTI (B6 − B7)/(B6 + B7) 0.65 283
– B7/B5 0.65 284
ratio B7/B6 0.64 287
– B2/B7 0.64 287
NDI7 (B2 − B7)/(B2 + B7) 0.64 290
– B2 − B7 0.63 291
– B7/B2 0.62 297
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site; therefore themethod has been discarded.Moreover, due to the ne-
cessity of having narrow bands in specific wavelengths, indices using
ASTER data (LCA, SINDRI) could not be computed with MODIS bands
(Fig. 1). On the other hand, individual spectral bands (1–7) have been
tested for the purpose of isolating any potential spectral region more
sensitive to dry vegetation than others. Finally, the different combina-
tions of simple difference, simple ratio and normalized difference be-
tween two of the first seven MODIS bands have been also tested in
order to highlight a possible index that has not yet been identified in
the literature.

Empirical relationships compute by linear regressions with herba-
ceous dry mass measured in the field as the dependent variable are ap-
plied to all indices. The performance of the models is compared using
the coefficient of determination (r2) and the root mean square error
(RMSE).

Sensitivity of the selected index to the proportion of standing straws
and litter, the season and thus the water content and the presence of
photosynthetic vegetation (wet, intermediate or dry periods), the soil
background (sandy, loamy or rocky) and the burn scars are systemati-
cally analyzed. Although it was not the primary objective of this study,
the selected method has also been applied on data for the entire year
and compared with the NDVI under the same conditions.

4. Results

4.1. Selection of the best combination of bands

The performance of the 10 best combinations of bands is presented in
Table 2 for the two periods concerned by dry vegetation, namely the in-
termediate period (September 15 to October 15) and the dry season (Oc-
tober 15 to June 15) pooled together. All regressions have very high
significant p-values (p b 0.0001), coefficient of determination (r2) rang-
ing from 0.67 to 0.62 and RMSE from 277 to 297 kg of DM/ha. Four of
five indices found in the literature are present in these 10 best combina-
tions (STI, NDI7, NDTI, and B7/B6 simple ratio). Note that we used the
same index names when changing Landsat TM/ETM+ bands 1, 2, 3, 4,
5, and 7 to respectively MODIS bands 3, 4, 1, 2, 6 and 7 in computing
indices keeping in mind that bandwidth is slightly different. All the
retained combinations use band 7 (2.061–2.167 μm), which is located in
the spectral region of the ligno-cellullose absorption feature (Fig. 1). Con-
sidering the minor difference of r2 and RMSE between band 7 (ranked as
11th, 0.61, 301 kg ofDM/ha) and the best index (0.67, 277 kgofDM/ha), it
seems that band 7 alone largely contributes to the relationship with the
dry herbaceous mass for this time period. However, as it will be demon-
strated below, using band 7 alone as a proxy of mass does not capture
the fire effect on dry mass in a completely satisfying manner.

When the dry season is considered separately, thus excluding data
from September 15 to October 15, the combinations of B7 and B6 result
in the bestmodels of dry herbaceousmass (Table 3). The RMSE is slight-
ly smaller and the coefficient of determination is slightly lower than
when the dry and intermediate seasons are combined.

The relationship for wet season data provides larger RMSE and
slightly higher r2. The bands B1, B3, B4 or B5 are preferred than B6 in
some of the best combinations (Table 4). This is in line with the expect-
ed signature of green plant tissues over bright soils. Despite a well
established sensitivity to green leaf area, the NDVI does not appear in
the 10 best combinations for mass retrieval (25th, r2 = 0.54 and
RMSE = 459).

image of Fig.�2


Table 3
Parameters of linear regressions between indices andmass data (RMSE expressed in kg of
DM/ha) for dry season measurements only (October 15 to June 15, n = 193).

Literature Index r2 RMSE

STI B6/B7 0.59 238
NDTI (B6 − B7)/(B6 + B7) 0.59 239
ratio B7/B6 0.59 240
– B5/B7 0.58 244
– (B5 − B7)/(B5 + B7) 0.57 244
– B7/B5 0.57 245
– B6 − B7 0.55 250
– B5 − B7 0.54 255
– B2 − B7 0.52 259
– B4 − B7 0.52 259

Table 5
Parameters of linear regressions between indices andmass data (RMSE expressed in kg of
DM/ha) throughout the year measurements (n = 536).

Literature Index r2 RMSE

STI B6/B7 0.67 352
NDTI (B6 − B7)/(B6 + B7) 0.66 356
– B7 0.66 357
– (B5 − B7)/(B5 + B7) 0.66 359
ratio B7/B6 0.65 361
– B7/B5 0.65 363
– B4 − B7 0.65 363
– B3 − B7 0.63 365
– B5/B7 0.63 371
– B1 − B7 0.63 371
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When all mass data are pooled together, the B6 and B7 combinations
stand out as the best predictors of vegetation mass (Table 5), and B7 is
included in all the ten best combinations.

The ratio between band 6 and 7, referred to as STI, is retained for the
rest of the analysis. The equivalent Landsat-based STI has proven suc-
cessful for crop residue discrimination (Van Deventer et al., 1997) and
its reciprocal, as it has been discussed above, has been used to estimate
fractional non-photosynthetic vegetation (Guerschman et al., 2009).
Using a band ratio eliminates some disturbances in the signal, and it
can be applied to daily MODIS reflectance (rather than an 8-day com-
posite) in case high temporal resolution is needed. According toTables 2
to 5, we acknowledge that several ratio combinations, based on bands 6
and 7, could have been selected, like B7/B6 or (B6− B7)/(B6 + B7), be-
cause they share relatively similar performances.

4.2. Effect of vegetation status and soil background

The linear regression of STI against herbaceous mass for the dry and
intermediate seasons is represented in Fig. 3a. The mass values range
between 0 and 2396 kg DM/ha. There is no strong evidence of satura-
tion in the (STI,mass) relationship over this range. The regression relies
on the following equation:

Mass ¼ 3158� STI−3316 ð1Þ

which can be written as

Mass ¼ 3158� STI−1:05ð Þ ð2Þ

whereMass is the herbaceous mass (kg DM/ha) and STI is the Soil Till-
age Index.

The ratio between standing straw and litter is a potential source of
variation of the (STI,mass) relationship, because of differences in canopy
geometry and spectral properties of tissue. Fig. 3c shows the value of
this ratio for each observation. The ratio of standing straw versus total
mass appears to be at best a secondary effect. When the percentage of
Table 4
Parameters of linear regressions between indices andmass data (RMSE expressed in kg of
DM/ha) for wet season measurements only (June 15 to September 15, n = 324).

Literature Index r2 RMSE

– B1 − B7 0.68 382
– B7 0.67 390
– B4 − B7 0.66 395
STI B6/B7 0.66 398
– (B5 − B7)/(B5 + B7) 0.66 398
– B3 − B7 0.65 396
NDTI (B6 − B7)/(B6 + B7) 0.65 399
– B7/B5 0.65 402
ratio B7/B6 0.65 404
– B6 0.65 404
standing straw is high, the linear model may tend to slightly underesti-
mate the mass and when the litter is dominant, the opposite occurs. In
most cases however, the proportion of standing vegetation and litter
was assessed visually at each sampling plot, a method that may lead
to substantial measurement error. Some caution is thus required.

Data from the sandy soil sites and loamy soil sites (Fig. 3a) do not
form distinct clusters. The soil effect has been further tested by includ-
ing some barren soils in the analysis (Fig. 3b). Among them, rocky out-
crops, mostly dark sandstone, schists and iron pans, clump close to the
x-axis, meaning that STI can be higher for a very low herbaceous
mass. Some shallow soil sites are covered by scattered sand or loam
bars allowing some plants to grow. These sites tend to fit the (STI,
mass) regression of Fig. 3b, whereas really bare rocky soils do not.
Such rocky soils could be filtered out thanks to their flat seasonal dy-
namic and low values of NDVI or STI.

The primary objective of this study is the retrieval of dry season veg-
etation mass. It turns out that the STI is also well correlated when data
dominated by green tissues are included (Table 5).

Mass ¼ 3371� STI−3574 ð3Þ

which can be written as

Mass ¼ 3371� STI−1:06ð Þ ð4Þ

The slope of Eq. 4 is slightly larger than for Eq. 2, which is partly
caused by a subset wet season data showing low mass (less than
400 kg DM/ha) and STI ranging from 1.1 to 1.3. That is consistent with
the idea that the correlation of STI to mass may involve a correlation
to the plant area index. In the early growing season, the ratio of canopy
mass to canopy surface is increasing, since plants progressively build
stems. There is a possibility that STI increases faster than mass does, at
the beginning of thewet season. Indeed, STI and NDVI are linearly relat-
ed during the wet season (Fig. 4) and it is known that NDVI increases
much faster than mass in pastoral Sahel in the early growing season
(Mbow, Fensholt, Rasmussen, & Diop, 2013). In addition the effect of
water absorption is strong in the SWIR range and is more important
for the band 7 (2200m−1) than for band 6 (498m−1), which could po-
tentially affect the STI. During approximatively the ten days that follow
germination, the water content of the vegetation is high (close to 80%)
and then decreases toward 40% at peak biomass. Caution has to be
used in the early growing season.

4.3. Time series and maps

Fig. 5 represents time series of the STI, scaled with Eq. 3 (all seasons
data), and in situ mass for four contrasted sites. Site 17 (Fig. 5a) is a typ-
ical sandy soil site. The herbaceous layer at growing season peak ismore
or less continuous, whereas woody vegetation is scattered, with a total
tree and bush cover reaching 3%. The site is located in the proximity of
permanent water bodies and it is therefore grazed year-round, which
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is not the case for sites 5 and 30. The decrease of the vegetation mass at
the beginning of the dry season is more rapid for relatively intensively
grazed sites (like 17), which is well reflected by STI dynamics. For in-
stance, on the time series of site 5 (Fig. 5b), where dry season grazing
is less intense due to the lack of water nearby, neither STI nor mass
data shows a rapid decay. The average STI and total plant production
are lower than for site 17 during these years. A relatively slow decrease
0.0

0.2

0.4

0.6

1.25 1.50 1.75

STI

N
DV

I

Season
Wet
Intermediate
Dry

Fig. 4. Compared values of STI and NDVI during the 2000–2011 over 16 sites with loamy
and sandy soil (n = 8958).
in the early dry season is more apparent, for at least 2004, 2007 and
2011 on site 30. Site 8 (Fig. 5d) is an illustration of a rocky outcrop
where almost nothing grows. The expected signal is a straight line
with only minor deviations, and this is what it is observed on the time
series. STI has a rather constant value, higher than the lowest values
for sites 17 and 5 at the end of the dry season. Another important obser-
vation on site 17 is the fire scar effect during the 2005 dry season, iden-
tified by a rapid decrease of STI, followed by a plateau lasting until the
growth of the vegetation in the next rainy season. This phenomenon is
illustrated also on the time series of site 30 (Fig. 5c) which is prone to
fire, and not to grazing. The resulting time-series of mass data and STI
both display ‘square’ irregular forms, because the herbaceous mass
stays high during the dry season, since grazing pressure is very low, ex-
cept when a fire occurs, which brings dry tissue mass to zero and STI to
bare soil value. The site was partially burned in 2008–2009 and 2009–
2010 which lead to intermediate STI values.

When bands 6 and 7 are scrutinized separately, the post fire periods
result in a slow increase at both wavelengths (Fig. 6). This is not in line
with the dynamics of dry tissues observed in situ after a fire. Since band
6 and band 7 increase in a similar way, the STI rapidly falls to a bare soil
value and keep constant afterwards. This is consistent with the fact that
the post-fire reflectances aremixtures of bare ground and black char re-
flectance (Lewis et al., 2010) with diminishing fraction of black char.
Both bare ground and black char show a flat spectral signature in B6
and B7, which explains why STI correctly predicts no-mass values. STI
has an advantage over band 7 alone in fire prone areas.

In order to characterize the spatial consistency of the index, a series
of maps is represented on Fig. 7. They picture the region around the

image of Fig.�3
image of Fig.�4


0
30

00

kg
 o

f D
M

/h
a a) Site 17

0
30

00

kg
 o

f D
M

/h
a b) Site 5

0
30

00

kg
 o

f D
M

/h
a c) Site 30

2004 2006 2008 2010

0
30

00

kg
 o

f D
M

/h
a d) Site 8

Estimated mass Observed mass

Fig. 5. Time series of estimatedmasswith Eq. 4, and in situmassmeasurements of 4 contrasted sites. Site 17 (a) is intensively grazed, Site 5 (b) is little grazed, Site 30 (c) is prone tofire and
Site 8 (d) is a rocky outcrop.

46 D.C. Jacques et al. / Remote Sensing of Environment 153 (2014) 40–49
Agoufou permanent pond, starting before the 2006 rainy season. The
north of the area is partially occupied by shallow soils, where almost
no herbaceous vegetation grows, as it can be seen both in rainy season
NDVI and on the land cover classification. For this land surface type,
STI values stay low and roughly constant throughout the whole year.
In the southern area, STI values decrease throughout the dry season,
after the rapid burst corresponding to the growth of annual grasses
and forbs during the rainy period. The decrease of the dry season STI
is not spatially homogeneous. It is consistent with the spatial distribu-
tion of grazing pressure, since, for instance, large patches of dry vegeta-
tion persist far from the ponds. Fire scars (contoured in red in the last
panel of Fig. 7) are also easily identifiable as instantaneous areas of
low STI values, which stay low after the fire until the next rainy season.
Note that the influence of water is also well marked by high STI values
on areas cover by water.

5. Discussion

The STI provides a good retrieval of the herbaceous dry mass during
the dry season, over a significant range of values (0–2500 kg DM/ha).
These data span the typical range of pastoral rangeland dry season
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Fig. 6. Time series of STI and its component (reflectance in B6 and B7) for the site 30, prone to fir
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mass in the Sahel andmore largely ofmany semi-arid rangelands.With-
in this range, no saturation of STI at high mass values was detected, im-
plying that a linear relation can be used, which is of interest. STI fulfills
most conditions to enable dry season monitoring of herbaceous mass
that were listed in the introduction. In particular, a unique regression
can be used in the presence of some green vegetation, during the tran-
sition season when green and dry tissues coexist. Therefore, an assess-
ment of the ‘start of dry season’ value can be obtained, together with a
dry season evolution, which is important for monitoring and managing
purposes. The evaluation of the (STI,mass) regression over a large set of
data indicates that 66% of the variance of dry season mass is explained
with MODIS SWIR data. Such a result is in fact close to what is obtained
for the widely-used methods retrieving vegetation production with in-
tegrated NDVI, when several years and sites are considered (see for in-
stance (Dardel, Kergoat, Hiernaux,Mougin, et al., 2014b) and references
therein for pastoral Sahel). Some of the scatter is caused by random er-
rors in the 1 km field estimations. Indeed, mass varies in space within a
1 km site, and this variability is not completely captured by the sam-
pling protocol. This could leave room for reducing scattering in (STI,
mass) relationship with evenmore intensive fieldmeasurements. How-
ever, the real strength of the equations that we propose here comes
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from the wide ranges of sites, of dates and the long period of time that
the field data provide. The variance explained is also comparable to
the results of Ren & Zhou(2012), who estimated senesced biomass of
desert steppe in Inner Mongolia using field spectrometric data. The
best results with the CAI reaching a coefficient of determination of
0.67 from 155 in-situ observations.

Although it is not the primary focus of our study, the year-round
equation predictingmasswith STIwould benefit from further investiga-
tion of the relationshipwith the specific leafweight (leaf dryweight per
unit area). Themass to surface ratio changesmuch less at the end of the
growing season, during the intermediate and dry season (unpublished
data), than during the early growing season. This probably contributes
to the stability of the (STI,mass) relation through time, with an excep-
tion during the early growing season during which the water content
has also been taken into account. In addition to the retrieval of herba-
ceous mass, we can expect a good retrieval of dry vegetation fraction
cover also. This would be in line with the results of Guerschman
et al.(2009), who demonstrated that the ratio B7/B6 (reciprocal of STI)
was the best combination to emulate the CAI and to predict dry vegeta-
tion cover fraction in an Australian grassland. The B7/B6 ratio was se-
lected because multiple linear regression B7/B6 = x + y. NDVI + z.
CAI, gave a z/y very close to 1, implying thereby that the sensitivity of
B7/B6 is almost identical to NDVI and CAI. Under the hypothesis that
CAI and NDVI are respectively perfect indices for dry and green vegeta-
tion cover, these results suggest that the ratio B7/B6 (and its inverse, the
STI) performs equally well during the intermediate period. The effect of
soilmoisture,which is expected to increase STI, has not been detected in
our dataset. Surface soil moisture decreases very rapidly over Sahelians
sandy soils, especially under clear-sky conditions thanks to rapid drain-
age and rapid drying of the top soil, often in a few hours (e.g. (Samain
et al., 2008)). As a result, there are few occurrences of MODIS clear sky
images over wet soil in the region, if any. Soil moisture effect is further-
more attenuated by theNBAR time-averaging. However, STI timeprofile
might need to be filtered when using the whole-year (STI,mass) rela-
tionship, especially in more rainy areas.

The proposed index is suited to herbaceous-dominated landscapes.
The sensitivity of STI to tree leaves mass or crop mass was not tested.
From literature and first analysis of spectral signatures, there are rea-
sons to expect significant relationships of STI with these variables, in
terms of non-photosynthetic cover fraction. The slope and intercept of
the relation of STI to mass, however, may well be different.

One caveat has to be kept in mind: some dark rocks and open water
bodies have to be filtered out for large scale herbaceousmass estimates,
which is relatively easy based on seasonal course of reflectances and ab-
solute values over these targets. Overall, the soils in our study area are
relatively bright (Samain et al., 2008). The (STI,mass) regression poten-
tially applies to grass dominated ecosystems over bright soil, which in-
cludes pastoral Sahel but also many semi-arid areas worldwide.

6. Conclusion

It has been demonstrated that the ratio of MODIS bands 6 and 7, the
Soil Tillage Index, can be used to assess herbaceous mass during the dry
season with a good accuracy and robustness in the Sahel. A linear
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regression was successfully applied during the dry season, including a
transition period when dry and green plants coexist (66% of dry mass
variance explained). Although it was not the primary objective of this
study, it turns out that the STI is also well correlated when data domi-
nated bygreen tissues are considered (67% of dry mass variance ex-
plained), although with some caveats especially in the early growing
season and in case of wet soils. Seasonal and inter-annual variabilities
of dry season plant mass have been monitored with the STI. The influ-
ence of dry-season grazing on dry mass decay, the influence of climate
variability on plant production, as well as the abrupt changes caused
by fire were well identified. The retrieval of dry season herbaceous
mass has many applications, starting with forage monitoring, but also
fire emissions estimates and monitoring of plant protection against
wind erosion. Our results imply that STI can be applied to monitor the
mass of dry vegetation tissues in many semi-arid areas.
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