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Remote sensing has proved to be a consistent tool for monitoring water fluxes at regional scales. The triangle
method, in particular, estimates the evaporative fraction (EF), defined as the ratio of latent heat flux (LE) to
available energy, based on the relationship between satellite observations of land surface temperature and a
vegetation index. Among other methodologies, this approach has been commonly used as an approximation to
estimate LE, mainly over large semi-arid areas with uniform landscape features. In this study, an interpretation
of the triangular space has been applied over a heterogeneous area in central Spain, using Landsat5-TM,
Envisat-AATSR/MERIS and MSG-SEVIRI images. Some aspects affecting the model performance such as spatial
resolution, terrain conditions, vegetation index applied and method for deriving the triangle edges have been
assessed. The derived EF estimations have been validated against ground measurements obtained with
scintillometer on a winter crop field during 2010–2011. When working with large spatial windows,
removing areas with different topographic characteristics (altitude and slope) improved the perfor-
mance of the methods. In addition, replacing the typically used NDVI with Leaf Area Index enhances
the performance of the triangle method allowing a better characterization of the wet edge. Finally, results
showed a relatively good performance for the EF estimates, with an RMSE of 0.11, 0.15 and 0.23 and R2 of
0.77, 0.41, and 0.24 for Landsat, Envisat and MSG satellites respectively, showing a scale dependency on
the accuracy.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Background

Evapotranspiration or latent heat flux (LE) is a key component in the
energy, hydrologic, carbon, and nutrient cycles. As it is indicative of
water consumption from crops in agricultural lands, its determination
becomes crucial for achieving a sustainablewater resourcemanagement.
It is mainly driven by the available radiant energy, water availability and
the transport mechanism for removing thewater vapor from the surface
(humidity gradient and wind speed) (Batra, Islam, Venturini, Bisht, &
Jiang, 2006).

The surface energy balance is generally used to obtain LE as a residual
term, by combining net radiation, soil heat flux and sensible heat flux
(H) estimations. At thefield scale LE can be estimated using conventional
techniques (Ha, Gowda, & Howell, 2012), such as eddy covariance (EC)
más).
and Bowen ratio-energy balance (BREB); or soil water balance
techniques, such as surface renewal (SR) and by weighting lysimetry.
However, these techniques provide basically point measurements,
failing to represent the spatial heterogeneity of land surfaces and
dynamic forces distribution, especially in regionswith advective climatic
conditions. Indeed, the changes in atmospheric forcing,water availability
in the soil, vegetation structure, and land use management cause LE to
have a very high spatial and temporal variability.

In that sense, remote sensing is well known for being a powerful tool
when estimating regional fluxes. Several studies varying in complexity
have combined remote sensing data with ancillary data to estimate LE
through residual methods (Allen, Tasumi, & Trezza, 2007; Bastiaanssen,
Menenti, Feddes, & Holtslag, 1998; Kustas, Perry, Doraiswamy, &
Moran, 1994; Moran, Clarke, Kustas, Weltz, Amer, 1994; Norman et al.,
2003; Senay, Budde, Verdin, & Melesse, 2007). Those methods which
are based on a single source modeling framework, dealing with the
soil–vegetation system as a single ensemble, estimate surface resis-
tances from radiometric surface temperatures by using the excess re-
sistance term kB−1 (Kustas et al., 1989). However, according to Jiang
and Islam (2001) the estimation of such term requires accurate surface
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observations and is very sensitive to errors in micrometeorological vari-
ables (surface wind, temperature, vegetation height, roughness length,
etc.). Moreover, several assumptions about the extrapolation of atmo-
spheric variables and resistance terms are required (Venturini, Bisht,
Islam, & Jiang, 2004). On the contrary, those methods based on a two
source modeling scheme, which treat the land surface as two layers
(soil and vegetation), do not necessitate the use of such excess empirical
resistance, but require simultaneous temperature measurements from
both the soil and vegetation, not always easily accessible, or iterative
methods for estimating these two temperatures (Norman, Kustas, &
Humes, 1995).

According to Jiang and Islam (2003), the uncertainty in themeasure-
ment of LE is a strong argument for developing simple remote sensing
methods to estimate it at regional scale. Therefore, based on the evidence
that the combination of surface temperature (Ts) and a vegetation index
(VI), such as the Normalized Difference Vegetation Index (NDVI), is a di-
agnostic of surface environmental conditions (Goward, Waring, Dye, &
Yang, 1994), triangle models began to arise. They were intended to
dealwith some of the topicswhich traditionalmethods usually struggled
with, such as (1) the complex parameterization of aerodynamic terms
(e.g. aerodynamic resistance, aerodynamic temperature); (2) the
absolute accuracy of satellite surface temperature retrievals; and
(3) the regional availability of meteorological measurements.

As reviewed by Carlson (2007), the triangle concept was first
introduced by Price (1990). Few years later Moran, Clarke, Inoue, and
Vidal (1994) developed a crop water stress index justifying the theoret-
ical background, and later on the model was elaborated upon by
Carlson, Gillies, et al. (1995), Lambin and Ehrlich (1996), Gillies,
Kustas, and Humes (1997), Owen, Carlson, and Gillies (1998) and by
Jiang and Islam (2001). Since then, the methodology has been applied
and improved by numerous researchers (Chauhan, Miller, & Ardanuy,
2003; Jiang & Islam, 2003; Long & Singh, 2013; Margulis, Kim, &
Hogue, 2005; Nishida, Nemani, Running, & Glassy, 2003; Sandholt,
Rasmussen, & Andersen, 2002; Wang, Li, & Cribb, 2006; Yang & Wang,
2011). Some studies take advantage of the very frequent acquisitions
of geostationary satellites by expressing Ts in the Ts/VI space as an
increase over time, what it is known as thermal inertia (dTs) (Shu,
Stisen, Jensen, & Sandholt, 2011; Stisen, Sandholt, Nørgaard, Fensholt,
& Jensen, 2008). In the same way, other studies use a day − night Ts
difference derived with heliosynchronous satellites as an approxima-
tion of dTs, thus reducing the pixels size, both when applied to triangle
based methods (Wang et al. (2006)) and more physically based
approaches (Guzinski, Anderson, Kustas, Nieto, & Sandholt, 2013). As
using these differences includes more information on sensible heating
than Ts alone as well as they minimize systematic errors in Ts retrieval,
better estimates of daily evapotranspiration can be expected than the
ones obtained from instantaneous Ts.
Fig. 1. Conceptual triangular space.
Adapted from Stisen et al. (2008).
1.2. The triangle method

Basically, the method assumes a triangular space (Fig. 1) is formed
when one graphically represents Ts against a VI, as a proxy for vegetation
cover, both retrieved from remote sensing data, over a certain spatial
domain. Assuming that changes in Ts are due to the evaporative cooling
effect of evapotranspiration, the edges of this triangular space are
interpreted as follows: the wet edge represents areas where Ts is mini-
mum and therefore maximum evapotranspiration is taking place,
whereas the dry edge represents areas where Ts is maximum for a
given vegetation cover and no evapotranspiration occurs. The triangular
shape is given by the larger Ts range over bare soils compared to vegeta-
tion canopies, due to their different thermal conductivity. Soils have
much greater mass per unit volume than vegetation canopies – where
a considerable volume is filled with air – and hence present a thermal
conductivity one order of magnitude larger (Goward et al., 1994; Nieto,
Sandholt, Aguado, Chuvieco, & Stisen, 2011).
Jiang and Islam (2001) proposed that such space can be used to pa-
rameterize the Priestley–Taylor (PT) parameter, ϕ (Priestley & Taylor,
1972), by assuming a physical relation between the latter and the Ts–
VI space. Defined by Eq. (1)

LE ¼ ϕ Rn−Gð Þ Δ
Δþ γ

� �
ð1Þ

where LE is the latent heatfluxor evapotranspiration (Wm−2), Rn is the
net radiation (Wm−2), G is the soil heat flux (Wm−2),Δ is the slope of
the saturated vapor pressure curve [kPa K−1], ϒ is the psychrometric
constant [kPa K−1], and ϕ is a substitute for the Priestly–Taylor
constant, αPT = 1.26. ϕ is limited to range from ϕmin = 0, when no
evapotranspiration occurs, and ϕmax =

Δþγ
Δ

h i
at maximum evaporative

rate.
In addition, evaporative fraction (EF) is described as the ratio of

available energy (Rn–G) which is used to convert liquid water into
water vapor (Eq. (2)):

EF ¼ LE
Rn−G

ð2Þ

which in combination with Eq. (1) can be expressed as:

EF ¼ ϕ
Δ

Δþ γ

� �
: ð3Þ

Thus, following the previous approach, the wet edge corresponds to
areas where the PT parameter and EF are at maximum (ϕmax, EF = 1),
whereas the dry edge corresponds to areas where the PT parameter
and EF are null (ϕmin, EF = 0). All the pixels in between have interme-
diate ϕ and EF values (Fig. 1). When both edges are estimated, EF can
be computed for all cloud-free pixels based on their relative position be-
tween the edges via interpolation. Facing the impossibility of determin-
ing the true dry edge from remote sensing observations (Stisen et al.,
2008), such interpolation must be completed in two steps: firstly
obtaining ϕmin for each NDVI interval, and secondly obtaining ϕi within
each NDVI interval. Otherwise, working with the true dry edge would
involve an inversion of a model for estimating ET (Moran, Clarke,
Inoue, et al., 1994). Afterward, evapotranspiration rates can be calculat-
ed by combining EF with an estimate of the available energy (Rn–G).

As pointed out by Jiang and Islam (2001), the use of contextual
information for deriving ϕ allows the application of Eq. (1) over large
heterogeneous areas in contrast with αPT, which is merely applicable
for wet surface equilibrium conditions. ϕ represents an effective surface
resistance to evapotranspiration since it is a replacement for the
aerodynamic term of the Montetih's equation (Montetih, 1965), from
which it is developed. Yet, as it is not related to a single surface attribute,
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it takes no account of the aerodynamic properties and physiological
behavior of the surface, and this can lead to major uncertainties during
extreme conditions (wind, humidity) (Stisen et al., 2008). Therefore,
the methodology involves an assumption of uniform coupling with
the atmosphere and surface roughness (e.g., incoming radiation, air
temperature, wind speed, and canopy structure) over the area of inter-
est (Jiang & Islam, 1999, 2001, 2003; Long, Singh, & Scanlon, 2012).

For a proper model performance both areas with large evaporation
and low Ts as well as those with no evaporation and high Ts, must be
recognizablewithin the boundaries of the domain used to derive the tri-
angle. Assuming that those different situations are not due to changes in
atmospheric forcing conditions or surface roughness but due to varia-
tions in water availability, a heterogeneous study area large enough to
guarantee certain number of pixels with a wide range of soil moisture
conditions and vegetation cover, is required. So, the coarser the spatial
resolution of the input data, the bigger the domain size required, since
a larger area is needed for the definition of the triangle. However, ensur-
ing uniform atmospheric conditions requires relatively small areas, and
this might compromise the previous need.

Furthermore, clouds, sloping terrain, shading and standing water
cause variations in Ts retrievals and might be the source of errors
when establishing the triangle wet edge (Long & Singh, 2012; Tang,
Li, & Tang, 2010). As it is assumed that changes in Ts are mainly
due to the evaporative cooling effect, rather than elevation variation,
all the pixels within the spatial domain should have a similar
elevation. According to the preceding requirements, it becomes rea-
sonable to create a mask in order to apply the triangle over non-
water bodies, cloudless surfaces with similar characteristics, such as
altitude, slope and vegetation physiology (Carlson, 2007; Carlson,
Capehart, et al., 1995).

Finally, NDVI has been widely used as the proxy for the vegetation
cover in the triangle due to its simplicity. However, according to the re-
lation displayed in Fig. 2a fromHan,Wang, Yang, Liu, andWang (2006),
whenNDVI is close to saturation (~1) LAI, and hence vegetation cover, is
still increasing (from 6 to 10), as it includes green contributors like un-
derstory under upper canopies. Using LAI instead of NDVI should avoid
the triangular space being cut into a trapezoid shape due to limiting
NDVI, as shown in Fig. 2b.

1.3. Objectives

This research aims at assessing the triangle approach over a hetero-
geneous area for estimating daytime averages of EF. We will focus on
studying how the method performance depends on spatial resolution,
terrain conditions (vegetation classes, altitude, slope), type of VI, and
Fig. 2. a–b. a) NDVI–LAI relationship; b) LAI triang
Adapted from Han et al. (2006).
edge algorithms used. For that purpose the triangle method is applied
over a series of different satellite imagery dataset at different spatial
resolutions, including MSG-SEVIRI, Envisat-AATSR/MERIS and
Landsat5-TM, to obtain EF estimations and to compare them with
ground scintillometer measurements. The method is tested with and
without masking terrain conditions, as well as using either NDVI or
LAI as VI in the triangle, and different configurations of the dry and
wet edge algorithms. Furthermore, no previous works of comparable
validation of EF estimations were found in our study area. Despite of
the potential of SEVIRI for estimating the thermal inertia, this concept
remains out of the scope in this paper in order to compare results
between datasets. A description of the methodology is presented in
Section 2. Section 3 presents the annual variation of some physical
parameters and the triangle performance, which is discussed in
Section 4. Finally, Section 5 contains a summary of the main results
obtained, including advantages and disadvantages of different parame-
ters and algorithms, and the general conclusions from this research.

2. Methodology

2.1. Study area and field measurements

This study was conducted on the Henares River basin (Fig. 3a),
which belongs to the Tagus River hydrographic basin, in central Spain.
With a total surface area of 4136 km2, the basin's highest reliefs
(above 1500 m) are located to the northwest while the rest, mainly
corresponding to alluvial plains and a wide system of river terraces, is
relatively flat (~550 m). A north–south gradient characterizes the
mean annual precipitation, ranging from 700 mm to 400 mm, with
rainfall events being more frequent during spring and autumn, as it
is typical in continental Mediterranean climates. The land cover
follows both the elevation and rainfall distribution. Thus, deciduous
and evergreen forests together with scrub and pasturelands are
quite abundant in the mountainous areas, whereas crops dominate
flatter territories (Fig. 3b): maize as irrigated summer crop and
oats, wheat or forage crops as non-irrigated winter crops. Within
the basin there are three main population centers (more than
80,000 inh) demanding water from the river: Guadalajara, Torrejón de
Ardoz and Alcalá de Henares.

Close to Alcalá de Henares, at an altitude of 615 m there is a 20 ha
experimental field, La Canaleja (40° 30′ N, 3° 18′W), where ground
measurements were taken over two different growing seasons and
crop types: wheat (April 2010–July 2010) and oats (October 2010–Jun
2011). Surrounded by urban areas, as well as different types of crops,
scrubs, and fallow lands, the landscape of the study site is particularly
ular shape (ABC) vs. NDVI trapezoid (ABDE).



Fig. 3. a–b. Study area: a) Henares River basin location; b) Land covermap and domainwindow sizes: 5 × 5 km for Landsat, 40× 40 km for Envisat, and 60× 60 km for SEVIRI. (For a better
interpretation of the colors in this figure, the reader is referred to the web version of this article.)
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heterogeneous (Fig. 3b). At this point, the river flows eroding the steep
slopes of the Paramo of La Alcarria (Gutiérrez-Elorza et al., 2002) that
dominates the left bank, with a mean altitude around 200 m higher
than the right bank.

A surface layer scintillometer was used for measuring sensible heat
flux (H). This technology is based on the principle of measuring the in-
tensity variations of an electromagnetic beam between a transmitter
and an emitter, in our case along a 100 m path and at 1.75 m height
over the crop. The instrument is able to derive sensible heat flux by re-
lating the structure function parameter of temperature (C2

T) to the
structure parameter for the refractive index (C2n), which can be directly
measured by the scintillometer. The reader is referred to Hill (1992) for
a detailed review regarding scintillometry. Likewise, a meteorological
station equipped with psychrometers, a net radiometer and a soil heat
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flux plate recorded the available net energy (Rn–G) necessary for
obtaining the latent heat flux as a residual term of the energy balance
(Eq. (4)):

LE ¼ Rn−G−H: ð4Þ

All fluxes were measured with a 15 min frequency. EF is frequently
assumed to remain constant during the daytime, and this can be used
in order to calculate daily evapotranspiration (Anderson, Norman,
Diak, Kustas, & Mecikalski, 1997; Bastiaanssen, Thiruvengadachari,
Sakthivadivel, & Molden, 1999; Crago, 1996b; Crago & Brutsaert,
1996). Therefore daytime averages of EF based on that interval (in par-
ticular 08:00–12:00 UTC) were calculated after applying Eqs. (4) and
(2). As a consequence of using the residual method, LE, and therefore
EF, accumulates errors from the other flux components which can be
either additive or compensating. Despite these uncertainties and those
related to scale dependencies, these datasets were assumed reliable
and hence were used for validation.

2.2. Satellite data

Several satellite platforms with different spatial and temporal
resolutions were used in this study. From coarser to finer spatial res-
olution, as detailed in Table 1: MSG-SEVIRI, Envisat-AATSR/MERIS
and Landsat5-TM.

Landsat5-TM imagery (path 201/row 32) was acquired from the
United States Geological Survey (USGS — http://glovis.usgs.gov/, last
accessed 10th February 2014). Bands in the visible and near-infrared
parts of the spectrum (bands 1–5 and 7) are acquired at 30 m spatial
resolution, while the thermal band (6) is acquired at 120 m and
resampled to 30 m using cubic convolution, according to the standard
processing at USGS (http://landsat.usgs.gov/Landsat_Processing_
Details.php, last accessed 10th February 2014). These data are
preprocessed to a 1 T level standard terrain correction, providing sys-
tematic radiometric and geometric accuracy — enabling pixels in the
image to correspond to real world coordinates (WGS84 UTM 30 N pro-
jection) by incorporating ground control points while employing a
Digital Elevation Model (DEM) for topographic accuracy. Due to
Landsat's heliosynchronous orbit the overpass repeat cycle is 16 days,
limiting its usefulness for duties such as operational monitoring of
water fluxes — despite its high spatial resolution.

The European Space Agency's (ESA) Envisat satellite, no longer oper-
ational, completed a global coverage within 2–3 days. The Advanced
Along-Track Scanning Radiometer (AATSR) sensor onboard was
equipped with a dual-view system which allowed two near simulta-
neous observations of the same area, one at near-nadir with 1 km reso-
lution and one forward looking at a viewing angle of ~55° with a
resolution of around 2 km. It was equipped with 2 thermal bands for
the estimation of the land surface temperature by a split-window algo-
rithm. The radiances at the top of the atmosphere (ATS_TOA_1) product
was collected from the on-line MERCI system (http://ats-merci-uk.eo.
esa.int:8080/merci, last accessed 10th February 2014). On the other
hand, the Medium Resolution Imaging Spectrometer (MERIS) sensor,
also onboard Envisat, operated only in the solar spectrum with 15
bands. Although MERIS original spatial resolution was 300 m, we
Table 1
Comparison of satellite resolutions.

Platform/sensor Spatial resolution
(thermal/optical)

Vegetation
index used

Thermal bands
used

Revisit time

Landsat5
-TM

120/30 m NDVI 11.45 μm 16 days

Envisat 1 km/300 m NDVI/LAI 10.8 μm 2–3 days
AATSR/MERIS 12 μm

MSG ~4 km LAI 10.8 μm 15 min
SEVIRI 12 μm
downloaded the Reduced Resolution level 2p product (MER_RR_2p), also
from the MERCI system, in order to use it in conjunction with AATSR data
at 1 km. MER_RR_2p provided, among other data, atmospherically
corrected surface reflectances in 14 spectral bands. Both datasets, AATSR
and MERIS were then reprojected to WGS84 UTM 30 N, and subset to the
same spatial extent in order to be combined in further analyses.
The resampling was performed using nearest neighbor interpolation.

Finally, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
sensor onboard the geostationary Meteosat Second Generation
satellites (MSG) provides very high frequent acquisitions (15 min) of
both optical and thermal infrared data. However, that compromises
the spatial resolution (~3.1 km spatial sampling at nadir) as well as an-
gular effects due to the observation geometry inherent of a geostation-
ary satellite (Fensholt, Sandholt, Stisen, & Tucker, 2006; Rasmussen,
Pinheiro, Proud, & Sandholt, 2010). Similarly to AATSR, 2 split-window
thermal bands are available, in addition to another 10 different wave-
lengths bands. Leaf Area Index (LAI) and Land Surface Temperature
(LST) products from the Land Surface Analysis Satellite Applications
Facility (LSA SAF— http://landsaf.meteo.pt/, last accessed 10th February
2014) were used in this research. The images, corresponding to the
European region,were resampled from the original ~3.5 km geostation-
ary projection to 4 kmWGS84 UTM30 N by a nearest neighborhood re-
sampling method. Such pixel size was selected for being a multiple of
1 km and therefore convenient for the observation geometry of SEVIRI
over our study area.

2.3. Methodology

The following paragraphs describe themethodology (Fig. 4) applied
in this study, fromprocessing of the satellite data and the retrieval of the
algorithm inputs (Ts and VI) to the final estimation of EF, including the
development of a terrain mask.

2.3.1. Satellite imagery processing

2.3.1.1. Landsat processing. Landsat optical bands were atmospherically
corrected prior to being used. Due to the low radiometric resolution of
the TM sensor (8 bits), the simple dark object subtraction technique
from Chavez (1996) was applied. Once the surface reflectance was
obtained, the NDVI was calculated according to the original formula
from Rouse, Harrs, Schell, Deering, and Harlan (1974):

NDVI ¼ ρNIR−ρR
ρNIR þ ρR

ð5Þ

where ρNIR and ρR are the reflectances in the near-infrared and red
regions of the spectrum.

Then, brightness temperature was computed from the at-sensor ra-
diance of the thermal band, following the equations from Chander,
Markham, and Helder (2009). Using one channel brightness tempera-
ture as a surrogate of Ts may be affected by surface emissivity and
water vapor absorption effects. However, as found out by Venturini
et al. (2004), absolute values of temperature do not dramatically change
the relationship between NDVI and Ts during clear sky days. Since the
triangle method assumes homogeneous atmospheric forcing within
the modeling domain, a constant precipitable water vapor is assumed
to be present as well, given that spatial variation in precipitable water
vapor would modify the incoming radiation at the surface. In the case
of the Landsat spatial domain (5 × 5 km) we therefore assume that
the precipitable water vapor remains constant and hence the atmo-
spheric correction of the brightness temperatures will be the same for
the whole spatial domain. Furthermore, the triangle method is based
on the relative position within the triangular space and thus, no
accurate Ts estimations are required. In order to work only with cloud
free pixels in the area, a cloud mask based on simple thresholds of
NDVI (b0.1) and the brightness temperature (b280 K) was created.

http://glovis.usgs.gov/
http://landsat.usgs.gov/Landsat_Processing_Details.php
http://landsat.usgs.gov/Landsat_Processing_Details.php
http://ats-merci-uk.eo.esa.int:8080/merci
http://ats-merci-uk.eo.esa.int:8080/merci
http://landsaf.meteo.pt/


Fig. 4. Methodology scheme.
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The performance of the cloud mask was visually checked in all the
scenes selected in this study showing a good consistency.
2.3.1.2. Envisat processing. Ts was retrieved from AATSR data using the
Sòria and Sobrino (2007) split-window algorithm for the near-nadir
brightness temperatures. Following the modified APOLLO algorithm
(Plummer, 2008), a cloud mask was created for every image. Besides
the brightness temperatures, precipitable water vapor and directional
emissivity are required in the split-window algorithm. The split-
window variance–covariance ratio algorithm proposed by Li, Jia, Su,
Wan, and Zhang (2003) was used in order to retrieve the precipitable
water vapor, whereas the directional emissivity was estimated from
Leaf Area Index (LAI) and using the radiative transfer model 4SAIL
(Sobrino, Jiménez-Muñoz, & Verhoef, 2005; Verhoef, Jia, Qing, & Su,
2007) with emissivity values for soil and vegetation of 0.95 and 0.98 re-
spectively. LAI was derived from MERIS MER_RR_2p reflectances by
using the algorithm developed by Baret et al. (2006), which is
implemented as a module in the ESA's BEAM open-source toolbox
(http://www.brockmann-consult.de/cms/web/beam/, last accessed
10th February 2014).
2.3.1.3. SEVIRI processing.As detailed in the LSA SAF products description
(http://landsaf.meteo.pt/products/prods.jsp, last accessed 10th Febru-
ary 2014), the retrieval of MSG-SEVIRI TS is based on the generalized
split-window algorithm by Wan and Dozier (1996), which requires
land surface emissivity (ε) as input. In the same way, the retrieval of ε
is based on the Vegetation Cover Method (VCM) from Caselles, Valor,
Coll, and Rubio (1997) that relies on the use of a geometrical model to
compute an effective emissivity based on the knowledge of the Frac-
tional Vegetation Cover (FVC), also computed by the LSA SAF.Moreover,
a cloud mask is generated by the Nowcasting and Very Short Range
Forecasting Satellite Application Facility (NWC SAF) software. Thus,
the cloud-free FVC product, corrected from view/sun angles and anisot-
ropy effects, is used to directly obtain the LAI product, which ranges
from 0 to 10. In order to do so, the LSA SAF service implemented an al-
gorithm which is a backup solution of the physical-model inversion
method by Garcia-Haro, Fernando Camacho-de, and Melia (2006). The
algorithm employs a semi-empirical exponential relationship with the
FVC product, as in Roujean and Lacaze (2002), assuming spherical
orientation of the foliage and a coefficient which is function of the leaf
albedo (fitted to a random distribution of the vegetation).
2.3.2. Terrain mask
A digital elevation model (horizontal resolution of 25 m) from

the Spanish National Geographic Institute (http://www.ign.es/ign/
layoutIn/modeloDigitalTerreno.do, last accessed 10th February
2014), was used to remove areas with heights differing more than
500 m from the experimental site altitude as well as terrain with
slopes steeper than 15°. Likewise, urban areas, major water bodies
and woodland land cover types were also excluded based on the
Crops and Land Use Map (MCA—Mapa de Cultivos y Aprovechamientos)
2000–2010 (scale 1:50,000) of the Ministry for Agriculture, Food and
the Environment (http://www.magrama.gob.es/es/cartografia-y-
sig/publicaciones/agricultura/mac_2000_2009.aspx, last accessed
10th February 2014), leaving only those land surfaces with similar
roughness e.g. crops, scrubs, pastures and mixtures of all of them.

2.3.3. Dry and wet edge algorithms
Different algorithms for establishing the wet and dry edge of the

triangle were tested, as described next. In order to better compare
results by setting the same configuration in all cases, the ϕ value was

constrained by using 1= Δ
Δþγ

h i
as ϕmax, and ϕmin was calculated by the

non-linear interpolation proposed by Stisen et al. (2008) as part of the
two-step interpolation. The latter is justified by assuming that the true
dry edge cannot be determined when working with either NDVI or LAI.

2.3.3.1. Dry edge.
– The Simple dry edge algorithm was mainly used, whose steps are

described as follows:

i. The algorithm splits the Ts pixels into a number of bins based on
the VI value of a corresponding NDVI/LAI pixel. The VI step size
of the bins was set in all cases to 0.01 for Landsat and Envisat
and 0.05 for SEVIRI, and the value of minimum VI bin to 0.1.

ii. For each bin it finds the maximum and minimum Ts values, the
latter one for calculation of the wet edge.

iii. It removes all themaximum Ts values which are to the left in the
triangle graph (with corresponding lower VI value) of the
maximum Ts of the image as well as those maximum Ts lower
than the mean minimum Ts of the image.

iv. Finally, it performs a linear fit through the remaining Ts max
values and the corresponding VI bin values and uses the fit as
the dry edge.

– The Tang dry edge algorithm also divides the Ts pixels into a number
of bins based on the VI values although the way in which the

http://www.brockmann-consult.de/cms/web/beam/
http://landsaf.meteo.pt/products/prods.jsp
http://www.ign.es/ign/layoutIn/modeloDigitalTerreno.do
http://www.ign.es/ign/layoutIn/modeloDigitalTerreno.do
http://www.magrama.gob.es/es/cartografia-y-sig/publicaciones/agricultura/mac_2000_2009.aspx
http://www.magrama.gob.es/es/cartografia-y-sig/publicaciones/agricultura/mac_2000_2009.aspx
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maximum value of each bin is calculated and the way in which the
outliers are removed is more complicated. For further details see
Tang et al. (2010). The implementation of the Tang algorithm in
our routines was slightly modified compared to the original, since
the maximum Ts values which are to the left (in the triangle
graph) of the maximum Ts of the image, are also removed.

2.3.3.2. Wet edge.
– Variable max VI algorithm, where Ts min is the value of the dry edge

either at a given value of NDVI/LAI (set to 0.9 and 1.9, respectively)
or at the actual maximum value of NDVI/LAI found in the image,
whichever is smaller.

– Mean algorithm, where the Ts min is equal to the mean of the
minimumTs values from a number of bins (set to 10)with the largest
VI values.

2.3.4. Obtaining EF
From the meteorological station records of air temperature (Ta),

Δ
Δþγ

h i
parameter was calculated and assumed to be constant for the

rest of the spatial domain. Previous works have shown that although

dependent on Ta, the sensitivity of the Δ
Δþγ

h i
parameter to the variation

of temperature is very small (Tang et al., 2010; Venturini et al., 2004). In
operational applications, Ta can be obtained either by a linear regression
between Ts and Ts–Ta, by using the minimum surface temperature, the
average temperature of water bodies, or semi-empirical methods
based as well on the Ts/NDVI relationship (Nieto et al., 2011).

Finally, combining the estimated ϕ from the triangle algorithmwith
the measured Δ

Δþγ

h i
parameter, the instantaneous EF was obtained.

2.3.5. Triangle performance analyses
The described methodology was applied to evaluate the triangle

performance in the following cases:

– Inter-dataset model comparison with the terrain mask incorporated:
the same dry and wet edge algorithms were applied to Ts/VI data
obtained with the three different sensors in order to be able to
compare differences of performance related to the spatial resolution
and window domain size.

– Effects of masking terrain conditions: the same configuration was
tested without masking terrain conditions (land cover, altitude and
slopes), to evaluate the influence of the mask on the method perfor-
mance.

– Effects of the vegetation index choice: in order to evaluate how the
type of VI used influences the results, triangles using either Envisat-
MERIS NDVI or LAI products were tested.

– Best dry/wet edge algorithm: different combinations of both dry and
wet algorithms were tested in order to obtain the best possible
results.

To analyze and compare results, the statistical measures shown in
Table 2 were calculated in every section.
Table 2
Statistical measures. Note: Pi is predicted, Oi is observed and n is the number of samples.

Statistical measure

Root mean square error
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ∑

n

i¼1
Pi−Oið Þ2

s

Bias Bias ¼ Pi−Oi

Mean absolute error
MAE ¼ 1

n∑
n

i¼1
Pi−Oij j

Coefficient of determination

R2 ¼
∑n

i¼1 Oi−O
� �

Pi−P
� �

∑n
i¼1 Oi−O

� �2
� �0:5

∑n
i¼1 Pi−P

� �2
h i0:5

8>>><
>>>:

9>>>=
>>>;
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3. Results

3.1. Annual variation of physical parameters

Fig. 5 represents the annual variation of some physical parameters
related to EF, observed at the experimental site during the two
campaigns. Between November 2010 and January 2011 there are
missing values for bothϕ and EF, due to technical problemswith the in-
strumentation. Rainfall events (Fig. 5a) during the springtime in 2011
are more frequent and abundant than those for the same period in
2010, conditioning the rest of parameters described next.

Fig. 5b displays LAI variation for wheat (first campaign) and oats
(second campaign), retrieved from Envisat-MERIS. The growing sea-
son starts in March and reaches its maximum around middle of May,
when the crop senescence begins, being harvested by the end of
June. LAI maximum values for the oats are slightly higher than
those for the wheat (1.8 and 1.6 respectively). LAI residual values
for the bare soil period range between 0 and 0.5. It must be noticed
that LAI values oscillate on consecutive dates, most likely due to imper-
fect atmospheric corrections, angular effects and uncertainty related to
the LAI model inversion.

Seasonality of field site Ts can be observed in Fig. 5c, where temper-
ature gradually increases from 10 to 30 °C along the growing season.
The highest values for ϕ (Fig. 5d) in that period correspond to the
highest EF observed values (Fig. 5e). They decrease concurrently as
well, thus showing the small influence of changes of air temperature
in Eq. (3). During the time when there is still bare soil a maximum of
~0.5 ϕ value should be expected in dry conditions. However, since ϕ is
highly influenced by rainfall, it might reach values close to 1 or above.
The same is observed for the EF values, which vary from 0.3 to 0.8 dur-
ing the same period. Theoretically, ϕmax is meant to be 1.26 (Priestley &
Taylor, 1972), but it can be seen that this value can be exceeded after a
rainfall, especially during the second growing season. EF daily standard
deviation results for the intervals 08:00–12:00UTC remain close to zero
for the two growing periods. Only after heavy or long-lasting rain events
or cloudy days, the EF daytime variability increases.

3.2. Triangle performance

In the following sections, several comparisons of instantaneous
(acquisition time 10:45 UTC for all sensors) EF estimations from re-
motely sensed data with daytime averages of EF observations from
field measurements are analyzed. While for Envisat and SEVIRI the
corresponding pixel containing the experimental field was selected
for this purpose, an average of the pixels contained within the exper-
imental field is used for Landsat. Prior to comparison, inconsistent
values (i.e. EF negative or higher than 1), occurring when pixels are
outside the boundaries of the triangle edges, were removed. Rainfall
events increase moisture content, and might lead to EF values higher
than 1. The difference of the number of valid cases for each satellite is
a consequence not only of the former but also of the temporal
resolution.

3.2.1. Domain size selection
In order to obtain better results, an optimal window size was

determined for each dataset by testing several domain sizes over the
study area, increasing from an initial small one, until a reasonable tri-
angular shape could be formed. As a result, a 5 × 5 km window size
was selected for Landsat (27,889 pixels), 40 × 40 km for Envisat
(1540 pixels) and 60 × 60 km for SEVIRI (204 pixels), as shown in
Fig. 3b.

Fig. 6 shows Landsat domain dependencies presentwhen comparing
5 × 5 km to 60 × 60 km window domain sizes for three selected dates
with minimum, medium and maximum EF rates, and therefore soil
moisture conditions (20100623, 20100404 and 20110407, respective-
ly). As the domain gets larger, the dry edge becomes warmer and



a)

b)

c)

d)
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Std

Fig. 5. Annual variation at the study site of: a) daily precipitation; b) LAI retrievals from Envisat-MERIS; c–e) 08:00–12:00 UTC interval daily averages of in situ Ts, estimated from the
longwave radiometers deployed in the field, as well as ϕ and EF with its standard deviation (Std.). The horizontal dashed line in d) represents the typical value of αPT–1.26. The vertical
dashed line represents a time break between field campaigns.
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moves upward. The wet edge established by the Simple Variable max VI
(S. Var max VI) algorithms moves upward too, while the wet edge
established by the Simple Mean (S. Mean) algorithms becomes colder
moving toward the opposite direction. Table 3 lists the estimated EF
for both domains and algorithms' configuration for the wet edge. EF re-
sults for the 5 × 5 km domain size and S. Var max VI algorithm are the
most similar to the observed EF measurements. Enlarging the domain
size when using this algorithm worsens results as seen for the 60
× 60 km domain size estimations. Results for both domain sizes and
S. Mean algorithm present worse estimations and remain quite similar,
except for the driest situation where there is a noticeable change.
3.2.2. Dataset model comparison
In order to better compare the performance of each platform, we

applied the same method for the retrieval of the triangle edges for
each of the three datasets. The Simple and the Variable max VI algo-
rithms' combination showed better outcomes in preliminary results
(partially shown in the previous analysis) and therefore it was used
with all images. However, it has to be considered that NDVI
remained as the vegetation index for Landsat, whereas LAI was
used for Envisat and SEVIRI.

Fig. 7 compares EF estimations to field measurements and Table 4
lists the statistics for each sensor. In general, estimations are good,



Fig. 6. Landsat domain dependencies on the establishment of the triangle edges, using Simple algorithm for thedry edge andVarmaxVI (solid line) orMean (dashed line) algorithms for the
wet edge. The relative position of the experimental field site with respect to the edges is represented by an asterisk.
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although the performance is closely related to the spatial resolution.
Hence, RMSE ranges from 0.11 for Landsat and 0.15 for Envisat to 0.23
for SEVIRI and consequently similar pattern is observed for the MAE
(0.09, 0.11 and 0.19, respectively). Furthermore, R2 decreases as the
resolution decreases (0.77, 0.41 and 0.24 respectively), but that is also
depending on the number of available acquisitions and hence related
to the temporal resolution of each sensor.While Landsat and Envisat re-
lations remain relatively unbiased, SEVIRI estimations are slightly
overestimated. The Analysis of Variance (ANOVA) p-values confirm a
statistically significant relationship between observations and estima-
tions at the 99% confidence level.

In order to assess whether the worse results when using SEVIRI and
Envisat data are just due to the scale mismatch present during the vali-
dation or due to the different triangle spatial domain extents between
sensors, Landsat derived EF from the previous analysis (using the Simple
and Variable max VI algorithms) were resampled to match Envisat
(1 km) and SEVIRI (4 km) pixel sizes by averaging all the 30 m pixels
within each coarse resolution pixel (1 km and 4 km). Table 5 lists the
statistic discrepancies between these resampled Landsat results and
the observedmeasurements. As the size of the resampled resolution in-
creases, statistics worsen and become consistent with the correspond-
ing sensor statistics showed in Table 4. Thus, RMSE and MAE are 0.12
and 0.09 respectively for the 1 km aggregation (RMSE = 0.15 and
MAE = 0.11 with Envisat), and 0.25 and 0.21 respectively for the
4 km aggregation (RMSE = 0.23 and MAE = 0.19 for SEVIRI). Despite
R2 values being slightly better (0.57 and 0.33) than those showed in
Table 4, ANOVAp-values areworse, even showing no statistically signif-
icant relation with observed measurements for the 4 km aggregation,
Table 3
Experimental field site Ts, NDVI and EF observations, compared to Landsat EF estimations
for both domain sizes and algorithms' configuration.

Date Experimental field EFest 5 × 5 EFest 60 × 60

Ts NDVI EFobs S. Var max VI S. Mean S. Var max VI S. Mean

20100623 310.7 0.26 0.34 0.36 0.24 0.81 0.38
20100404 291.7 0.36 0.75 0.65 0.41 0.93 0.45
20110407 295.2 0.57 0.91 1 0.66 1.25 0.70
due to the lower number of Landsat scenes compared to Envisat and
SEVIRI.

3.2.3. Mask effect
Fig. 8 and Table 6 show the effect in the EF estimates when themask

based on topography and vegetation type is removed. We used the
same dry and wet algorithms' configuration as in the previous section.

Both Landsat and Envisat RMSE, MAE and R2 (0.10, 0.09, 0.80 and
0.15, 0.12, 0.46, respectively) are very similar to the previous masked
results. Thus, ANOVA p-values still confirm a statistically significant re-
lationship between those observations and estimations at the 99% con-
fidence level. However, SEVIRI statistics get worse in this case. RMSE,
MAE and R2 decreased to 0.36, 0.26 and 0.06, respectively. Accordingly,
ANOVA statistics show no relationship between observations and
estimations.

3.2.4. Vegetation index comparison
In order to compare the performance of each vegetation index used,

Envisat NDVI and LAI products derived on the same dates were tested
with both the S. Mean and S. Var max VI algorithms for the dry and
wet edge determination and compared to field measurements, as
shown in Fig. 9. Analysis statistics are listed in Table 7. Despite the gen-
eral triangle performance being good with Envisat data in both cases,
some differences can be found when using either LAI or NDVI.

In general, better results are obtained when using LAI as the vegeta-
tion index. For theMeanwet edge algorithm it can be observed that LAI
results are better than those fromusingNDVI. RMSE is 0.14 compared to
0.16, MAE is 0.11 compared to 0.14 and R2 is 0.62 for LAI and 0.38 for
NDVI. The same relation can be found in the Var max VI algorithm re-
sults. RMSE and MAE are higher for NDVI than for LAI (0.19 and 0.14
compared to 0.14 and 0.10, respectively). All cases present a statistically
significant relationship at 95% confidence level between the observed
and the estimated values.

3.2.5. Dry edge algorithm comparison
This last section analyzes the improvement obtainedwhen using the

Tang algorithm for establishing the dry edge on Landsat imagery. Fig. 10
compares EF estimations tofieldmeasurements and Table 8 lists the sta-
tistics analyses. RMSE, MAE and R2 (0.07, 0.05 and 0.90, respectively)
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Fig. 7. Comparison of remotely sensed EF estimates, using the same algorithms for each dataset, against EF field measurements.
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show better results than the ones obtained with the Simple dry edge
(Section 3.2.2). In the sameway, ANOVA p-value confirms a statistically
significant better relationship between observations and estimations at
the 99% confidence level.

4. Discussion

Different approaches of the triangle method have been developed
(Shu et al., 2011; Stisen et al., 2008; Tang et al., 2010; Wang et al.,
2006; Yang & Wang, 2011) showing comparable accuracy with our re-
sults. More recently, Long and Singh (2012) presented a trapezoid
model capable of discriminating vegetation transpiration from soil
surface evaporation based on a two-source scheme and Merlin (2013)
proposed an original interpretation of the wet edge of the Ts–albedo
space. It must be considered that some uncertainty is assumed due to
the large scale difference between groundmeasurements and the satellite
pixel size, besides uncertainty on account of using the residualmethod for
obtaining LE from in-situ measurements or LAI products. Nevertheless,
our results indicate moderately good agreement with ground measure-
ments, with errors around 10% of EF for the case of Landsat. Our goal
Table 4
Statistic discrepancies between predicted and observed measurements.

Platform/sensor No. cases RMSE Bias MAE R2 ANOVA p-value

Landsat5
TM

7 0.11 0.07 0.09 0.77 0.0053

Envisat
AATSR/MERIS

18 0.15 0.02 0.11 0.41 0.0041

MSG
SEVIRI

37 0.23 0.15 0.19 0.24 0.0022
was not only to discuss the model performance itself but also, more
importantly, to study how results might be influenced by some of the
aspects which are discussed next.

Rainfall determines soil moisture availability and hence it is
considered to be the main limiting factor for vegetation growth in
Mediterranean climates (French & Schultz, 1984). ϕ, which in turn
depends on soil moisture, regulates EF as expressed in Eq. (3). That
relation can be observed in Fig. 5, where the copious precipitation
during the second campaign (April–June 2011) produced higher ϕ,
EF and therefore higher LAI values, meaning higher crop yield
rates. Rainfall during this period has a more direct effect on crop
growth, as it corresponds to their maximum growing rate stage. In
the same way, when is there still bare soil, an excess of soil moisture
due to rainfall can produce ϕ values higher than the expected αPT.
And so, throughout the rest of the period EF remains relatively
high, decreasing only during the senescence when the climate is
dryer and warmer and the soil moisture drops. As seen in the standard
deviation values presented in Fig. 5d, EF remains rather constant during
the daytime (between 08:00 and 12:00 UTC) for clear sky cases,
allowing us the calculation of daily latent heat fluxes assuming the
self-preservation of EF (Crago, 1996a,b). EF shows on the other hand a
higher daytime variability during rainfall spells or highly variable
Table 5
Statistic discrepancies between resampled Landsat imagery results (Simple and Variable
max VI) and observed measurements.

Resampled resolution No. cases RMSE Bias MAE R2 ANOVA p-value

1 km 7 0.12 0.02 0.09 0.57 0.0485
4 km 7 0.25 0.20 0.21 0.33 0.1793
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Fig. 8. Comparison of remotely sensed EF estimates, without applying a mask, with field measurements.
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atmospheric forcing conditions, and therefore special care should be
taken in those cases when extrapolating the instantaneous EF to daily
ET.

Clearly, spatial resolution plays an important role in the triangle
performance (Tables 4–7). Fig. 11 shows the Ts–VI scatterplots of the
analyses carried out in Section 3.2 for two specific dates (4th April
2010 and 23rd June 2010). The scatterplots of the selected days differ
between datasets. Firstly, the number of points (pixels) in the
scatterplots obviously decreases as the sensors resolution does, forcing
in some cases the use of a larger spatial domainwith the risk of breaking
the assumption of homogeneous atmospheric forcing. Secondly,
while the dry edge generally adjusts fairly well to the triangular
shape, the wet edge adjustment depends on the algorithm used.
Some cases might be affected by undetected clouds and/or shadows,
as in the case of Landsat low Ts/NDVI dispersed values under the wet
edges in April.

Landsat statistics present better results than the other datasets.
Moderate or low spatial resolution sensors fail to differentiate variations
in Ts, VI and soil moisture conditions at field scales (Kustas et al., 2004;
McCabe & Wood, 2006), therefore affecting the Ts–VI space and
compromising results. Fig. 12 compares pixel sizes at the experimental
Table 6
Statistic discrepancies between predicted and observed measurements.

Platform/sensor No. cases RMSE Bias MAE R2 ANOVA p-value

Landsat5
TM

7 0.10 0.06 0.09 0.80 0.0030

Envisat
AATSR/MERIS

18 0.15 0.02 0.12 0.46 0.0019

MSG
SEVIRI

37 0.36 0.15 0.26 0.06 0.1294
site. While Landsat pixels mostly represent homogenous land cover
types, the in-pixel landscape heterogeneity clearly increases for Envisat
and, specially, SEVIRI pixels. Indeed, since our area is composed ofmany
mosaics and patched vegetation, Envisat and SEVIRI pixels usually in-
clude a significant presence of bare soil, and hence the wet edge is
warmer compared to the wet edge in Landsat (Fig. 11), where it is
more likely to obtain pure pixels of vegetation and hence lower
temperatures.

Most studies give no details of the window domain used, apparently
applying the triangle over the entire image. Working on small tiles, i.e.
running the algorithm on each tile independently, might improve
results by working over more homogeneous conditions. In a recent
research, Long et al. (2012) concluded that within the same dataset en-
larging the domain size makes the observed dry and wet edge to move
upward and downward, respectively, due to a broader range of soil
moisture conditions present. As a consequence, effectiveness in their
automatic establishment might decrease worsening the results. Uncer-
tainties like these in determining the spatial domain of triangular
models, suggest that a previous calibration is required (Long & Singh,
2013). That is the reason why several tests were carried out prior to
our comparison to determine an optimal window size for each dataset.
Analyses in Section 3.2.1 confirmed the displacement of thewet edge on
Landsat imagery when using the S. Mean algorithm. However, such
displacement of the wet edge was contrary when using S. Var max VI,
as its establishment depends on the dry edge position.

Spatial resolution determines the size of the window domain, which
might affect results as well. Although the triangle edges remain
unaffected, some high LAI pixels outside the triangle borders must be
noticed (4th April in Fig. 11c and 23rd June in Fig. 11d). The highest
LAI values of Envisat in Fig. 11c correspond to scattered pixels in the
area, whose value is diminished upon mixing with surrounding low
values at the SEVIRI pixel resolution. As SEVIRI pixels are bigger, a larger
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Fig. 9. Comparison of remotely sensed EF estimates, using LAI or NDVI as the vegetation index for the Envisat dataset, with field measurements.
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window size is required, causing LAI values in Fig. 11d for June to be
higher than those for the same date in Fig. 11c. In this case those values
correspond to sunflower crops located out of the range of the Envisat
spatial domain, which are growing at this time of the year in the region.
Likewise, it must be considered that uncertainties in LAI productsmight
lead to major errors in estimations. Equations in Fig. 11 denote an
increase in temperature range between the two edges as the image
resolution increases, as a consequence of the spatial resolution and
window domain size.

Intra-pixel landscape heterogeneity and the number of pixels avail-
able within each domain are likely to be the sources of errors explaining
worse edges adjustment and lower performance with Envisat and
SEVIRI data. In particular, given the spatial resolution of SEVIRI, and in
order to avoid a window domain where the assumption of homoge-
neous atmospheric forcingmight no longer be valid, a rather small win-
dow of 60× 60 kmwas selected. This issue leads then to having a rather
small number of pixels (225 pixels) for calculating the dry and wet
edges (see Fig. 11d) and a consequent reduced performance in the re-
sults for this sensor. Despite SEVIRI coarse resolution being unable to
capture the spatial variability in fluxes where intra-pixel heterogeneity
is present, it successfully estimates average fluxes at large scale (Stisen
et al., 2008). Althoughworkingwith finer resolutions has shown to pro-
duce better results, it usually compromises other aspects, such as
Table 7
Statistic discrepancies between predicted and observed measurements.

Method No. cases Vegetation
index

RMSE Bias MAE R2 ANOVA p-value

LAI 11 S. Var max VI 0.14 0.00 0.10 0.51 0.0135
11 S. Mean 0.14 0.05 0.11 0.62 0.0040

NDVI 11 S. Var max VI 0.19 0.09 0.14 0.52 0.0128
11 S. Mean 0.16 −0.06 0.14 0.38 0.0452
radiometric and temporal resolutions in Landsat. Having multi-
temporal observations as in the case of SEVIRI might be an advantage,
however, working with such a pixel size over heterogeneous or
scattered vegetated areas becomes a difficult task. Despite not using
dTs in our analysis, our SEVIRI results are consistent with previous re-
sults (Shu et al., 2011; Stisen et al., 2008). Additional work should in-
clude further research on applying Ts difference over heterogeneous
areas, due to its usefulness for this type of models.

Furthermore, as McCabe and Wood (2006) pointed out, a com-
parison of remote sensing retrievals with field measurements entails
an inadequate validation assessment, due to factors such as representa-
tiveness of the validation point within the sensor pixel resolution,
sensor measurements accuracy and/or physically discrepancies be-
tween measured and observed variables (time averaged atmospheric
boundary-layer measurements compared with instantaneous empiri-
cally based estimations). Regarding the first factor, Table 5 shows the
evaluation of the representativeness of the validation site at Envisat
and SEVIRI scales. Statistical discrepancies indicated that the size of
the experimental field, while being appropriate for Envisat, might not
be representativewithin the SEVIRI pixel size. The no statistically signif-
icant ANOVA relation between observedmeasurements and Landsat re-
sults aggregated to 4 km is a consequence of the sub-pixel variability of
EF estimates at SEVIRI scale, which leads to an inefficient effort for a val-
idation strategy. Consequently, the scale mismatch between SEVIRI
pixel size and scintillometer footprint is likely to explain most of the
lower performance in EF estimations.

Similarly, the importance of the deployment and location of the val-
idation equipment has to be considered, especially in heterogeneous
areas, where enough validation sites for distinguishing between differ-
ent vegetation classes should ideally be present (Long & Singh, 2013;
McCabe & Wood, 2006). In the absence of such a validation network
for this study, our validation equipment was placed on a non-irrigated
winter crop, for being a dominant vegetation class in the study area.
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Fig. 10. Comparison of remotely sensed EF estimates from Landsat, using the Tang algorithm for the dry edge, with field measurements.
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The relative position of the validation pixels within the boundaries of
the triangle is significant for triangular models, especially when consid-
ering issues related to the establishment of the edges, as commented
before. As seen in Fig. 13, when both edges move in opposite directions
(dry edge 1 to dry edge 2, andwet edge 1 towet edge 2) due to increas-
ing domain size or uncertainties in the derivation of them, EF estimates
from pixels distributed in the central Ts/VI space of each VI interval (i1)
remain relatively invariant, while EF estimations frompixels close to the
edges (i2) are likely to present significant changes (see equations in
Fig. 13). Therefore, validation pixels centrally distributed would reduce
the effects of resolution or domain dependencies, leading to a reduced
utility of the validation effort. However, these kind of issues are mainly
related to changes of domain size within the same satellite imagery
(dataset), and not to changes associated with the enlargement of the
domain size due to image resolution (i.e. coarser resolutions require
larger domains), as the changes observed in EF would be consequences
not only of the former, but also of the intra-pixel heterogeneity associ-
ated to coarser pixels as commented before. At the same time, central
pixels might be considered robust for providing an average perfor-
mance of the model.

As the S. Var max VI algorithm showed no such issue, meaning that
the location of the validation site in this studywas eligible for providing
effective measurements of EF under extreme conditions, it was selected
for the dataset model comparison analysis in Section 3.2.2, avoiding a
biased validation attempt. And so, our results are in accordance with
previous findings, such as the scale dependencies found by Long et al.
(2012) comparing Landsat TM/ETM+ with MODIS EF estimates on
the Soil Moisture–Atmosphere Coupling Experiment (SMACEX) site in
central Iowa (USA). They concluded as well that using their proposed
trapezoid model with theoretical limiting edges can constrain domain
and resolution dependencies to some extent.

To our knowledge, masking terrain conditions is not a commonly
discussed issue on triangle applications. Merely some topographical in-
formation for the interpolation of Ta has been integrated on previous
works (Ishimura, Shimizu, Rahimzadeh-Bajgiran, & Omasa, 2011).
With our analyses we show the importance of such step when applying
this kind of methods, especially over low resolution imagery. As seen in
the results, SEVIRI RMSE almost doubles without applying a mask. This
can be explained by the comparatively higher presence of masked
Table 8
Statistic discrepancies between predicted and observed measurements.

Platform/sensor No. cases RMSE Bias MAE R2 ANOVA p-value

Landsat5
TM

7 0.07 −0.04 0.05 0.90 0.0030
categories within the larger SEVIRI domain, in contrast with Landsat
and Envisat, corresponding not only to vegetation typeswith significant
differences in roughness, but also to larger altitude range and slopes. In
fact, the percentages of masked pixels within the Landsat, Envisat and
SEVIRI's domains are around 20%, 27% and 45%, respectively.

In general, NDVI/LAI values in Fig. 11 are higher in April than in June,
as the latter corresponds to the senescence period. Hence, the triangular
shape is better defined in June, whenmore soil moisture conditions can
be foundwithin the image due towater stress. Mostly, the equations are
in agreement with the statistics presented before. Landsat NDVI maxi-
mum values (Fig. 11a) are higher than those for Envisat (Fig. 11b) due
to not only different pixel sizes and window domains, but also different
spectral responses. While NDVI is just a surface greenness indicator, LAI
is a physical parameter whose magnitude better represents the surface
reality. Therefore, as expected, the triangle results improved using the
latter in the Ts–VI space. Previous studies have used similar indexes,
such as the Fractional Vegetation Cover (Jiang & Islam, 2003; Nishida
et al., 2003) but none was found using LAI, nor comparing results be-
tween different indexes.

Regarding the triangle limits, as seen in Figs. 11 and 14, the dry edge
is generally better defined than the wet edge, both for NDVI and LAI.
Therefore, it can be concluded that the use of the non-linear ϕmin inter-
polation from Stisen et al. (2008) can be feasible whenworkingwith ei-
ther NDVI or LAI. Usually, triangle methods assume that full-cover
vegetation is not undergoing water stress, meaning that the vegetation
temperature does not get significantly larger than the minimum tem-
perature. This kind of interpolation can be seen as a proxy for allowing
some degree of water stress, by minimizing the difference between
the true dry edge and the observed dry edge. The Tang algorithm was
found to be applicable only to Landsat imagery due to higher pixel res-
olution and the larger number of pixels within the domain. The algo-
rithm, which divides the range of VI in the triangle space into intervals
and subintervals, did not properly work for coarser sensors like Envisat
and SEVIRI that are unable to discriminate small VI variations. Therefore
only the Simple methodwas used with Envisat and SEVIRI. Results were
improved in the case of Landsat by applying both Tang and Var max VI
algorithms (Section 3.2.5), due to a better definition of the dry edge
and the dependency that the Var max VI wet edge has on a correct
characterization of the dry edge.

The saturation of NDVI at higher LAI values – and hence at dense
vegetation – shown in Fig. 2a, is confirmed in the Landsat triangles of
Fig. 11a. In this case, the value of the Varmax VIwet edge, as it intersects
with the maximum VI value of the dry edge, is quite higher than the
value of Mean wet edge, and usually removes from the triangle the
areas highlighted in Fig. 15. This effect is also observed in the case of
Envisat when using NDVI (Fig. 11b). On the contrary, when using LAI



Fig. 11. Scatterplots of the triangles for all datasets, using Simple algorithm for the dry edge and Var max VI (horizontal solid line) or Mean (horizontal dashed line) algorithms for the
wet edge, respectively: a) Landsat; b) Envisat-NDVI; c) Envisat-LAI; d) SEVIRI.

506 A. de Tomás et al. / Remote Sensing of Environment 152 (2014) 493–511



Fig. 12. Pixel size comparison at the experimental site: Landsat5-TM (30m), Envisat (1 km), SEVIRI (4 km). (For a better interpretation of the colors in this figure, the reader is referred to
the web version of this article.)
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(Fig. 11c) the Var max VI wet edge is usually lower than the Mean wet
edge and hence it seems to better adapt to the expected theoretical
wet edge. Fig. 14 shows the scatterplots of the triangles for the Envisat
images, both using NDVI and LAI in the Ts/VI space. From this figure,
the Var max VI algorithm generally represents better the wet edge
when using LAI as the vegetation index, while Mean performs better
for NDVI. It is worth noting that although Han et al. (2006) stated that
NDVI saturates with LAI above 6, we have observed that the Ts/VI
space seems better defined using LAI in our study, despite our LAI values
never reaching up to 3. Based on simulations using the coupled radiative
transfer model PROSPECT (Jacquemoud & Baret, 1990) and 4SAIL
(Verhoef et al., 2007),wehave plotted LAI andNDVI in Fig. 16, confirming
that NDVI can saturate (NDVI ~ 1) even with LAI values as low as 1,
depending obviously on the spectral response function of the sensor.

WhenusingNDVI as the vegetation index, the scatterplots of Landsat
and Envisat (Fig. 11a–b) show a better representation of the wet edge
by the Mean algorithm, which is confirmed by the Envisat statistics in
Section 3.2.4 and scatterplots of Fig. 14. Wemade some analyses apply-
ing the Mean algorithm to Landsat. However resultant EF indicated
worse statistics than the one found with Var max VI, probably because
the Tsmin obtainedwith the latter is closer to the Ts of the experimental
field at the acquisition time. In fact, the Landsat pixels located between
the two wet edges in the Ts/VI space correspond to areas with presum-
ably higher water content, due to either irrigation or rainfall. Fig. 15
highlights those pixels for Landsat NDVI images on the same two
dates as Fig. 11a. In comparison to the land cover map detail (Fig. 12,
30 × 30 m) the highlighted pixels mainly correspond to irrigated
crops close to the river. There are, as well, some other residual non-
irrigated areas at the bottom right corner, which probably keep mois-
ture due to uneven terrain conditions.

In the same way, whenever LAI is used, the Var max VI algorithm
seems to work slightly better according to the Envisat statistics in
Section 3.2.4 and scatterplots of Figs. 11c–d and 14. The Envisat
scatterplot for the 23rd of June seems to be a clear exception and it is ex-
plained by the same reason as mentioned before for the Landsat cases,
i.e. presence of irrigated areas. Still, further research needs to be done
in comparing algorithms to investigate this issue, since an adequate
establishment of the edges is essential for a good performance of the
triangle method.

Finally, the Ts min in the Var max VI is taken as the value of the dry
edge at a value of NDVI = 0.9 or LAI = 1.9, representing full vegetation
cover, or at the actualmaximum value of NDVI/LAI in the image, which-
ever is smaller in order to not incur the overestimation of the wet edge.
This derivation of the wet edge might suffer from subjectivity when
choosing those VI values. Tang et al. (2010) propose to build the triangle
with the fractional cover (which is more physically-based than a
simple VI). However, fc is usually estimated based on empirical ap-
proaches that scale the NDVI from a NDVI max and min such as in
Tang et al. (2010), thus also suffering from subjectivity. We consider
therefore that it is equally arbitrary to use max NDVI in the VI–Ts space
as it is to use it (NDVI max = 0.86 in case of Tang, based on Prihodko
and Goward (1997)) for estimating fc. Furthermore maximum cover
NDVI values are species specific and, more important, any vegetation
index is sensor specific (Prihodko and Goward (1997) uses AVHRR
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Fig. 13. Effect of the relative position of pixels in triangle models associated to domain dependencies, adapted from Long and Singh (2013). Point i1 represents a pixel centrally located
within the Ts/VI space, and point i2 represents a pixel located close to the dry edge. Distance l represents the difference in Ts between point i1 and the dry edge 1. Distance l′ represents
the difference in Ts between point i1 and the dry edge 2. Distance l″ represents the difference in Ts between point i2 and the dry edge 2. Distancem represents the difference in Ts between
the wet edge 1 and the dry edge 1. Distancem′ represents the difference in Ts between the wet edge 2 and the dry edge 2.
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while Tang et al. (2010) apply the same value for MODIS) as discussed
by Stisen, Sandholt, Nørgaard, Fensholt, and Eklundh (2007) and
Nieto et al. (2011).

5. Conclusions

This study has evaluated the triangle approach for estimating EF
over a heterogeneous area, focusing on four main issues that can affect
themodel performance: pixel resolution, terrain conditions (vegetation
classes, altitude, slope), vegetation index, and edge algorithms used. To
achieve this, satellite imagery with different spatial resolution were
used (MSG-SEVIRI, Envisat-AATSR/MERIS and Landsat5-TM); the influ-
ence of terrain conditions was verified by developing a mask; NDVI and
LAI were analyzed as the vegetation index; and different combinations
of the wet and dry edge algorithms were tested.

Our analyses shed light on how results are indeed affected by those
aspects. Finer satellite resolution results in better performance, usually
compromising the temporal resolution. Topographic heterogeneity
negatively affects results, making it necessary to usemasks for ensuring,
as far as possible, uniform terrain conditions, whenever the number of
remaining pixels can provide an appropriate definition of the triangular
shape. And finally, results depend as well on the type of vegetation
index used, working betterwith LAI than NDVI due to saturation effects,
and edge algorithms, beingmore adequate Var max VI for LAI andMean
for NDVI.

Applying the triangle method entails a main limitation to consider,
which is the large number of pixels required within an image with a
wide range of soil moisture and fractional vegetation cover conditions.
Wet surfaces evaporating at potential rates, as well as dry surfaces
where almost no ET occurs, are necessary. As demonstrated and in
agreement with previous studies (Long & Singh, 2012; Long et al.,
2012), results are dependent on domain size and pixel resolution.
Thus, a prior calibration for selecting a properwindowdomain becomes
a non-trivial but decisive task, and it will depend on the sensor used and
the nature of the area of interest. In the sameway, representativeness of
the validation site is critical for an accuracy assessment, and the
deployment and location of the validation equipment must be carefully
selected.

Some intrinsic assumptions to the triangular shape need to bemade
as well (Long & Singh, 2012). For instance, 1) due to the model's one-
source scheme, the triangle is not able to discriminate vegetation tran-
spiration from soil surface evaporation — the latter may reduce the
overall evaporative demand by decreasing the air vapor pressure deficit
and thereforemight affect the vegetationwater use; 2) the aerodynamic
and physiological effects of the surface on sensible heat flux are not
explicitly taken into account, but are assumed to be explained within
the NDVI–Ts space — indeed as we have demonstrated, landscape
heterogeneity affects results; 3) it is assumed there is a non-linear
variation of EF across the VI–Ts space; and 4) certain level of subjectivity
is frequently involved when establishing both edges, and the type of
algorithm used affects results — the wet edge in particular is often
affected by pixels with low values of VI and Ts (e.g. clouds, slopes,
shadows) which deform the triangle shape at its base, making its
determination more difficult.

Nonetheless, and as summarized by Tang et al. (2010), the triangle
approach presents several advantages. In particular, 1) as results are
based on the relative position of pixels within the triangle and not on
highly accurate Ts retrievals, sophisticated atmospheric corrections are
not required; 2) since ϕ is a replacement for the aerodynamic term,
there is no need for its complex parameterization, avoiding in this
way uncertainties introduced by replacing aerodynamic temperature
by remotely sensed Ts; 3) apart from Ts and VI, no other satellite re-
trievals are necessary; 4) EF is directly and independently obtained,
with no need of estimating any other component of the surface energy



Fig. 14. Scatterplots of the Envisat triangles for the NDVI/LAI comparison analysis. Horizontal line represents the wet edge estimated by Var max VI (solid) orMean (dashed).
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Fig. 15. In green, pixels located betweenMean andVarmaxVIwet edges in the Ts/VI space of two Landsat images. For the visualization of the triangles see Fig. 11a. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Scatterplot of LAI vs. NDVI based on 20,000 random simulations using PROSPECT
+ 4SAIL.
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balance component; and 5) consequently to the latter, errors in ET
estimations can be independently traced back.

In summary, regardless model intrinsic assumptions, its simplicity
and reasonably good performance make the triangle a considerable
choice among other methodologies. Despite the lack of more field ob-
servations for a regional validation, the methodology presented here is
considered to be independent of the localmeasurements and applicable
for estimating EF at regional scales, including heterogeneous areas.
Additional work on improving operability, by obtaining frequent EF es-
timations at high resolution by combining different satellite imagery,
will be the basis of future research.
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